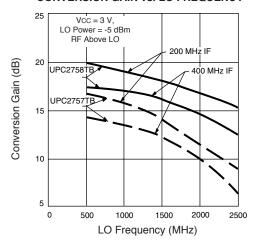


3 V, SUPER MINIMOLD SI MMIC DOWNCONVERTER

UPC2757TB UPC2758TB

FEATURES


- HIGH-DENSITY SURFACE MOUNTING:
 6 pin super minimold or SOT-363 package
- WIDEBAND OPERATION: RF = 0.1 GHz to 2.0 GHz IF = 20 MHz to 300 MHz
- BUILT-IN POWER SAVE FUNCTION
- SUPPLY VOLTAGE: Vcc = 2.7 TO 3.3 V

DESCRIPTION

NEC's UPC2757TB and UPC2758TB are silicon RFICs manufactured using the NESAT™III process. The devices consist of a mixer, an IF amplifier and an LO buffer amplifier. These devices are suitable as 1st IF downconverters for the receiver stage of cellular and other wireless systems. The UPC2757TB is designed for low power consumption while the UPC2758TB is designed for low distortion. The UPC2757TB/58TB are pin compatible and have comparable performance to the larger UPC2757T/58T, so they are suitable for use as a replacement to help reduce system size. The IC is housed in a 6 pin super minimold or SOT-363 package.

NEC's stringent quality assurance and test procedures ensure the highest reliability and performance.

CONVERSION GAIN vs. LO FREQUENCY

ELECTRICAL CHARACTERISTICS (TA = 25°C, VCC = VPS = 3.0 V, PLO = -10 dBm)

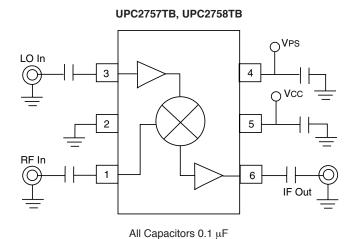
	PART NUMBER PACKAGE OUTLINE		UPC2757TB S06		UPC2758TB \$06			
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX	MIN	TYP	MAX
Icc	Circuit Current, VPS = 3 V VPS = 0.5 V	mA μA	3.7	5.6 0.1	7.7	6.6	11 0.1	14.8
fRF	RF Operating Frequency Range (The conversion gain at fRF is not more than 3 dB down from the gain at fRF = 800 MHz, fIF = 130 MHz)	GHz	0.1		2.0	0.1		2.0
fıF	IF Operating Frequency Range (The conversion gain at fir is not more than 3 dB down from the gain at fir = 800 MHz, fir = 130 MHz)	MHz	20		300	20		300
CG	Conversion Gain ¹ , fr= 800 MHz, fr= 130 MHz fr= 2.0 GHz, fr= 250 MHz	dB dB	12 10	15 13	18 16	16 14	19 17	22 20
NF	Noise Figure,	dB dB		10 13	13 16		9 13	12 15
Psat	Saturated Output Power ² , fre = 800 MHz, fir = 100 MHz fre = 2.0 GHz, fir = 250 MHz	dBm dBm	-11 -11	-3 -8		-7 -7	+1 -4	
P _{1dB}	Output Power at 1dB fRF = 800 MHz compression point fIF = 100 MHz	dBm		-8			-3.5	
OIP3	Output 3rd Order Intercept Point, (SSB) PLO = -10 dBm fnF = 0.8~2.0 GHz, fiF = 100 MHz	dBm		+5			+11	
ISOL	LO Leakage, fLo = 0.8 ~2.0 GHz at RF pin at IF pin	dBm dBm		-35 -23			-30 -15	
RTH (J-A)	Thermal Resistance (Junction to Ambient) Mounted on a 50 x 50 x 1.6 mm epoxy glass PWB	°C/W			325			325

Notes:

1. PRF = -40 dBm. 2. PRF = -10 dBm.

ABSOLUTE MAXIMUM RATINGS¹ (TA = 25°C)

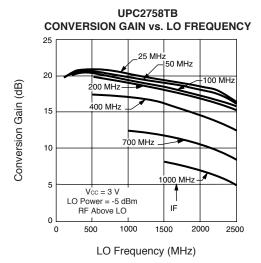
SYMBOLS	PARAMETERS	UNITS	RATINGS
VCC, VPS	Supply Voltage	V	5.5
Рт	Total Power Dissipation ²	mW	200
Тор	Operating Temperature	°C	-40 to +85
Тѕтс	Storage Temperature	°C	-55 to +150

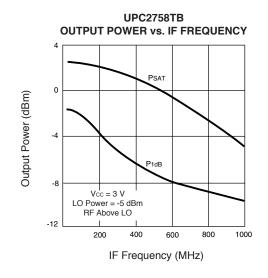

Notes:

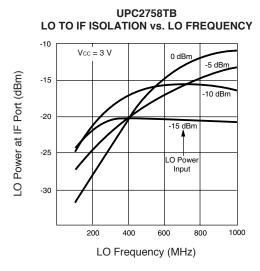
- 1. Operation in excess of any one of these parameters may result in permanent damage.
- 2. Mounted on a 50 x 50 x 1.6 mm epoxy glass PWB ($T_A = +85^{\circ}C$).

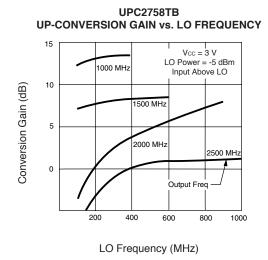
RECOMMENDED OPERATING CONDITIONS

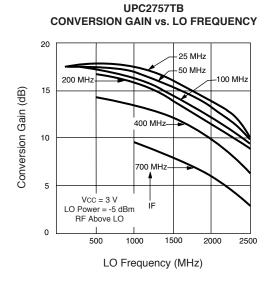
SYMBOLS	PARAMETERS	UNITS	MIN	TYP	MAX
Vcc	Supply Voltage	V	2.7	3.0	3.3
Тор	Operating Temperature	°C	-40	+25	+85
PLO	LO Input Level	dBm	-15	-10	0

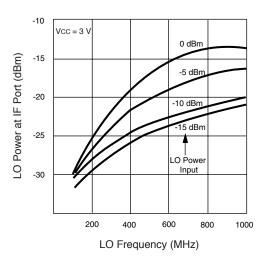

TEST CIRCUIT/BLOCK DIAGRAM

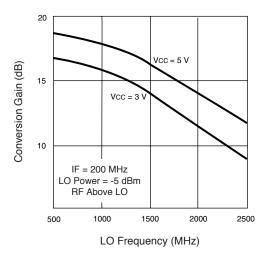



PIN DESCRIPTION

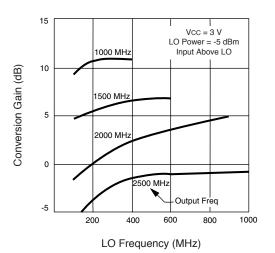

Pin No.	Pin Name	Applied Voltage (V)	Pin Voltage (V)	Description	Internal Equivalent Circuit
1	RFIN	-	1.2	Signal input pin to double balanced mixer. This pin must be coupled to the signal source with a blocking capacitor.	From To IF Amp
2	GND	0	_	Ground pin. This pin should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible.	
3	LOIN	_	1.3	LO input pin. The LO buffer is designed as a differential amplifier. Recommended input level is -15 to 0 dBm.	Mixer T
4	Vps	VCC / GND	_	Power save control pin can control the On/Sleep state with bias as follows: VPS (V) STATE ≥2.5 ON 0 to 0.5 SLEEP Rise time/fall time using this pin is approximately 10 μs.	Vcc •
5	Vcc	2.7 to 3.3	_	Power supply pin. This pin should be externally equipped with a bypass capacitor to minimize ground impedance.	
6	ІГоит	_	1.7	Output of single-ended push-pull IF buffer amplifier. This is an emitter-follower output with low impedance. This pin must be coupled to the next stage with a blocking capacitor.	•

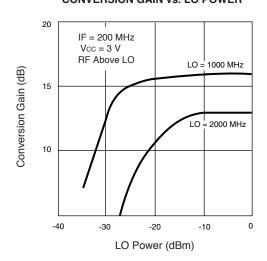

TYPICAL PERFORMANCE CURVES (TA = 25°C)



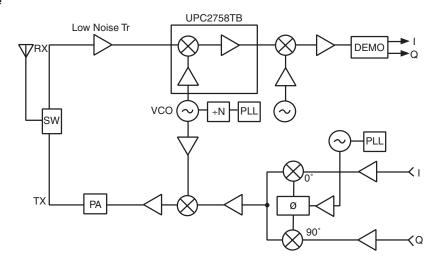


TYPICAL PERFORMANCE CURVES (TA = 25°C)


UPC2757TB LO TO IF ISOLATION vs. LO FREQUENCY


UPC2757TB
CONVERSION GAIN vs. LO FREQUENCY

UPC2757TB UP-CONVERSION GAIN vs. LO FREQUENCY

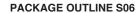


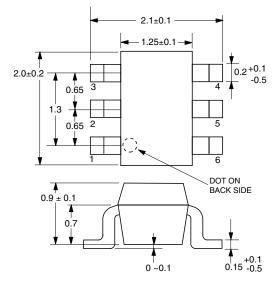
UPC2757TB
CONVERSION GAIN vs. LO POWER

APPLICATION EXAMPLE

Digital Cellular Telephone

ORDERING INFORMATION

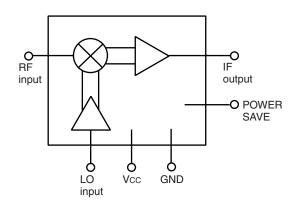

PART NUMBER	QTY		
UPC2757TB-E3-A	3K/Reel		
UPC2758TB-E3-A	3K/Reel		

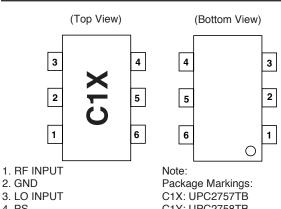

Note:

Embossed Tape, 8 mm wide,

Pins 1, 2, 3 are in tape pull-out direction.

OUTLINE DIMENSIONS




Note:

All dimensions are typical unless otherwise specified.

INTERNAL BLOCK DIAGRAM

LEAD CONNECTIONS

4. PS

5. Vcc

6. IF OUTPUT

C1Y: UPC2758TB

Life Support Applications

These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.

EXCLUSIVE NORTH AMERICAN AGENT FOR NEC RF, MICROWAVE & OPTOELECTRONIC SEMICONDUCTORS

Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix –A indicates that the device is Pb-free. The –AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

Restricted Substance per RoHS	Concentration Limit per RoHS (values are not yet fixed)	Concentration contained in CEL devices		
Lead (Pb)	< 1000 PPM	-A Not Detected	-AZ (*)	
Mercury	< 1000 PPM	Not Detected		
Cadmium	< 100 PPM	Not Detected		
Hexavalent Chromium	< 1000 PPM	Not Detected		
PBB	< 1000 PPM	Not Detected		
PBDE	< 1000 PPM	Not Detected		

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis.

See CEL Terms and Conditions for additional clarification of warranties and liability.