SLUS212F - NOVEMBER 1999 - REVISED MAY 2009 - Fast Transient Response - 10-mA to 5-A Load Current - Short Circuit Protection - Maximum Dropout of 500-mV at 5-A Load Current - Separate Bias (VB) and VIN Pins - Available in Adjustable or Fixed Output Voltages - 5-Pin Package Allows Kelvin Sensing of Load Voltage - Reverse Current Protection #### 5-PIN TO-220 T PACKAGE (TOP VIEW) 5-PIN TO-263 TD PACKAGE (TOP VIEW) Note: Tab = Ground #### description The UC385 is a low dropout linear regulator providing a quick response to fast load changes. Combined with its precision onboard reference, the UC385 excels at driving GTL and BTL buses. Due to its fast response to load transients, the total capacitance required to decouple the regulator's output can be significantly decreased when compared to standard LDO linear regulators. Dropout voltage (VIN to VOUT) is only 490 mV maximum and 350 mV typical at 5-A load (0°C to 100°C). The onboard bandgap reference is stable with temperature and scaled for a 1.2 V input to the internal power amplifier. The UC385 is available in fixed output voltages of 1.5 V, 2.1 V, or 2.5 V. The output voltage of the adjustable version can be set with two external resistors. If the external resistors are omitted, the output voltage defaults to 1.2 V. #### block diagram Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners # UC285-1, UC285-2, UC285-3, UC285-ADJ, UC385-1, UC385-2, UC385-3, UC385-ADJ FAST TRANSIENT RESPONSE 5-A LOW-DROPOUT REGULATOR SLUS212F - NOVEMBER 1999 - REVISED MAY 2009 | VB | V | |--|-------------| | VIN | V | | Output voltage | | | Storage temperature—65°C to 150° | °C | | Junction temperature | $^{\circ}C$ | | Lead temperature (soldering, 10 seconds) | °C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### AVAILABLE OPTIONS(1) | | | | | PACKAGEI | DEVICES | | | | | | |----------------|--------|--------|---------|--------------|----------------|---------|---------|--------------|--|--| | . | | TO-2 | 20 (T) | | TO-263 (TD)(2) | | | | | | | TJ | | OUTPUT | VOLTAGE | | OUTPUT VOLTAGE | | | | | | | | 1.5 V | 2.1 V | 2.5 V | 1.2 V or ADJ | 1.5 V | 2.1 V | 2.5 V | 1.2 V or ADJ | | | | -40°C to 100°C | 285T-1 | 285T-2 | 285T-3 | 285T-ADJ | 285TD-1 | 285TD-2 | 285TD-3 | 285TD-ADJ | | | | 0°C to 100°C | 385T-1 | 385T-2 | 385T-3 | 385T-ADJ | 385TD-1 | 385TD-2 | 385TD-3 | 385TD-ADJ | | | - 1. For more package and ordering information, see the Package Option Addendum located at the end of this data sheet. - 2. For 50 piece reel, add KTTT (e.g., UC285TDKTTT-1); for 500 piece reel, add TR (e.g., UC285TDTR-1). # electrical characteristics unless otherwise stated, these parameters apply for $T_A = -40^{\circ}C$ to $100^{\circ}C$ for the UC385-x, VB = 5 V; VIN = 3.3 V, VOUT = 2.5 V, $T_A = T_J$. | PARAMETER | | TEST CONDITION | MIN | TYP | MAX | UNIT | |----------------------------------|---------|--|----------|------|-------|------| | UC385-3 Fixed 2.5 V, 5-A Family | | | | | | | | Output voltage | UC385-3 | I _{VOUT} = 100 mA | 2.475 | 2.5 | 2.525 | V | | | UC285-3 | I _{VOUT} = 100 mA | 2.45 | 2.5 | 2.525 | V | | Load regulation | | IVOUT = 10 mA to 5 A | | 0.5 | 4 | mV | | VIN PSRR | | | 80 | 110 | | dB | | VB PSRR | | | 50 | 65 | | dB | | VIN dropout voltage (VIN - VOUT) | | I _{VOUT} = 5 A, T _J = 25°C | | 350 | 425 | mV | | | UC385-3 | I _{VOUT} = 5 A | | 350 | 490 | mV | | | UC285-3 | I _{VOUT} = 5 A | | 350 | 500 | mV | | VB dropout (VB - VOUT) | UC385-3 | I _{VOUT} = 5 A | | 1.8 | 2.1 | V | | | UC285-3 | I _{VOUT} = 5 A | | 1.8 | 2.2 | V | | Short circuit current limit | | | 5.1 | | 7.5 | Α | | VB current | | I _{VOUT} = 10 mA | | 8 | 15 | mA | | | | I _{VOUT} = 5 A | | 40 | 100 | mA | | VIN current | | I _{VOUT} = 5 A | 4.9 | 4.96 | | Α | | UC385-2 Fixed 2.1 V, 5-A Family | | | <u>.</u> | | | | | Output voltage | UC385-2 | I _{VOUT} = 100 mA | 2.079 | 2.1 | 2.121 | V | | | UC285-2 | I _{VOUT} = 100 mA | 2.058 | 2.1 | 2.121 | V | | Load regulation | | I _{VOUT} = 10 mA to 5 A | | 0.5 | 4 | mV | | VIN PSRR | | | 80 | 110 | | dB | | VB PSRR | | | 50 | 67 | | dB | # UC285-1, UC285-2, UC285-3, UC285-ADJ, UC385-1, UC385-2, UC385-3, UC385-ADJ FAST TRANSIENT RESPONSE 5-A LOW-DROPOUT REGULATOR SLUS212F - NOVEMBER 1999 - REVISED MAY 2009 # electrical characteristics unless otherwise stated, these parameters apply for $T_A = -40^{\circ}C$ to $100^{\circ}C$ for the UC285-x series and $0^{\circ}C$ to $100^{\circ}C$ for the UC385-x, VB = 5 V; VIN = 3.3 V, VOUT = 2.5 V, $T_A = T_J$. | PARAMETER | | TEST CONDITION | MIN | TYP | MAX | UNIT | |---------------------------------------|-----------|--|-------|------|-------|------| | UC385-2 Fixed 2.1 V, 5-A Family (conf | tinued) | | | | | | | VIN dropout voltage (VIN - VOUT) | | I _{VOUT} = 5 A, T _J = 25°C | | 350 | 425 | mV | | | UC385-2 | I _{VOUT} = 5 A | | 350 | 490 | mV | | | UC285-2 | I _{VOUT} = 5 A | | 350 | 500 | mV | | VB dropout (VB - VOUT) | UC385-2 | I _{VOUT} = 5 A | | 1.8 | 2.1 | V | | | UC285-2 | I _{VOUT} = 5 A | | 1.8 | 2.2 | V | | Short circuit current limit | • | | 5.1 | | 7.5 | Α | | VB current | | I _{VOUT} = 10 mA | | 8 | 15 | mA | | | | I _{VOUT} = 5 A | | 40 | 100 | mA | | VIN current | | I _{VOUT} = 5 A | 4.9 | 4.96 | | Α | | UC385-1 Fixed 1.5 V, 5-A Family | | | · | | | | | Output voltage | UC385-1 | I _{VOUT} = 100 mA | 1.485 | 1.5 | 1.515 | V | | | UC285-1 | I _{VOUT} = 100 mA | 1.470 | 1.5 | 1.515 | V | | Load regulation | | IVOUT = 10 mA to 5 A | | 0.5 | 4 | mV | | VIN PSRR | | | 80 | 110 | | dB | | VB PSRR | | | 50 | 65 | | dB | | VIN dropout voltage (VIN - VOUT) | | I _{VOUT} = 5 A, T _J = 25°C | | 350 | 425 | mV | | | UC285-1 | I _{VOUT} 5 A | | 350 | 490 | mV | | | UC285-2 | I _{VOUT} = 5 A | | 350 | 500 | mV | | VB dropout (VB - VOUT) | UC385-1 | I _{VOUT} = 5 A | | 1.8 | 2.1 | V | | | UC285-1 | I _{VOUT} = 5 A | | 1.8 | 2.2 | V | | Short circuit current limit | | | 5.1 | | 7.5 | Α | | VB current | | I _{VOUT} = 10 mA | | 8 | 15 | mA | | | | I _{VOUT} = 5 A | | 40 | 100 | mA | | VIN = current | | I _{VOUT} = 5 A | 4.9 | 4.96 | | Α | | UC385-ADJ Adjustable, 5-A Family | | | I. | | | | | ADJ voltage | UC385-ADJ | I _{VOUT} - 100 mA | 1.188 | 1.2 | 1.212 | V | | | UC285-ADJ | I _{VOUT} - 100 mA | 1.176 | 1.2 | 1.212 | V | | Load regulation | | I _{VOUT} = 10 mA to 5 A | | 0.5 | 4 | mV | | VIN PSRR | | VOUT programmed for 2.5 V | 80 | 110 | | dB | | VB PSRR VOUT | | Programmed for 2.5 V | 50 | 65 | | dB | | VIN dropout voltage (VIN - VOUT) | | I _{VOUT} = 5 A, T _J = 25°C | | 350 | 425 | mV | | , | UC385-ADJ | IVOUT = 5 A | | 350 | 490 | mV | | | UC285-ADJ | IVOUT = 5 A | | 350 | 500 | mV | | VB dropout (VB - VOUT) | UC385-ADJ | I _{VOUT} = 5 A | | 1.8 | 2.1 | V | | | UC285-ADJ | I _{VOUT} = 5 A | | 1.8 | 2.2 | V | | Short circuit current limit | • | | 5.1 | | 7.5 | Α | | VB current | | I _{VOUT} = 10 mA | | 8 | 15 | mA | | | | I _{VOUT} = 5 A | | 40 | 100 | mA | | VIN current | | I _{VOUT} = 5 A | 4.9 | 4.96 | | Α | ## UC285-1, UC285-2, UC285-3, UC285-ADJ, UC385-1, UC385-2, UC385-3, UC385-ADJ FAST TRANSIENT RESPONSE 5-A LOW-DROPOUT REGULATOR SLUS212F - NOVEMBER 1999 - REVISED MAY 2009 #### pin descriptions **ADJ:** In the adjustable version, the user programs the output voltage with two external resistors. The resistors should be 0.1% for high accuracy. The output amplifier is configured as a noninverting operational amplifier. The resistors should meet the criteria of R3 || R4 < 100 Ω . Connect ADJ to VOUT for an output voltage of 1.2 V. Note that the point at which the feedback network is connected to the output is the Kelvin sense point. GND: For accurate results, the GND pin should be referenced to the load ground. **VB:** Supplies power to all circuits of the regulator except the output power transistor. The 2-V headroom from VB to VOUT allows the use of a Darlington output stage for inherently low output impedance and fast response. (Dropout is derated for junction temperatures below 0°C.) **VIN:** Supplies the current to the collector of the output power transistor only. The dropout (VIN-VOUT) is under 100 mV for light loads; maximum dropout is 490 mV at 5 A for $T_J = 0^{\circ}C$ to $100^{\circ}C$. (Dropout is derated for junction temperatures over $100^{\circ}C$.) **VOUT:** This pin should be connected to the load via a low impedance path. Avoid connectors which add significant inductance and resistance. Note that even though a Kelvin sense is available through a 5-pin package, care must be taken since voltage drops along wire traces add to the dropout voltage. SLUS212F - NOVEMBER 1999 - REVISED MAY 2009 #### **APPLICATION INFORMATION** The UC385 is easy to use. The adjustable version requires two resistors to set the output voltage. The fixed versions of the UC385 require no external resistors. All versions of the UC385 require decoupling capacitors on the input and output. In a typical application, VB and VIN are driven from switching power supplies which may have large filter capacitors at their outputs. If the UC385 is further than 12 inches from the power supply, it is recommended to add local decoupling as close as possible to the linear regulator. Decouple the output of the UC385 with at least 100 μ F of high quality tantalum or Sanyo OSCON capacitors close to the VOUT pin for maximum stability. Many applications involving ultrafast GTL or BTL applications require additional capacitance close to the load. The exact amount will vary according to speed and magnitude of the load transients and the tolerance allowed for transients on VOUT. When specifying the decoupling capacitors, the series resistance of the capacitor bank is an important factor in its ability to filter load transients. The UC385 allows for Kelvin sensing the voltage at the load. This improves regulation performance and eliminates the voltage drops due to wire trace resistance. This voltage drop must be added to the headroom (VIN to VOUT and VB to VOUT). The dropout of 350 mV is measured at the pins and does not include additional drops due to trace resistance. #### **APPLICATION INFORMATION** #### POWER SUPPLY REJECTION RATIO (VB INPUT) Figure 5 **Figure 6. Transient Test Circuit** #### **APPLICATION INFORMATION** #### 10 mA to 3 A/μs Load Transient Response Figure 7 UDG-00086 Figure 8. Typical UC385-ADJ Application SLUS212F - NOVEMBER 1999 - REVISED MAY 2009 #### **APPLICATION INFORMATION** Figure 9. Typical UC385-1, -2, or -3 Application # UC285-1, UC285-2, UC285-3, UC285-ADJ, UC385-1, UC385-2, UC385-3, UC385-ADJ **FAST TRANSIENT RESPONSE 5-A** LOW-DROPOUT REGULATOR SLUS212F - NOVEMBER 1999 - REVISED MAY 2009 ## **Revision History** | DATE | REV | PAGE | SECTION | DESCRIPTION | | | | | | |------|-----|------|--------------------------|-------------|--|--|--|--|--| | 5/09 | F | 2 | Absolute Maximum Ratings | Added VB. | | | | | | NOTE: Page numbers for previous revisions may differ from page numbers in the current version. www.ti.com 14-Oct-2022 #### **PACKAGING INFORMATION** | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking (4/5) | Samples | |------------------|--------|------------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|----------------------|---------| | UC285T-3 | ACTIVE | TO-220 | KC | 5 | 50 | RoHS & Green | SN | N / A for Pkg Type | -40 to 85 | UC285T-3 | Samples | | UC285T-ADJ | ACTIVE | TO-220 | KC | 5 | 50 | RoHS & Green | SN | N / A for Pkg Type | -40 to 100 | UC285T-ADJ | Samples | | UC285TDKTTT-1 | ACTIVE | DDPAK/
TO-263 | KTT | 5 | 50 | RoHS & Green | SN | Level-2-260C-1 YEAR | -40 to 85 | UC285TD-1 | Samples | | UC285TDKTTT-3 | ACTIVE | DDPAK/
TO-263 | KTT | 5 | 50 | RoHS & Green | SN | Level-2-260C-1 YEAR | -40 to 85 | UC285TD-3 | Samples | | UC285TDKTTT-ADJ | ACTIVE | DDPAK/
TO-263 | KTT | 5 | 50 | RoHS & Green | SN | Level-2-260C-1 YEAR | -40 to 100 | UC285TD-ADJ | Samples | | UC385T-1 | ACTIVE | TO-220 | KC | 5 | 50 | RoHS & Green | SN | N / A for Pkg Type | | UC385T-1 | Samples | | UC385T-2 | ACTIVE | TO-220 | KC | 5 | 50 | RoHS & Green | SN | N / A for Pkg Type | | UC385T-2 | Samples | | UC385T-3 | ACTIVE | TO-220 | KC | 5 | 50 | RoHS & Green | SN | N / A for Pkg Type | | UC385T-3 | Samples | | UC385T-ADJ | ACTIVE | TO-220 | KC | 5 | 50 | RoHS & Green | SN | N / A for Pkg Type | | UC385T-ADJ | Samples | | UC385TDTR-1 | ACTIVE | DDPAK/
TO-263 | KTT | 5 | 500 | RoHS & Green | SN | Level-2-260C-1 YEAR | 0 to 70 | UC385TD-1 | Samples | | UC385TDTR-3 | ACTIVE | DDPAK/
TO-263 | KTT | 5 | 500 | RoHS & Green | SN | Level-2-260C-1 YEAR | 0 to 70 | UC385TD-3 | Samples | | UC385TDTR-ADJ | ACTIVE | DDPAK/
TO-263 | KTT | 5 | 500 | RoHS & Green | SN | Level-2-260C-1 YEAR | 0 to 70 | UC385TD-ADJ | Samples | ⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. ⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". ### PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 **Green:** TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # **PACKAGE MATERIALS INFORMATION** www.ti.com 9-Aug-2022 #### TAPE AND REEL INFORMATION # TAPE DIMENSIONS KO PI BO BO Cavity AO | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---------------|------------------|--------------------|---|-----|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | UC385TDTR-1 | DDPAK/
TO-263 | KTT | 5 | 500 | 330.0 | 24.4 | 10.6 | 15.6 | 4.9 | 16.0 | 24.0 | Q2 | | UC385TDTR-3 | DDPAK/
TO-263 | KTT | 5 | 500 | 330.0 | 24.4 | 10.6 | 15.6 | 4.9 | 16.0 | 24.0 | Q2 | | UC385TDTR-ADJ | DDPAK/
TO-263 | KTT | 5 | 500 | 330.0 | 24.4 | 10.6 | 15.6 | 4.9 | 16.0 | 24.0 | Q2 | www.ti.com 9-Aug-2022 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |---------------|--------------|-----------------|------|-----|-------------|------------|-------------| | UC385TDTR-1 | DDPAK/TO-263 | KTT | 5 | 500 | 367.0 | 367.0 | 45.0 | | UC385TDTR-3 | DDPAK/TO-263 | KTT | 5 | 500 | 367.0 | 367.0 | 45.0 | | UC385TDTR-ADJ | DDPAK/TO-263 | KTT | 5 | 500 | 367.0 | 367.0 | 45.0 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 9-Aug-2022 #### **TUBE** #### *All dimensions are nominal | Device | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) | |------------|--------------|--------------|------|-----|--------|--------|--------|--------| | UC285T-3 | KC | TO-220 | 5 | 50 | 546 | 31 | 11930 | 3.17 | | UC285T-ADJ | KC | TO-220 | 5 | 50 | 546 | 31 | 11930 | 3.17 | | UC385T-1 | KC | TO-220 | 5 | 50 | 546 | 31 | 11930 | 3.17 | | UC385T-2 | KC | TO-220 | 5 | 50 | 546 | 31 | 11930 | 3.17 | | UC385T-3 | KC | TO-220 | 5 | 50 | 546 | 31 | 11930 | 3.17 | | UC385T-ADJ | KC | TO-220 | 5 | 50 | 546 | 31 | 11930 | 3.17 | TO-220 #### NOTES: - All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. This drawing is subject to change without notice. - 3. Shape may vary per different assembly sites. TO-220 # KTT (R-PSFM-G5) # PLASTIC FLANGE-MOUNT PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash or protrusion not to exceed 0.005 (0,13) per side. - Falls within JEDEC T0—263 variation BA, except minimum lead thickness, maximum seating height, and minimum body length. NOTES: A. - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-SM-782 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. - F. This package is designed to be soldered to a thermal pad on the board. Refer to the Product Datasheet for specific thermal information, via requirements, and recommended thermal pad size. For thermal pad sizes larger than shown a solder mask defined pad is recommended in order to maintain the solderable pad geometry while increasing copper area. #### **IMPORTANT NOTICE AND DISCLAIMER** TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated