LDO Linear Regulators - Micropower, DELAY, Adjustable RESET, and Monitor FLAG #### 150 mA The NCV8502 is a family of precision micropower voltage regulators. Their output current capability is 150 mA. The family has output voltage options for adjustable, 2.5 V, 3.3 V, 5.0 V, 8.0 V, and 10 V. The output voltage is accurate within $\pm 2.0\%$ with a maximum dropout voltage of 0.6 V at 150 mA. Low quiescent current is a feature drawing only 90 μ A with a 100 μ A load. This part is ideal for any and all battery operated microprocessor equipment. Microprocessor control logic includes an active \overline{RESET} (with DELAY), and a FLAG monitor which can be used to provide an early warning signal to the microprocessor of a potential impending \overline{RESET} signal. The use of the FLAG monitor allows the microprocessor to finish any signal processing before the \overline{RESET} shuts the microprocessor down. The active \overline{RESET} circuit operates correctly at an output voltage as low as 1.0 V. The \overline{RESET} function is activated during the power up sequence or during normal operation if the output voltage drops outside the regulation limits. The reset threshold voltage can be decreased by the connection of external resistor divider to R_{ADJ} lead. The regulator is protected against reverse battery, short circuit, and thermal overload conditions. The device can withstand load dump transients making it suitable for use in automotive environments. The device has also been optimized for EMC conditions. #### **Features** - Output Voltage Options: Adjustable, 2.5 V, 3.3 V, 5.0 V, 8.0 V, 10 V - ±2.0% Output - Low 90 μA Quiescent Current - Fixed or Adjustable Output Voltage - Active RESET - Adjustable Reset - 150 mA Output Current Capability - Fault Protection - ♦ +60 V Peak Transient Voltage - → -15 V Reverse Voltage - · Short Circuit - Thermal Overload - Early Warning through FLAG/MON Leads - NCV Prefix for Automotive and Other Applications Requiring Site and Change Control - AEC Qualified - PPAP Capable - These are Pb-Free Devices #### ON Semiconductor® http://onsemi.com SO-8 D SUFFIX CASE 751 SOIC 16 LEAD WIDE BODY EXPOSED PAD PDW SUFFIX CASE 751AG #### **MARKING DIAGRAMS** SOW-16 E PAD H H H H H H H H 8502x AWLYYWWG O x = Voltage Ratings as Indicated Below: A = Adjustable 2 = 2.5 V 3 = 3.3 V 5 = 5.0 V 8 = 8.0 V0 = 10 V A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or ■ = Pb-Free Device #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet. #### PIN CONNECTIONS, ADJUSTABLE OUTPUT #### PIN CONNECTIONS, FIXED OUTPUT Figure 1. Application Diagram #### **MAXIMUM RATINGS*** | Rating | Value | Unit | |--|------------|------| | V _{IN} (dc) | -15 to 48 | V | | Peak Transient Voltage (46 V Load Dump @ V _{IN} = 14 V) | 60 | V | | Operating Voltage | 45 | V | | V _{OUT} (dc) | -0.3 to 16 | V | | Voltage Range (RESET, FLAG) | -0.3 to 10 | V | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. device reliability. *During the voltage range which exceeds the maximum tested voltage of V_{IN}, operation is assured, but not specified. Wider limits may apply. Thermal dissipation must be observed closely. #### **MAXIMUM RATINGS* (continued)** | Rating | Symbol | Value | Unit | |---|--|----------------|----------------------| | Input Voltage Range (MON, V _{ADJ} , R _{ADJ}) | | -0.3 to 10 | V | | ESD Susceptibility (Human Body Model) | | 2.0 | kV | | Junction Temperature | TJ | -40 to +150 | °C | | Storage Temperature | T _S | -55 to 150 | °C | | Package Thermal Resistance, SO-8: Junction-to-Case Junction-to-Ambient | $R_{ hetaJC} \ R_{ hetaJA}$ | 45
165 | °C/W
°C/W | | Package Thermal Resistance, SOW-16 E PAD: Junction-to-Case Junction-to-Ambient Junction-to-Pin (Note 1) | R _{θJC}
R _{θJA}
R _{θJP} | 15
56
35 | °C/W
°C/W
°C/W | | Lead Temperature Soldering: SMD style only, Reflow (Note 2) Pb-Free Part 60 - 150 sec above 217°C, 40 sec max at peak | SLD | 265 peak | °C | $\textbf{ELECTRICAL CHARACTERISTICS} \text{ (I}_{OUT} = 1.0 \text{ mA, } -40^{\circ}\text{C} \leq \text{T}_{J} \leq 150^{\circ}\text{C}; \text{ V}_{IN} = \text{dependent on voltage option (Note 3); unless } = 1.0 \text{ mA}$ otherwise specified.) | Characteristic | Test Conditions | Min | Тур | Max | Unit | |--|---|------------------|------------------------------|---------------------------------------|----------------------------| | Output Stage | | | | | | | Output Voltage for 2.5 V Option | $ 6.5 \text{ V} < \text{V}_{\text{IN}} < 16 \text{ V}, \ 100 \ \mu\text{A} \leq \text{I}_{\text{OUT}} \leq 150 \ \text{mA} $ $ \textbf{5.5 V} < \textbf{V}_{\text{IN}} < \textbf{26 V}, \ 100 \ \mu\text{A} \leq \text{I}_{\text{OUT}} \leq 150 \ \text{mA} $ | 2.450
2.425 | 2.5
2.5 | 2.550
2.575 | V
V | | Output Voltage for 3.3 V Option | $7.3 \text{ V} < \text{V}_{\text{IN}} < 16 \text{ V}, 100 \mu\text{A} \leq \text{I}_{\text{OUT}} \leq 150 \text{ mA} \\ \textbf{5.5 V} < \textbf{V}_{\text{IN}} < \textbf{26 V}, 100 \mu\text{A} \leq \text{I}_{\text{OUT}} \leq 150 \text{ mA} \\$ | 3.234
3.201 | 3.3
3.3 | 3.366
3.399 | V
V | | Output Voltage for 5.0 V Option | $\begin{array}{c} 9.0 \text{ V} < \text{V}_{IN} < 16 \text{ V}, \ 100 \ \mu\text{A} \leq I_{OUT} \leq 150 \text{ mA} \\ \textbf{6.0 V} < \textbf{V}_{IN} < 26 \text{ V}, \ 100 \ \mu\text{A} \leq I_{OUT} \leq 150 \text{ mA} \end{array}$ | 4.90
4.85 | 5.0
5.0 | 5.10
5.15 | V
V | | Output Voltage for 8.0 V Option | 9.0 V < V_{IN} < 26 V , 100 μA ≤ I _{OUT} ≤ 150 mA | 7.76 | 8.0 | 8.24 | V | | Output Voltage for 10 V Option | 11 V < V_{IN} < 26 V , 100 μA ≤ I _{OUT} ≤ 150 mA | 9.7 | 10 | 10.3 | V
V | | Output Voltage for Adjustable
Option | $\begin{aligned} &V_{OUT} = V_{ADJ} \text{ (Unity Gain)} \\ &6.5 \text{ V} < V_{IN} < 16 \text{ V}, 100 \mu\text{A} < I_{OUT} < 150 \text{ mA} \\ &5.5 \text{ V} < V_{IN} < 26 \text{ V}, 100 \mu\text{A} < I_{OUT} < 150 \text{ mA} \end{aligned}$ | 1.254
1.242 | 1.280
1.280 | 1.306
1.318 | V
V | | Dropout Voltage (V _{IN} – V _{OUT})
(5.0 V, 8.0 V, 10 V and
Adj. > 5.0 V Options Only) | I _{OUT} = 150 mA
I _{OUT} = 1.0 mA | | 400
100 | 600
150 | mV
mV | | Load Regulation | $V_{IN} = 14 \text{ V}, 5.0 \text{ mA} \le I_{OUT} \le 150 \text{ mA}$ | -30 | 5.0 | 30 | mV | | Line Regulation | [V _{OUT} (Typ) + 1.0] < V _{IN} < 26 V, I _{OUT} = 1.0 mA | - | 15 | 60 | mV | | Quiescent Current, Low Load 2.5 V Option 3.3 V Option 5.0 V Option 8.0 V Option 10 V Option Adjustable Option | I _{OUT} = 100 μA, V _{IN} = 12 V, MON = V _{OUT} | -
-
-
- | 90
90
90
100
100 | 125
125
125
150
150
75 | μΑ
μΑ
μΑ
μΑ
μΑ | | Quiescent Current, Medium Load
All Options | I _{OUT} = 75 mA, V _{IN} = 14 V, MON = V _{OUT} | - | 4.0 | 6.0 | mA | | Quiescent Current, High Load
All Options | I _{OUT} = 150 mA, V _{IN} = 14 V, MON = V _{OUT} | - | 12 | 19 | mA | | Current Limit | - | 151 | 300 | - | mA | ^{3.} Voltage range specified in Output Stage of the Electrical Characteristics in boldface type. Measured to pin 16. Per IPC / JEDEC J-STD-020C. *During the voltage range which exceeds the maximum tested voltage of V_{IN}, operation is assured, but not specified. Wider limits may apply. Thermal dissipation must be observed closely. $\textbf{ELECTRICAL CHARACTERISTICS (continued)} \ \, (I_{OUT} = 1.0 \ mA; \ -40 ^{\circ}C \leq T_{J} \leq 150 ^{\circ}C; \ \, V_{IN} = \text{dependent on voltage option (Note 4)}; \\ \, (I_{OUT} = 1.0 \ mA; \ -40 ^{\circ}C \leq T_{J} \leq 150 ^{\circ}C; \ \, V_{IN} = \text{dependent on voltage option (Note 4)}; \\ \, (I_{OUT} = 1.0 \ mA; \ -40 ^{\circ}C \leq T_{J} \leq 150 ^{\circ}C; \ \, V_{IN} = \text{dependent on voltage option (Note 4)}; \\ \, (I_{OUT} = 1.0 \ mA; \ -40 ^{\circ}C \leq T_{J} \leq 150 ^{\circ}C; \ \, V_{IN} = \text{dependent on voltage option (Note 4)}; \\ \, (I_{OUT} = 1.0 \ mA; \ -40 ^{\circ}C \leq T_{J} \leq 150 ^{\circ}C; \ \, V_{IN} = \text{dependent on voltage option (Note 4)}; \\ \, (I_{OUT} = 1.0 \ mA; \ -40 ^{\circ}C \leq T_{J} \leq 150 ^{\circ}C; \ \, V_{IN} = \text{dependent on voltage option (Note 4)}; \\ \, (I_{OUT} = 1.0 \ mA; \ -40 ^{\circ}C \leq T_{J} \leq 150 ^{\circ}C; \ \, V_{IN} = \text{dependent on voltage option (Note 4)}; \\ \, (I_{OUT} = 1.0 \ mA; \ -40 ^{\circ}C \leq T_{J} \leq 150 ^{\circ}C; \ \, V_{IN} = \text{dependent on voltage option (Note 4)}; \\ \, (I_{OUT} = 1.0 \ mA; \ -40 ^{\circ}C \leq T_{J} \leq 150 ^{\circ}C; \ \, V_{IN} = \text{dependent on voltage option (Note 4)}; \\ \, (I_{OUT} = 1.0 \ mA; \ -40 ^{\circ}C \leq T_{J} \leq 150 ^{\circ}C; \ \, V_{IN} = \text{dependent on voltage option (Note 4)}; \\ \, (I_{OUT} = 1.0 \ mA; \ -40 ^{\circ}C \leq T_{J} \leq 150 ^{\circ}C; \ \, V_{IN} = \text{dependent on voltage option (Note 4)}; \\ \, (I_{OUT} = 1.0 \ mA; \ -40 ^{\circ}C \leq T_{J} \leq 150 ^{\circ}C; \ \, V_{IN} = \text{dependent on voltage option (Note 4)}; \\ \, (I_{OUT} = 1.0 \ mA; \ -40 ^{\circ}C \leq T_{J} \leq 150 ^{\circ}C; \ \, V_{IN} = \text{dependent on voltage option (Note 4)}; \\ \, (I_{OUT} = 1.0 \ mA; \ -40 ^{\circ}C \leq T_{J} \leq 150 ^{\circ}C; \ \, V_{IN} = \text{dependent on voltage option (Note 4)}; \\ \, (I_{OUT} = 1.0 \ mA; \ -40 ^{\circ}C \leq T_{J} \leq 150 ^{\circ}C; \ \, V_{IN} = 150 ^{\circ}C; \ \, V_{IN} = 150 ^{\circ}C; \\ \, (I_{OUT} = 1.0 \ mA; \ -40 ^{\circ}C \leq T_{J} \leq 150 ^{\circ}C; \ \, V_{IN} = 150 ^{\circ}C; \\ \, (I_{OUT} = 1.0 \ mA; \ -40 ^{\circ}C \leq T_{J} \leq 150 ^{\circ}C; \\ \, (I_{OUT} = 1.0 \ mA; \ -40 ^{\circ}C \leq T_{J} \leq 150 ^{\circ}C; \\ \, (I_{OUT} = 1.0 \ mA; \ -40 ^{\circ}C \leq T_{J} \leq 150 ^{\circ}C; \\ \, (I_{OUT} = 1.0 \ mA; \ -40 ^{\circ}C \leq T_{J} \leq 150 ^{\circ$ unless otherwise specified.) | $V_{OUT} = 0 \text{ V}$ (Guaranteed by Design) 5.5 V \leq V _{IN} \leq 26 V (Note 5) V_{OUT} Increasing V_{OUT} Decreasing 5.5 V \leq V _{IN} \leq 26 V (Note 5) | 2.28
2.25 | 190
180
2.350
2.300 | -
- | mA
°C | |--|---|--|---|---| | (Guaranteed by Design) 5.5 V ≤ V _{IN} ≤ 26 V (Note 5) V _{OUT} Increasing V _{OUT} Decreasing 5.5 V ≤ V _{IN} ≤ 26 V (Note 5) | 150 | 2.350 | - | | | 5.5 V \leq V _{IN} \leq 26 V (Note 5)
V _{OUT} Increasing
V _{OUT} Decreasing
5.5 V \leq V _{IN} \leq 26 V (Note 5) | 2.28 | 2.350 | - | °C | | V_{OUT} Increasing V_{OUT} Decreasing 5.5 V \leq V _{IN} \leq 26 V (Note 5) | | | | | | V_{OUT} Increasing V_{OUT} Decreasing 5.5 V \leq V _{IN} \leq 26 V (Note 5) | | | 0.00 | | | | | ı | $0.98 \times V_{OUT}$ $0.97 \times V_{OUT}$ | V
V | | V _{OUT} Decreasing | 3.00
2.97 | 3.102
3.036 | $0.98 \times V_{OUT}$ $0.97 \times V_{OUT}$ | V
V | | V _{OUT} Increasing
V _{OUT} Decreasing | 4.55
4.50 | 4.70
4.60 | $0.98 \times V_{OUT}$ $0.97 \times V_{OUT}$ | V
V | | V _{OUT} Increasing
V _{OUT} Decreasing | 7.05
7.00 | 7.52
7.36 | $0.98 \times V_{OUT}$ $0.97 \times V_{OUT}$ | V
V | | V _{OUT} Increasing
V _{OUT} Decreasing | 8.60
8.50 | 9.40
9.20 | $0.98 \times V_{OUT}$ $0.97 \times V_{OUT}$ | V
V | | 1.0 V ≤ V _{OUT} ≤ V _{RL} , R _{RESET} = 10 k | _ | 0.1 | 0.4 | V | | - | 1.4 | 1.8 | 2.2 | V | | V _{OUT} < RESET Threshold Low(min) | - | - | 0.1 | V | | DELAY = 1.0 V, V _{OUT} > V _{RH} | 1.5 | 2.5 | 3.5 | μΑ | | DELAY = 1.0 V, V _{OUT} = 1.5 V | 5.0 | - | - | mA | | - | 1.23 | 1.31 | 1.39 | V | | | | | | | | ncreasing and Decreasing | 1.10 | 1.20 | 1.31 | V | | - | 20 | 50 | 100 | mV | | MON = 2.0 V | -0.5 | 0.1 | 0.5 | μΑ | | MON = 0 V, I _{FLAG} = 1.0 mA | - | 0.1 | 0.4 | V | | ily) | 1 | ı | ı | | | V _{ADJ} = 1.28 V | -0.5 | - | 0.5 | μΑ | | | VouT Increasing VouT Decreasing VouT Increasing VouT Decreasing VouT Increasing VouT Decreasing VouT Decreasing VouT Decreasing VouT Decreasing VouT Necreasing Nec | VOUT Increasing 3.00 VOUT Decreasing 4.55 VOUT Increasing 7.05 VOUT Decreasing 7.05 VOUT Increasing 8.60 VOUT Decreasing 8.60 .0 V ≤ VOUT ≤ VRL, RRESET = 10 k - - 1.4 VOUT < RESET Threshold Low(min) | VOUT Increasing / OUT Decreasing 3.00 | Vout Increasing / Out Decreasing 3.00 | Voltage range specified in Output Stage of the Electrical Characteristics in boldface type. For V_{IN} ≤ 5.5 V, a RESET = Low may occur with the output in regulation. #### PACKAGE PIN DESCRIPTION, ADJUSTABLE OUTPUT | Package Pin Number | | | | |--------------------|----------------------|------------------|--| | SO-8 | SOW-16
E PAD | Pin Symbol | Function | | 1 | 7 | V _{IN} | Input Voltage. | | 2 | 8 | MON | Monitor. Input for early warning comparator. If not needed connect to V _{OUT} . | | 3, 4 | 3–6, 9–12,
14, 15 | NC | No connection. | | 5 | 13 | GND | Ground. All GND leads must be connected to Ground | | 6 | 16 | FLAG | Open collector output from early warning comparator. | | 7 | 1 | V _{ADJ} | Voltage Adjust. A resistor divider from V _{OUT} to this lead sets the output voltage. | | 8 | 2 | V _{OUT} | ±2.0%, 150 mA output. | #### PACKAGE PIN DESCRIPTION, FIXED OUTPUT | Package Pin Number | | | | |--------------------|------------------------|------------------|--| | SO-8 | SOW-16
E PAD | Pin Symbol | Function | | 1 | 7 | V_{IN} | Input Voltage. | | 2 | 8 | MON | Monitor. Input for early warning comparator. If not needed connect to V _{OUT} . | | 3 | 9 | R _{ADJ} | Reset Adjust. If not needed connect to ground. | | 4 | 10 | DELAY | Timing capacitor for RESET function. | | 5 | 13 | GND | Ground. All GND leads must be connected to Ground | | 6 | 16 | RESET | Active reset (accurate to V _{OUT} ≥ 1.0 V) | | 7 | 1 | FLAG | Open collector output from early warning comparator. | | 8 | 2 | V _{OUT} | ±2.0%, 150 mA output. | | _ | 3–6, 11, 12,
14, 15 | NC | No connection. | #### TYPICAL PERFORMANCE CHARACTERISTICS 3.35 $V_{OUT} = 3.3 \text{ V}$ V_{IN} = 14 V 3.34 $I_{OUT} = 5.0 \text{ mA}$ 3.33 3.32 V_{OUT} (V) 3.31 3.30 3.29 3.28 3.27 -40 -25 -10 5 95 110 125 20 35 50 65 80 Temperature (°C) Figure 2. Output Voltage vs. Temperature Figure 3. Output Voltage vs. Temperature Figure 4. Quiescent Current vs. Output Current Figure 5. Quiescent Current vs. Output Current Figure 6. Quiescent Current vs. Input Voltage Figure 7. Quiescent Current vs. Input Voltage #### **TYPICAL PERFORMANCE CHARACTERISTICS** 1000 g Unstable Region 100 10 V (©) HS3 5 V 3.3 V Stable Region 0.1 $C_{VOUT} = 10 \; \mu F$ 0.01 0 20 30 50 60 70 90 10 40 100 **OUTPUT CURRENT (mA)** Figure 8. Dropout Voltage vs. Output Current Figure 9. Output Stability with Output Voltage Change Figure 10. Output Stability with Output Capacitor Change Figure 11. Block Diagram #### **CIRCUIT DESCRIPTION** #### **REGULATOR CONTROL FUNCTIONS** The NCV8502 contains the microprocessor compatible control function \overline{RESET} (Figure 12). Figure 12. Reset and Delay Circuit Wave Forms #### **RESET** Function A \overline{RESET} signal (low voltage) is generated as the IC powers up until V_{OUT} is within 6.0% of the regulated output voltage, or when V_{OUT} drops out of regulation,and is lower than 8.0% below the regulated output voltage. Hysteresis is included in the function to minimize oscillations. The \overline{RESET} output is an open collector NPN transistor, controlled by a low voltage detection circuit. The circuit is functionally independent of the rest of the IC thereby guaranteeing that the \overline{RESET} signal is valid for V_{OUT} as low as 1.0 V. #### **Adjustable Reset Function** The reset threshold can be made lower by connecting an external resistor divider to the R_{ADJ} lead from the V_{OUT} lead, as displayed in Figure 13. This lead is grounded to select the default value of 4.6 V. Figure 13. Adjustable RESET #### **DELAY Function** The reset delay circuit provides a programmable (by external capacitor) delay on the \overline{RESET} output lead. The DELAY lead provides source current (typically $2.5 \,\mu A$) to the external DELAY capacitor during the following proceedings: - 1. During Power Up (once the regulation threshold has been verified). - 2. After a reset event has occurred and the device is back in regulation. The DELAY capacitor is discharged when the regulation (RESET threshold) has been violated. This is a latched incident. The capacitor will fully discharge and wait for the device to regulate before going through the delay time event again. #### **FLAG/Monitor Function** An on-chip comparator is provided to perform an early warning to the microprocessor of a possible reset signal. The reset signal typically turns the microprocessor off instantaneously. This can cause unpredictable results with the microprocessor. The signal received from the FLAG pin will allow the microprocessor time to complete its present task before shutting down. This function is performed by a comparator referenced to the bandgap reference. The actual trip point can be programmed externally using a resistor divider to the input monitor (MON) (Figure 14). The typical threshold is 1.20 V on the MON pin. Figure 14. FLAG/Monitor Function #### Voltage Adjust Figure 15 shows the device setup for a user configurable output voltage. The feedback to the V_{ADJ} pin is taken from a voltage divider referenced to the output voltage. The loop is balanced around the Unity Gain threshold (1.28 V typical). Figure 15. Adjustable Output Voltage #### **APPLICATION NOTES** Figure 16. Additional Output Current #### **Adding Capability** Figure 16 shows how the adjustable version of parts can be used with an external pass transistor for additional current capability. The setup as shown will provide greater than 1 Amp of output current. #### **FLAG MONITOR** Figure 17 shows the FLAG Monitor waveforms as a result of the circuit depicted in Figure 14. As the output voltage falls (V_{OUT}), the Monitor threshold is crossed. This causes the voltage on the \overline{FLAG} output to go low sending a warning signal to the microprocessor that a \overline{RESET} signal may occur in a short period of time. $T_{WARNING}$ is the time the microprocessor has to complete the function it is currently working on and get ready for the \overline{RESET} shutdown signal. Figure 17. FLAG Monitor Circuit Waveform *C_{IN} required if regulator is located far from the power supply filter **C_{OUT} required for stability. Capacitor must operate at minimum temperature expected Figure 18. Test and Application Circuit Showing Output Compensation #### **SETTING THE DELAY TIME** The delay time is controlled by the Reset Delay Low Voltage, Delay Switching Threshold, and the Delay Charge Current. The delay follows the equation: $$t_{DELAY} = \frac{\left[C_{DELAY}(V_{dt} - Reset \ Delay \ Low \ Voltage)\right]}{Delay \ Charge \ Current}$$ Example: Using $C_{DELAY} = 33 \text{ nF}$. Assume reset Delay Low Voltage = 0. Use the typical value for $V_{dt} = 1.8 \text{ V}$. Use the typical value for Delay Charge Current = $2.5 \mu A$. $$t_{DELAY} = \frac{\left[33 \text{ nF} (1.8 - 0)\right]}{2.5 \, \mu A} = 23.8 \text{ ms}$$ #### STABILITY CONSIDERATIONS The output or compensation capacitor helps determine three main characteristics of a linear regulator: start-up delay, load transient response and loop stability. The capacitor value and type should be based on cost, availability, size and temperature constraints. The value for the output capacitor C_{OUT} shown in Figure 18 should work for most applications, however it is not necessarily the optimized solution. ## CALCULATING POWER DISSIPATION IN A SINGLE OUTPUT LINEAR REGULATOR The maximum power dissipation for a single output regulator (Figure 19) is: $$PD(max) = [VIN(max) - VOUT(min)] IOUT(max) + VIN(max)IQ$$ (eq. 1) where: V_{IN(max)} is the maximum input voltage, V_{OUT(min)} is the minimum output voltage, $I_{OUT(max)}$ is the maximum output current for the application, and I_Q is the quiescent current the regulator consumes at $I_{OUT(max)}$. Once the value of $P_{D(max)}$ is known, the maximum permissible value of $R_{\theta JA}$ can be calculated: $$R_{\Theta JA} = \frac{150^{\circ}C - T_{A}}{P_{D}}$$ (eq. 2) The value of $R_{\theta JA}$ can then be compared with those in the package section of the data sheet. Those packages with $R_{\theta JA}$'s less than the calculated value in equation 2 will keep the die temperature below 150°C. In some cases, none of the packages will be sufficient to dissipate the heat generated by the IC, and an external heatsink will be required. Figure 19. Single Output Regulator with Key Performance Parameters Labeled Figure 20. 16 Lead SOW (Exposed Pad), θJA as a Function of the Pad Copper Area (2 oz. Cu Thickness), Board Material = 0.0625" G-10/R-4 #### **HEAT SINKS** A heat sink effectively increases the surface area of the package to improve the flow of heat away from the IC and into the surrounding air. Each material in the heat flow path between the IC and the outside environment will have a thermal resistance. Like series electrical resistances, these resistances are summed to determine the value of $R_{\theta IA}$: $$R_{\theta}JA = R_{\theta}JC + R_{\theta}CS + R_{\theta}SA$$ (eq. 3) where: $R_{\theta IC}$ = the junction-to-case thermal resistance, $R_{\theta CS}$ = the case-to-heatsink thermal resistance, and $R_{\theta SA}$ = the heatsink-to-ambient thermal resistance. $R_{\theta JC}$ appears in the package section of the data sheet. Like $R_{\theta JA}$, it too is a function of package type. $R_{\theta CS}$ and $R_{\theta SA}$ are functions of the package type, heatsink and the interface between them. These values appear in heat sink data sheets of heat sink manufacturers. #### **ORDERING INFORMATION** | Device | Output Voltage | Package | Shipping [†] | |------------------|----------------|---------------------------------|-----------------------| | NCV8502DADJG | | SO-8
(Pb-Free) | 98 Units/Rail | | NCV8502DADJR2G | - Adjustable - | SO-8
(Pb-Free) | 2500 Tape & Reel | | NCV8502PDWADJG | | SOW-16 Exposed Pad
(Pb-Free) | 47 Units/Rail | | NCV8502PDWADJR2G | | SOW-16 Exposed Pad
(Pb-Free) | 1000 Tape & Reel | | NCV8502D25G | | SO-8
(Pb-Free) | 98 Units/Rail | | NCV8502D25R2G | | SO-8
(Pb-Free) | 2500 Tape & Reel | | NCV8502PDW25G | - 2.5 V | SOW-16 Exposed Pad
(Pb-Free) | 47 Units/Rail | | NCV8502PDW25R2G | | SOW-16 Exposed Pad
(Pb-Free) | 1000 Tape & Reel | | NCV8502D33G | | SO-8
(Pb-Free) | 98 Units/Rail | | NCV8502D33R2G | | SO-8
(Pb-Free) | 2500 Tape & Reel | | NCV8502PDW33G | 3.3 V | SOW-16 Exposed Pad
(Pb-Free) | 47 Units/Rail | | NCV8502PDW33R2G | | SOW-16 Exposed Pad
(Pb-Free) | 1000 Tape & Reel | | NCV8502D50G | | SO-8
(Pb-Free) | 98 Units/Rail | | NCV8502D50R2G | - | SO-8
(Pb-Free) | 2500 Tape & Reel | | NCV8502PDW50G | 5.0 V | SOW-16 Exposed Pad
(Pb-Free) | 47 Units/Rail | | NCV8502PDW50R2G | - | SOW-16 Exposed Pad
(Pb-Free) | 1000 Tape & Reel | | NCV8502D80G | | SO-8
(Pb-Free) | 98 Units/Rail | | NCV8502D80R2G | | SO-8
(Pb-Free) | 2500 Tape & Reel | | NCV8502PDW80G | 8.0 V | SOW-16 Exposed Pad
(Pb-Free) | 47 Units/Rail | | NCV8502PDW80R2G | | SOW-16 Exposed Pad
(Pb-Free) | 1000 Tape & Reel | | NCV8502D100G | | SO-8
(Pb-Free) | 98 Units/Rail | | NCV8502D100R2G | - 10 V | SO-8
(Pb-Free) | 2500 Tape & Reel | | NCV8502PDW100G | | SOW-16 Exposed Pad
(Pb-Free) | 47 Units/Rail | | NCV8502PDW100R2G | | SOW-16 Exposed Pad
(Pb-Free) | 1000 Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. SMART REGULATOR is a registered trademark of Semiconductor Components Industries, LLC. #### SOIC-8 NB CASE 751-07 **ISSUE AK** **DATE 16 FEB 2011** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. - DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. - MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE - DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. - 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. | | MILLIMETERS | | INC | HES | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.80 | 5.00 | 0.189 | 0.197 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | C | 1.35 | 1.75 | 0.053 | 0.069 | | D | 0.33 | 0.51 | 0.013 | 0.020 | | G | 1.27 BSC | | 0.050 BSC | | | Н | 0.10 | 0.25 | 0.004 | 0.010 | | 7 | 0.19 | 0.25 | 0.007 | 0.010 | | K | 0.40 | 1.27 | 0.016 | 0.050 | | М | 0 ° | 8 ° | 0 ° | 8 ° | | N | 0.25 | 0.50 | 0.010 | 0.020 | | S | 5.80 | 6.20 | 0.228 | 0.244 | #### **SOLDERING FOOTPRINT*** ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week W = Pb-Free Package XXXXXX = Specific Device Code = Assembly Location Α = Year ww = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. #### **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|---|-------------| | DESCRIPTION: | SOIC-8 NB | | PAGE 1 OF 2 | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. #### SOIC-8 NB CASE 751-07 ISSUE AK #### **DATE 16 FEB 2011** | | | | DITTE TO LED 2 | |--|---|--|--| | STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER | STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1 | STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1 | STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE | | STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE | STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE | STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd | STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 8. COLLECTOR, #1 | | STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON | STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND | STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1 | STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN | | STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN | STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN | 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON | STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1 | | STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 | STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE STYLE 22: PIN 1. I/O LINE 1 | STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1 STYLE 23: PIN 1. LINE 1 IN | STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 24: PIN 1. BASE | | 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6 | 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND | 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT | 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE | | STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT | STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC | STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN | STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN | | STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1 | STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1 | | | | DOCUMENT NUMBER: | 98ASB42564B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | COPY" in red. | |------------------|---|--|---------------| | DESCRIPTION: | SOIC-8 NB | | PAGE 2 OF 2 | onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. **EXPOSED PAD** ## SOIC 16 LEAD WIDE BODY, EXPOSED PAD CASE 751AG ISSUE B **DATE 31 MAY 2016** #### NOTES: 1. DIM - DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982 - Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. - DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. - 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE - 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 (0.06) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. - 6. 751R-01 OBSOLETE, NEW STANDARD 751R-02. | | MILLIMETERS | | INCHES | | |-----|-------------|-------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 10.15 | 10.45 | 0.400 | 0.411 | | В | 7.40 | 7.60 | 0.292 | 0.299 | | С | 2.35 | 2.65 | 0.093 | 0.104 | | D | 0.35 | 0.49 | 0.014 | 0.019 | | F | 0.50 | 0.90 | 0.020 | 0.035 | | G | 1.27 BSC | | 0.050 BSC | | | Н | 3.45 | 3.66 | 0.136 | 0.144 | | J | 0.25 | 0.32 | 0.010 | 0.012 | | K | 0.00 | 0.10 | 0.000 | 0.004 | | L | 4.72 | 4.93 | 0.186 | 0.194 | | M | 0 ° | 7 ° | 0 ° | 7 ° | | Р | 10.05 | 10.55 | 0.395 | 0.415 | | R | 0.25 | 0.75 | 0.010 | 0.029 | ## GENERIC MARKING DIAGRAM* XXXXX = Specific Device Code A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " ■", may or may not be present. ## BOTTOM VIEW SOLDERING FOOTPRINT* DIMENSIONS: INCHES *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. DOCUMENT NUMBER: 98AON21237D Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com **TECHNICAL SUPPORT** North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative