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SECTION 1 – OVERVIEW 
The DS4830A optical microcontroller is a low-power, 16-bit microcontroller with a unique peripheral set supporting a wide 
variety of optical transceiver controller applications. It provides a complete optical control, calibration, and monitor 
solution. The DS4830A is based on the high-performance, 16-bit, reduced instruction set computing (RISC) architecture 
with on-chip flash program memory and SRAM data memory. 
 
The resources and features that the DS4830A provides for monitoring and controlling an optical system include the 
following: 

 16-Bit Low-Power Microcontroller 
 400kHz I2C-Compatible Slave Communication Interface 

• Four User-Programmable Slave Addresses 
• 8-Byte Transmit Page for Each Slave Address 
• 8-Byte Receive Page Shared Between All Slave Addresses 

 32KWords Flash Program Memory 
 2KWords Data RAM 
 32-Level Hardware Stack 
 13-Bit ADC with a 26 Input Mux 

• 16 Single or 8 Differential Mode ADC Channels 
• Four User-Selectable Gains for Individual Channel 
• VDD, Internal Reference, and DAC External References Measurement 
• ADC Samples Averaging Options 

 10 PWM Channels 
• Pulse Spreading Using Delta-Sigma Algorithm 
• PWM Output Synchronization 
• User-Selectable 7- to 16-Bit Resolution 
• 1MHz Switching Using 133MHz External Clock 

 10-Bit Fast Comparator with 16 Input Mux 
• Single and Differential Mode 
• Low and High Threshold Configurations 
• 3.2µs Conversion Time per Channel 

 Two Independent Sample and Hold (S/H) 
• Single, Fast, and Dual Mode Operation 
• Internal and External Trigger Option 
• Pin Discharge  
• S/H Samples Averaging Options 

 Fast Internal Die Temperature Sensors with Averaging Option 
 12-Bit, 8 Voltage DAC Channels Selectable Internal or External Reference Option 
 Serial Interfaces 

• SPI Master and Slave Interface 
• 400kHz I2C-Compatible Master with Alternate Location Option 
• 3-Wire Master Interface  

 Dual Hardware Multiplier Unit 
 Two 16-Bit Timers with Synchronous and Compare Modes 
 Watchdog Timer 
 Maskable Interrupt Sources 
 Brownout Monitor 
 31 GPIO pins 
 Supply Voltage Monitoring 
 Internal 20MHz Oscillator, CPU Core Frequency 10MHz 
 Included ROM Routines that allow Bootloading and In-Application Programming of Flash Memory 
 In-System Debugging 
 Four Software Interrupts 
 Fast Hardware CRC-8 for Packet Error Checking (PEC)  
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Figure 1-1: DS4830A Block Diagram 
 

This document is provided as a supplement to the DS4830A IC data sheet. This user’s guide provides the information 
necessary to develop applications using the DS4830A. All electrical and timing specifications, pin descriptions, package 
information, and ordering information can be found in the DS4830A IC data sheet. 
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SECTION 2 – ARCHITECTURE 
The DS4830A contains a low-cost, high-performance microcontroller with flash memory. It is structured on a highly 
advanced, 16-accumulator-based, 16-bit RISC architecture. Fetch and execution operations are completed in one cycle 
without pipelining, since the instruction contains both the opcode and data. The highly efficient core is supported by 16 
accumulators and a 32-level hardware stack, enabling fast subroutine calling and task switching.  
 
Data can be quickly and efficiently manipulated with three internal data pointers. Two of these data pointers, DP0 and 
DP1, are stand-alone 16-bit pointers. The third data pointer, Frame Pointer, is composed of a 16-bit base pointer (BP) and 
an 8-bit offset register (OFFS). All three pointers support post-increment/decrement functionality for read operations and 
pre-increment/decrement for write operations. For the Frame Pointer (FP=BP[OFFS]), the increment/decrement operation 
is executed on the OFFS register and does not affect the base pointer. Multiple data pointers allow more than one 
function to access data memory without having to save and restore data pointers each time.  
 
Stack functionality is provided by dedicated memory with a 16-bit width and a depth of 32.  An on-chip memory 
management unit (MMU) allows logical remapping of the program and data spaces, and thus facilitates in-system 
programming and fast access to data tables, arrays, and constants located in flash memory. 
 
This section provides details on the following topics. 

1. Instruction decoding 
2. Register space 
3. Memory types 
4. Program and data memory mapping and access 
5. Data alignment 
6. Reset conditions 
7. Clock generation 

 
2.1 – Instruction Decoding 
The DS4830A uses the standard 16-bit core instruction set, which is described in the Instruction Set section.  Every 
instruction is encoded as a single 16-bit word.  The instruction word format is shown in Figure 2-1. 
 

FORMAT DESTINATION SOURCE

s sdf s s s s s sd d d d d d
 

Figure 2-1: Instruction Word Format 
 

• Bit 15 (f) indicates the format for the source field of the instruction as follows: 
o If f equals 0, the instruction is an immediate source instruction.  The source field represents an immediate 

8-bit value. 
o If f equals 1, the instruction is a register source instruction.  The source field represents the register that 

the source value will be read from. 
• Bits 14 to 8 (ddddddd) represent the destination for the transfer. This value always represents a destination 

register.  The lower four bits contain the module specifier and the upper three bits contain the register index in 
that module. 

• Bits 7 to 0 (ssssssss) represent the source for the transfer.  Depending on the value of the format field, this can 
either be an immediate value or a source register.  If this field represents a register, the lower four bits contain the 
module specifier and the upper four bits contain the register index in that module. 

 
This instruction word format presents the following limitations.   

1. There are 32 registers per register module, but only four bits are allocated to designate the source register and 
only three bits are allocated to designate the destination register.   

2. The source field only provides 8 bits of data for an immediate value; however a 16-bit immediate value may be 
required.  

 
The DS4830A uses a prefix register (PFX) to address these limitations.  The prefix register provides the additional bits 
required to access all 32 register within a module.  The prefix register also provides the additional 8 bits of data required 
to make a 16-bit immediate data source.  The data that is written to the prefix register survives for only one clock cycle.  
This means the write to the prefix register must occur immediately prior to the instruction requiring the prefix register.  The 
prefix register is cleared to zero after one cycle so it will not affect any other instructions.  The write to the prefix register is 
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done automatically by the assembler and requires one additional execution cycle.  So, while most instructions execute in 
a single cycle, two cycles are needed for instructions that require the prefix register.    
 
The architecture of the DS4830A is transport-triggered. This means that writing to or reading from certain register 
locations will also cause side effects to occur. These side effects form the basis of the DS4830A’s higher level opcodes, 
such as ADDC, OR, and JUMP.  While these opcodes are actually implemented as MOVE instructions between certain 
register locations, the encoding is handled by the assembler and need not be a concern to the programmer. The unused 
"empty" locations in the System Register Modules are used for these higher level opcodes. 
 
The instruction set is designed to be highly orthogonal. All arithmetic and logical operations that use two registers can use 
any register along with the accumulator. Data can be transferred between any two registers in a single instruction. 
 
2.2 – Register Space 
The DS4830A provides a total of 13 register modules broken up into two different groups.  These groupings are 
descriptive only, as there is no difference between accessing the two register groups from a programming perspective.   
 
The two groups are: 

1. System Registers: These are modules 8h, 9h, and Bh through Fh. The System Registers in the DS4830A are 
used to implement higher level opcodes as well as the following common system features. 

• 16-bit ALU and associated status flags (zero, equals, carry, sign, overflow) 
• 16 working accumulator registers, each 16-bit, along with associated control registers 
• Instruction pointer 
• Registers for interrupt control, handling, and identification 
• Auto-decrementing Loop Counters for fast, compact looping 
• Two Data Pointer registers and a Frame Pointer for data memory access 

 
2. Peripheral Registers: These are the lower six modules (Modules 0h through 5h). The Peripheral Registers in the 

DS4830A are used for functionalities such as ADC, Fast Comparator, DAC, PWM Outputs, Timers, Sample and 
Hold, 3-Wire, I2C Master and Slave, SPI Master and Slave, 31-GPIO pins, etc.  The Peripheral Registers are not 
used to implement opcodes. 

 
Each System Register module has 16 registers, while each Peripheral Register module has 32 registers.  The number of 
cycles required to access a particular register depends upon the register’s index within the module.  The access times 
based upon the register index are grouped as follows:   

• The first eight registers (index 0h to 7h) in each module may be read from or written to in a single cycle 
• The second eight registers (index 8h to 0Fh) may be read from in a single cycle and written to in two cycles (by 

using the prefix register PFX). 
• The last sixteen registers (10h to 1Fh) in Peripheral Register modules may be read or written in two cycles 

(always requiring use of the prefix register PFX).  
 
Registers may be 8 or 16 bits in length. Some registers may contain reserved bits.  The user should not write to any 
reserved bits. Data transfers between registers of different sizes are handled as shown in Table 2-1. 

• If the source and destination registers are both 8 bits wide, data is copied bit to bit. 
• If the source register is 8 bits wide and the destination register is 16 bits wide, the data from the source register is 

transferred into the lower 8 bits of the destination register. The upper 8 bits of the destination register are set to 
the current value of the prefix register; this value is normally zero, but it can be set to a different value by the 
previous instruction if needed. The prefix register reverts back to zero after one cycle, so this must be done by the 
instruction immediately before the one that will be using the value. 

• If the source register is 16 bits wide and the destination register is 8 bits wide, the lower 8 bits of the source are 
transferred to the destination register. 

• If both registers are 16 bits wide, data is copied bit to bit. 
 
The above rules apply to all data movements between defined registers. Data transfer to/from undefined register locations 
has the following behavior: 

• If the destination is an undefined register, the MOVE is a dummy operation but may trigger an underlying 
operation according to the source register (e.g., @DPn--). 

• If the destination is a defined register and the source is undefined, the source data for the transfer will depend 
upon the source module width. If the source is from a module containing 8-bit or 8-bit and 16-bit source registers, 
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the source data will be equal to the prefix data as the upper 8 bits and 00h as the lower 8 bits. If the source is 
from a module containing only 16-bit source registers, 0000h source data is used for the transfer. 

 
Table 2-1. Register-to-Register Transfer Operations 

SOURCE REGISTER 
SIZE (BITS) 

DESTINATION REGISTER SIZE 
(BITS) 

PREFIX 
SET? 

DESTINATION SET TO VALUE 
HIGH 8 BITS LOW 8 BITS 

8 8 X — Source [7:0] 
8 16 No 00h Source [7:0] 
8 16 Yes PFX [7:0] Source [7:0] 
16 8 X — Source [7:0] 
16 16 X Source [15:8] Source [7:0] 

 
2.3 – Memory Types 
In addition to the internal register space, the DS4830A incorporates the following memory types: 

• 32KWords of flash memory 
• 4KWords of utility ROM contain a debugger and program loader 
• 2KWords of SRAM  
• 32-level hardware stack for storage of program return addresses 

 
The memory on the DS4830A is organized according to Harvard architecture.  This means that there are separate busses 
for both program and data memory.   Stack memory is also separate and is accessed through a dedicated register set. 
 
2.3.1 – Flash Memory 
The DS4830A contains 32KWords (32K x 16) of flash memory.  The flash memory begins at address 0000h and is 
contiguous through word address 7FFFh.  The flash memory can also be used for storing lookup tables and other non-
volatile data.   
 
The incorporation of flash memory allows the contents of the flash memory to be upgraded in the field, either by the 
application or by one of the bootloaders (JTAG or I2C).  Writing to flash memory must be done indirectly by using routines 
that are provided by the utility ROM.  See the Utility ROM and In-System Programming sections for more details.  
 
2.3.2 – SRAM Memory 
The DS4830A contains 2KWords (2K x 16) of SRAM memory.  The SRAM memory address begins at address 0000h and 
is contiguous through word address 07FFh.  The contents of the SRAM are indeterminate after power-on reset, but are 
maintained during non-POR resets.  
 
When using the in-circuit debugging features, the highest 19 bytes of the SRAM must be reserved for saved state storage 
and working space for the debugging routines.  If in-circuit debug is not used, the entire 2KWords of SRAM is available for 
application use.  
 
2.3.3 – Utility ROM 
The utility ROM is a 4kWord segment of memory.  The utility ROM memory address begins at word address 8000h and is 
contiguous through word address 8FFFh.  The utility ROM is programmed at the factory and cannot be modified.  The 
utility ROM provides the following system utility functions: 

• Reset vector (not user code reset vector) 
• In-system programming (bootstrap loader) over JTAG or I2C-compatible interfaces 
• In-circuit debug routines 
• Routines for in-application flash programming 

 
Following any reset, the DS4830A automatically starts execution at the Reset Vector which is address 8000h in the utility 
ROM. The ROM code determines whether the program execution should immediately jump to the start of application code 
(flash address 0000h), or to one of the special routines mentioned. Routines within the utility ROM are firmware-
accessible and can be called as subroutines by the application software.  See the Utility ROM, In-System Programming, 
and In-Circuit Debug sections for more information on the routines provided by the utility ROM. 
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2.3.4 – Stack Memory 
A 16-bit, 32-level on-chip stack provides storage for program return addresses and temporary storage of system registers. 
The stack is used automatically by the processor when the CALL, RET, and RETI instructions are executed, and when an 
interrupt is serviced. The stack can also be used explicitly to store and retrieve data by using the @SP- - source, @++SP 
destination, or the PUSH, POP, and POPI instructions. The POPI instruction acts identically to the POP instruction except 
that it additionally clears the INS bit. 
 
The width of the stack is 16 bits to accommodate the instruction pointer size. On reset, the stack pointer SP initializes to 
the top of the stack (1Fh). The CALL, PUSH, and interrupt vectoring operations first increment SP and then store a value 
at @SP. The RET, RETI, POP, and POPI operations first retrieve the value at @SP and then decrement SP. 
The stack memory is initialized to indeterminate values upon reset or power-up.  Stack memory is dedicated for stack 
operations only and cannot be accessed by the DS4830A program or data busses.   
 
When using the in-circuit debugging features, one word of the stack must be reserved for the debugging routines.  If in-
circuit debug is not used, the entire stack is available for application use. 
 
2.4 – Program and Data Memory Mapping and Access 
The memory on the DS4830A is implemented using Harvard architecture, with separate busses for program and data 
memory.  The Memory Management Unit (MMU) allows the DS4830A to also support a pseudo-Von Neumann memory 
map.  The pseudo Von Neumann memory map allows each of the memory segments (flash, SRAM, and utility ROM) to 
be logically mapped into a single contiguous memory map. This allows all of the memory segments to be accessed as 
both program and memory data. The pseudo-Von Neumann memory map provides the following advantages: 

• Program execution can occur from the flash, SRAM, or utility ROM memory segments. 
• The SRAM and flash memory segments can both be used for data memory. 

 
Using the pseudo-Von Neumann memory map does have one restriction.  This restriction is that a particular memory 
segment cannot be simultaneously accessed as both program and data memory. 
 
2.4.1 – Program Memory Access 
The instructions that the DS4830A is executing reside in what is defined as the program memory.   The MMU fetches the 
instructions using the program bus.  The Instruction Pointer (IP) register designates the program memory address of the 
next instruction to fetch.  The Instruction Pointer is read/write accessible by the user software.  A write to the Instruction 
Pointer will force program flow to the new address on the next cycle following the write. The content of the Instruction 
Pointer will be incremented by 1 automatically after each fetch operation.  From an implementation perspective, system 
interrupts and branching instructions simply change the contents of the Instruction Pointer and force the opcode to fetch 
from a new program location. 
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2.4.2 – Program Memory Mapping 
The DS4830A’s mapping of the three memory segments (flash, SRAM, and utility ROM) as program memory is shown in 
Figure 2-2.  The mapping of memory segments into program space is always the same.  When referring to memory as 
program memory, all addresses are given as word addresses.  The 32KWord flash memory segment is located at 
memory location 0000h through 7FFFh and is logically divided into two pages, each containing 16KWords.  The utility 
ROM is located from location 8000h through 8FFFh, followed by the SRAM memory segment at location A000h through 
A7FFh.  The user code reset vector, which is the first instruction of user program code that is executed, is located at flash 
memory address 0000h.  User program code should always begin at this address. 
 

2K * 16
SRAM

16K * 16
FLASH

(SEGMENT 0)

4K * 16
UROM

PROGRAM 
SPACE

16K * 16
FLASH

(SEGMENT 1)

0000h

3FFFh
4000h

7FFFh

8FFFh

A000h

A7FFh

FFFFh

8000h

 
Figure 2-2: Program Memory Mapping 
 
2.4.3 – Data Memory Access 
Data memory mapping and access control are handled by the memory management unit (MMU). Read/write access to 
data memory can be in word or in byte mode.  The DS4830A provides three pointers that can be used for indirect 
accessing of data memory.  The DS4830A has two data pointers (@DPn) and one frame pointer (@BP[OFFS]).  These 
pointers are implemented as registers that can be directly accessed by user software.  A data memory access requires 
only one system clock period.     
 
2.4.3.1 – Data Pointers 
To access data memory, the data pointers are used as one of the operands in a MOVE instruction. If the data pointer is 
used as a source, the core performs a load operation that reads data from the memory location addressed by the data 
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pointer.  If the data pointer is used as destination, the core performs a store operation that writes data to the memory 
location addressed by the data pointer.  Following are some examples of setting and using a data pointer. 
 move DP[0], #0100h  ; set pointer DP[0] to address 100h 
 move Acc, @DP[0]   ; read data from location 100h 
 move @DP[0], Acc   ; write to location 100h 
 
The address pointed to by the data pointers can be automatically incremented or decremented.  If the data pointer is used 
as a source, the pointer can be incremented or decremented after the data access.  If the data pointer is used as a 
destination, the increment or decrement can occur prior to the data access.  Following are examples of using the data 
pointers increment/decrement features. 
 move Acc, @DP[0]++  ; increment DP[0] after read 
 move Acc, @DP[1]--  ; decrement DP[1] after read 
 move @++DP[0], Acc  ; increment DP[0] before write 
 move @--DP[1], Acc  ; decrement DP[0] before write 
  
2.4.3.2 – Frame Pointer 
The frame pointer (BP[OFFS]) is formed by the 16-bit unsigned addition of the 16-bit Frame Pointer Base Register (BP) 
and the 8-bit Frame Pointer Offset Register (OFFS).  The method the DS4830A uses to access data using the frame 
pointer is similar to the data pointers.  When increments or decrements are used, only the value of OFFS is incremented 
or decremented.  The base pointer (BP) will remain unaffected by increments or decrements of the OFFS register, 
including when the OFFS register rolls over from FFh to 00h or from 00h to FFh.  Following are examples of how to use 
the frame pointer. 
 move BP, #0100h   ; set base pointer to address 100h 
 move OFFS, #10h   ; set the offset to 10h,  
 move Acc, @BP[OFFS]  ; read data from location 0110h 
 move @BP[OFFS], Acc  ; write data to location 0110h 
 move Acc, @BP[OFFS++]  ; increment OFFS after read 
 move Acc, @BP[OFFS++]  ; decrement OFFS after read 
 move @BP[++OFFS], Acc  ; increment OFFS before write 
 move @BP[--OFFS], Acc  ; decrement OFFS before write 
 
2.4.4 – Data Memory Mapping 
The DS4830A’s pseudo-Von Neumann memory map allows the MMU to read data from each of the three memory 
segments (flash, SRAM, utility ROM).  The MMU can also write data directly to the SRAM memory segment.  Data 
memory can be written to the flash memory segment, but because writing to flash requires the use of the utility ROM 
routines, this is not a direct access.  The logical mapping of the three memory segments as data memory varies 
depending upon: 

• which memory segment instructions are currently being executed from 
• if data memory is being accessed in word or byte mode  

In all cases, whichever memory segment is currently being used, program memory cannot be accessed as data memory. 
 
When the program is currently executing instructions from either the SRAM or utility ROM memory segments, the flash 
memory will be mapped to half of the data memory space.  If word access mode is selected, both pages (32KWords) can 
be logically mapped to data memory space.  If byte access mode is selected, only one page (32KBytes) can be logically 
mapped to half of the data memory space. When operating in byte access mode, the selection of which flash page is 
mapped into data memory space is determined by the Code Data Access bit (CDA0): 
 

CDA0 Selected Page in Byte Mode Selected Page in Word Mode 
0 P0 P0 and P1 
1 P1 P0 and P1 

 
The next three sections detail the mapping of the different memory segments as data memory depending upon which 
memory segment instructions are currently being executed from. 
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2.4.4.1 – Memory Map When Executing from Flash Memory 
When executing from the flash memory: 

• Read and write operations of SRAM memory are executed normally. 
• The utility ROM can be read as data, starting at 8000h of the data space.  The utility ROM cannot be written. 

 
Figure 2-3 illustrates the mapping of the SRAM and utility ROM memory segments into data memory space when code is 
executing from the flash memory segment.   
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Figure 2-3: Memory Map When Executing from Flash Memory 
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2.4.4.2 – Memory Map When Executing from Utility ROM 
When executing from the utility ROM: 

• Read and write operations of SRAM memory are executed normally. 
• Reading of flash memory is executed normally.  Writing to flash memory requires the use of the utility ROM 

routines. 
• One page (byte access mode) or both pages (word access mode) of the flash memory can be accessed as data 

with an offset of 8000h as determined by the CDA0 bit. 
 
Figure 2-4 illustrates the mapping of the SRAM and flash memory segments into data memory space when code is 
executing from the utility ROM memory segment.   
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Figure 2-4: Memory Map When Executing from Utility ROM 
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2.4.4.3 – Memory Map When Executing from SRAM 
When executing from the SRAM: 

• The utility ROM can be read as data, starting at 8000h of the data space.  The utility ROM cannot be written. 
• Reading of flash memory is executed normally.  Writing to flash memory requires the use of the utility ROM 

routines. 
• One page (byte access mode) or both pages (word access mode) of the flash memory can be accessed as data 

with an offset of 0000h.  For byte access mode, the page of flash accessed is determined by the CDA0 bit. 
 
Figure 2-5 illustrates the mapping of the flash and utility ROM memory segments into data memory space when code is 
executing from the SRAM memory segment.   
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Figure 2-5: Memory Map When Executing from SRAM 
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2.5 – Data Alignment 
To support merged program and data memory operation while maintaining efficient memory space usage, the data 
memory must be able to support both byte and word mode accessing.  Data is aligned in data memory as words, but the 
effective data address is resolved to bytes.  This data alignment allows program instruction fetching in words while 
maintaining data accessibility at the byte level.  It is important to realize that this accessibility requires strict word 
alignment.  All executable or data words must align to an even address in byte mode.  Care must be taken when updating 
a code segment as misalignment of words will likely result in loss of program execution control.  
 
Memory will always be read as a complete word, whether for program fetch or data access. The program decoder always 
uses a full 16-bit word.  The data access can utilize a word or an individual byte.  Data memory is organized as two byte-
wide memory banks with common word address decode but two 8-bit data buses.  In byte mode, data pointer hardware 
reads out the full word containing the selected byte using the effective data word address pointer (the least significant bit 
of the byte data pointer is not initially used).  Then, the least significant data pointer bit functions as the byte select that is 
used to place the correct byte on the data bus.  For write access, data pointer hardware addresses a particular word using 
the effective data word address while the least significant bit selects the corresponding data bank for write.  The contents 
of the other byte are left unaffected. 
 
2.6 – Reset Conditions 
The DS4830A has several possible sources of reset.   

• Power-On/Brownout Reset 
• Watchdog Timer Reset 
• External Reset 
• Internal System Reset 
• Soft Reset 

 
Once a reset condition has completed or been removed, code execution begins at the beginning of utility ROM, which is 
address 8000h.  The utility ROM code interrogates the I2C_SPE, JTAG_SPE, and PWL bits to determine if bootloading is 
necessary.  If bootloading is not required, execution will jump to the user code reset vector, which is at flash memory 
address 0000h.   
 
The RST pin is an input only.  
 
2.6.1 – Power-On/Brownout Reset 
The DS4830A provides a power-on reset (POR) circuit to ensure proper initialization of internal device states and analog 
circuits.  The POR voltage threshold range is between approximately 1.1V and 1.7V.  When VDD is below the POR level, 
the state of all the DS4830A pins (except DAC port pins), including RST, is weak pullup. The port pins having DAC 
function are high impedance on POR. 
 
The DS4830A also includes brownout detection capability. This is an on-chip precision reference and comparator that 
monitors the supply voltage, VDD, to ensure that it is within acceptable limits.  If VDD is below the brownout level (VBO), the 
power monitor generates a reset.  This can occur when: 

• The DS4830A is being powered up and VDD is above the POR level but still less than VBO. 
• VDD drops from an acceptable level to less than VBO.   

 
Once VDD exceeds VBO, the DS4830A exits the reset condition and the internal oscillator starts up.  After approximately 
1ms the DS4830A performs the following tasks. 

• All registers and circuits enter their reset state 
• The POR flag in the Watchdog Control Register is set to indicate the source of the reset 
• The DS4830A begins normal operation (CPU State) 
• Code execution begins at utility ROM location 8000h 

 
The transition between POR, Brownout, and normal operation is detailed in Figure 2-6: DS4830A State Diagram. 
 
Note: If VDD is below VBO, there is a chance that the SRAM gets corrupted. If the POR flag in WDCN is set, all data in 
SRAM should be re-initialized. 
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Figure 2-6: DS4830A State Diagram 
 
2.6.2 – Watchdog Timer Reset 
The watchdog timer is a programmable hardware timer that can be used to reset the processor in case a software lockup 
or other unrecoverable error occurs. Once the watchdog is enabled, software must reset the watchdog timer periodically.  
If the processor does not reset the watchdog timer before it elapses, the watchdog can initiate a reset.  
 
If the watchdog resets the processor, the DS4830A will remain in reset for 12 clock cycles.  When a reset occurs due to a 
watchdog timeout, the Watchdog Timer Reset Flag (WTRF) in the WDCN register is set to indicate the source of the 
reset.   
 
2.6.3 – External Reset 
During normal operation, the DS4830A is placed into external reset when the RST pin is held at logic 0 for at least four 
clock cycles. Once the DS4830A enters reset mode, it remains in reset as long as the RST pin is held at logic 0. After the 
RST pin returns to logic 1, the processor exits reset within 12 clock cycles. 
  
An external reset pulse on the RST pin will reset the DS4830A and return to normal CPU mode operation within 10 clock 
cycles.  
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2.6.4 – Internal System Resets 
There are two possible sources of internal system resets.  An internal reset will hold the DS4830A in reset mode for 12 
clock cycles. 

1. When data BBh is written to the special I2C slave address 34h. 
2. When in-system programming is complete and the ROD bit is set to 1. 

 
2.6.5 – Software Reset 
The device UROM provides option to soft reset through the application program. The application program jumps to UROM 
code which generates the internal system reset. UROM location 8854h has code when executed generates internal reset. 
Application program can jump to this location to generate software reset.  
 
asm (“LJUMP #8854h”) 
 
2.7 – Clock Generation 
The DS4830A generates its 20MHz peripheral clock using an internal oscillator and generates 10MHz instruction clock 
using divide by 2 circuit. This oscillator starts up when VDD exceeds the brownout voltage level, VBO. There is a delay of 
approximately 1ms in the oscillator start up and beginning of clock. This delay ensures that the clock is stable prior to 
beginning normal operation. 
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SECTION 3 – SYSTEM REGISTER DESCRIPTIONS 
Most functions of the DS4830A are controlled by sets of registers. These registers provide a working space for memory 
operations as well as configuring and addressing peripheral registers on the device. Registers are divided into two major 
types: system registers and peripheral registers. The common register set, also known as the system registers, includes 
ALU access and control registers, accumulator registers, data pointers, interrupt vectors and control, and stack pointer. 
The peripheral registers define additional functionality and the functionality is broken up into discrete modules.  
 
This section describes the DS4830A’s system registers. Table 3-1 shows the DS4830A system register map. Table 3-2 
explains system register bit functions. This is followed by a detailed bit description. 
 
Table 3-1: System Register Map 

REGISTER 
INDEX 

REGISTER MODULE 
AP (08h) A (09h) PFX (0Bh) IP (0Ch) SP (0Dh) DPC (0Eh) DP (0Fh) 

00h AP A[0] PFX[0] IP    
01h APC A[1] PFX[1]  SP   
02h  A[2] PFX[2]  IV   
03h  A[3] PFX[3]   OFFS DP[0] 
04h PSF A[4] PFX[4]   DPC  
05h IC A[5] PFX[5]   GR  
06h IMR A[6] PFX[6]  LC[0] GRL  
07h  A[7] PFX[7]  LC[1] BP DP[1] 
08h SC A[8]    GRS  
09h  A[9]    GRH  
0Ah  A[10]    GRXL  
0Bh IIR A[11]    FP  
0Ch  A[12]      
0Dh  A[13]      
0Eh  A[14]      
0Fh WDCN A[15]      
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Table 3-2. System Register Bit Functions 

REGISTER 
REGISTER BIT NUMBER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
AP         — — — — AP (4 bits) 

APC         CLR IDS — — — MOD2 MOD1 MOD0 
PSF         Z S — GPF1 GPF0 OV C E 
IC         — — — — — — INS IGE 

IMR         IMS — IM5 IM4 IM3 IM2 IM1 IM0 
SC         TAP — — CDA0 — ROD PWL — 
IIR         IIS — II5 II4 II3 II2 II1 II0 

WDCN         POR EWDI WD1 WD0 WDIF WTRF EWT RWT 
A[n]  (n=15:0) A[n] (16 bits) 
PFX[n] (n=7:0) PFX[n] (16 bits) 

IP IP (16 bits) 
SP — — — — — — — — — — — SP (5 bits) 
IV IV (16 bits) 

LC[0] LC[0] (16 bits) 
LC[1] LC[1] (16 bits) 
OFFS         OFFS (8 bits) 
DPC — — — — — — — — — — — WBS2 WBS1 WBS0 SDPS1 SDPS0 
GR GR (16 bits) 
GRL         GRL (8 bits) 
BP BP (16 bits) 

GRS GRS (16 bits) = (GRL : GRH) 
GRH         GRH (8 bits) 
GRXL GRXL (16 bits) = (GRL.7, 8 bits) : (GRL, 8 bits) 

FP FP = BP[OFFS] (16 bits) 
DP[0] DP[0] (16 bits) 
DP[1] DP[1] (16 bits) 
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3.1 – Accumulator Pointer Register (AP, 08h[00h])   
Initialization: This register is cleared to 00h on all forms of reset.  
Access: Unrestricted direct read/write access.  
Bit Name Function 
7:4 Reserved Reserved. All reads return 0.   

3:0 AP[3:0] 

Active Accumulator Select. These bits select which of the 16 accumulator registers are used for 
arithmetic and logical operations. If the APC register has been set to perform automatic 
increment/decrement of the active accumulator, this setting will be automatically changed after each 
arithmetic or logical operation. If a ‘MOVE AP, Acc’ instruction is executed, any enabled AP 
inc/dec/modulo control will take precedence over the transfer of Acc data into AP. 

 
3.2 – Accumulator Pointer Control Register (APC, 08h[01h])  
Initialization: This register is cleared to 00h on all forms of reset.  
Access: Unrestricted direct read/write access.  
Bit Name Function 

7 CLR 

AP Clear. Writing this bit to 1 clears the accumulator pointer AP to 0. Once set, this bit will 
automatically be reset to 0 by hardware. If a ‘MOVE APC, Acc’ instruction is executed requesting that 
AP be set to 0 (i.e., CLR = 1), the AP clear function overrides any enabled inc/dec/modulo control. All 
reads from this bit return 0.   

6 IDS 

Increment/Decrement Select. If this bit is set to 0, the accumulator pointer AP is incremented following 
each arithmetic or logical operation according to MOD[2:0]. If this bit is set to 1, the accumulator 
pointer AP is decremented following each arithmetic or logical operation according to MOD[2:0]. If 
MOD[2:0] is set to 000, the setting of this bit is ignored.   

5:3 Reserved Reserved. All reads return 0.   

2:0 MOD[2:0] 

Accumulator Pointer Auto Increment/Decrement Modulus. If these bits are set to a nonzero value, the 
accumulator pointer (AP[3:0]) will be automatically incremented or decremented following each 
arithmetic or logical operation. The mode for the auto-increment/ decrement is determined as follows:   

MOD[2:0] AUTO INCREMENT/DECREMENT MODE   
000 No auto-increment/decrement (default) 
001 Increment/decrement AP[0] modulo 2 
010 Increment/decrement AP[1:0] modulo 4 
011 Increment/decrement AP[2:0] modulo 8 
100 Increment/decrement AP modulo 16 
101 to 111 Reserved (modulo 16 when set) 

 

 
3.3 – Processor Status Flags Register (PSF, 08h[04h])  
Initialization: This register is cleared to 80h on all forms of reset.  
Access: Bit 7 (Z), bit 6 (S), and bit 2 (OV) are read only. Bits [4:3] (GPF[1:0]), bit 1 (C), and bit 0 (E) are unrestricted 
read/write.  

Bit Name Function 

7 Z Zero Flag. The value of this bit flag equals 1 whenever the active accumulator is equal to zero.  This 
bit equals 0 if the active accumulator is not equal to 0.   

6 S Sign Flag. This bit flag mirrors the current value of the high bit of the active accumulator (Acc.15).   
5 Reserved Reserved. All reads return 0.   

4:3 GPF[1:0] General-Purpose Flags.  These general-purpose flag bits are provided for user software control.   

2 OV 

Overflow Flag. This flag is set to 1 if there is a carry out of bit 14 but not out of bit 15, or a carry out of 
bit 15 but not out of bit 14 from the last arithmetic operation, otherwise, the OV flag remains as 0. OV 
indicates a negative number resulted as the sum of two positive operands, or a positive sum resulted 
from two negative operands.   

1 C 

Carry Flag. This bit flag is set to 1 whenever an add or subtract operation (ADD, ADDC, SUB, SUBB) 
returns a carry or borrow. This bit flag is cleared to 0 whenever an add or subtract operation does not 
return a carry or borrow. Many other instructions potentially affect the carry bit. Reference the 
instruction set documentation for details.   

0 E Equals Flag. This bit flag is set to 1 whenever a compare operation (CMP) returns an equal result. If a 
CMP operation returns not equal, this bit is cleared.   

 



DS4830A User’s Guide 
  

  28 

3.4 – Interrupt and Control Register (IC, 08h[05h])  
Initialization: This register is cleared to 00h on all forms of reset.  
Access: Unrestricted direct read/write access.  

Bit Name Function 
7:2 Reserved Reserved. All reads return 0.   

1 INS 

Interrupt In Service. The INS is set by hardware automatically when an interrupt is acknowledged. No 
further interrupts occur as long as the INS remains set. The interrupt service routine can clear the INS 
bit to allow interrupt nesting. Otherwise, the INS bit is cleared by hardware upon execution of an RETI 
or POPI instruction.   

0 IGE Interrupt Global Enable. If this bit is set to 1, interrupts are globally enabled, but still must be locally 
enabled to occur. If this bit is set to 0, all interrupts are disabled.   

 
3.5 – Interrupt Mask Register (IMR, 08h[06h])  
Initialization: This register is cleared to 00h on all forms of reset.  
Access: Unrestricted read/write access.  

Bit Name Function 
7 IMS Interrupt Mask for System Modules   
6 Reserved Reserved. All reads return 0.   
5 IM5 Interrupt Mask for Register Module 5   
4 IM4 Interrupt Mask for Register Module 4   
3 IM3 Interrupt Mask for Register Module 3   
2 IM2 Interrupt Mask for Register Module 2     
1 IM1 Interrupt Mask for Register Module 1   
0 IM0 Interrupt Mask for Register Module 0   

 
The first six bits in this register are interrupt mask bits for modules 0 to 5, one bit per module. The eighth bit, IMS, serves 
as a mask for any system module interrupt sources. Setting a mask bit allows the enabled interrupt sources for the 
associated module or system (for the case of IMS) to generate interrupt requests. Clearing the mask bit effectively 
disables all interrupt sources associated with that specific module or all system interrupt sources (for the case of IMS). 
The interrupt mask register is intended to facilitate user-definable interrupt prioritization.   
 
3.6 – System Control Register (SC, 08h[08h])  
Initialization: This register is reset to 1000 00s0b on all reset. Bit 1 (PWL) is set to 1 on a power-on reset only.  
Access: Unrestricted read/write access. 

Bit Name Function 

7 TAP 
Test Access Port (JTAG) Enable. This bit controls whether the Test Access Port special-function pins 
are enabled. The TAP defaults to being enabled. Clearing this bit to 0 disables the TAP special 
function pins.  

6:5 Reserved Reserved. All reads return 0.   

4 CDA0 

Code Data Access Bit 0. 
The CDA0 bit is used to logically map the flash memory pages to the data space for read/write access.  
The logical data memory addresses of the flash depend on whether execution is from Utility ROM or 
SRAM.  The CDA0 bit is not needed if data memory is accessed in word mode. 

CDA0 Byte Mode Active Page Word Mode Active Page 
0 P0 P0 and P1 
1 P1 P0 and P1 

 

3 Reserved Reserved. All reads return 0.   

2 ROD 

ROM Operation Done. This bit is used to signify completion of a ROM operation sequence to the 
control units. This allows the Debug engine to determine the status of a ROM sequence. Setting this 
bit to logic 1 causes an internal system reset if the JTAG SPE bit is also set. Setting the ROD bit will 
clear the JTAG SPE and I2C_SPE bits if set.  The ROD bit will be automatically cleared by hardware 
once the control unit acknowledges the done indication.  

1 PWL 

Password Lock. This bit defaults to 1 on a power-on reset. When this bit is 1, it requires a 32-byte 
password to be matched with the password in the program space before allowing access to the 
password protected in-circuit debug or bootstrap loader ROM routines. Clearing this bit to 0 disables 
the password protection for these ROM routines.  

0 Reserved Reserved. All reads return 0.   
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3.7 – Interrupt Identification Register (IIR, 08h[0Bh])  
Initialization: This register is cleared to 00h on all forms of reset.  
Access: Read only. 

Bit Name Function 
7 IIS Interrupt Identifier Flag for System Modules  
6 Reserved Reserved. All reads return 0.   
5 II5 Interrupt Identifier Flag for Register Module 5  
4 II4 Interrupt Identifier Flag for Register Module 4 
3 II3 Interrupt Identifier Flag for Register Module 3 
2 II2 Interrupt Identifier Flag for Register Module 2 
1 II1 Interrupt Identifier Flag for Register Module 1   
0 II0 Interrupt Identifier Flag for Register Module 0 

 
The first six bits in this register indicate interrupts pending in modules 0 to 5, one bit per module. The eighth bit, IIS, 
indicates a pending system interrupt, such as from the watchdog timer. The interrupt pending flags will be set only for 
enabled interrupt sources waiting for service. The interrupt pending flag will be cleared when the pending interrupt 
sources within that module are disabled or when the interrupt flags are cleared by software  
 
3.8 – Watchdog Control Register (WDCN, 08h[0Fh])  
Initialization: Bits 5, 4, 3 and 0 are cleared to 0 on all forms of reset; for others, see individual bit descriptions.  
Access: Unrestricted direct read/write access.  
 
See the watchdog section for WDCN register description and further detail. 
 
3.9 – Accumulator n Register (A[n], 09h[nh])  
Initialization: These registers are cleared to 0000h on all forms of reset.  
Access: Unrestricted direct read/write access.  

BIT DESCRIPTION 

A[n][15:0] 
These registers (n=0 to 15) act as the accumulator for all ALU arithmetic and logical operations 
when selected by the accumulator pointer (AP).  They can also be used as a general-purpose 
working register.   

 
3.10 – Prefix Register (PFX[n], 0Bh[n])  
Initialization: This register is cleared to 0000h on all forms of reset. 
yAccess: Unrestricted direct read/write access.  

BIT NAME DESCRIPTION 

15:0 PFX[n][15:0] 

The Prefix register provides a means of supplying an additional 8 bits of high-order data for use by 
the succeeding instruction as well as providing additional indexing capabilities. This register will 
only hold any data written to it for one execution cycle, after which it will revert to 0000h. Although 
this is a 16-bit register, only the lower 8 bits are actually used for prefixing purposes by the next 
instruction. Writing to or reading from any index in the Prefix module will select the same 16-bit 
register. However, when the Prefix register is written, the index n used for the PFX[n] write also 
determines the high-order bits for the register source and destination specified in the following 
instruction.  
The index selection reverts to 0 (default mode allowing selection of registers 0h to 7h for 
destinations) after one cycle in the same manner as the contents of the Prefix register.   

WRITE 
TO 

SOURCE REGISTER 
RANGE 

DESTINATION 
REGISTER RANGE 

PFX[0] 0h to Fh   0h to 7h   
PFX[1]   10h to 1Fh   0h to 7h   
PFX[2] 0h to Fh   8h to Fh   
PFX[3]   10h to 1Fh   8h to Fh   
PFX[4]   0h to Fh   10h to 17h   
PFX[5]   10h to 1Fh   10h to 17h   
PFX[6]   0h to Fh   18h to 1Fh   
PFX[7]   10h to 1Fh   18h to 1Fh   

 

 
 



DS4830A User’s Guide 
  

  30 

3.11 – Instruction Pointer Register (IP, 0Ch[00h])  
Initialization: This register is cleared to 8000h on all forms of reset.  
Access: Unrestricted direct read/write access.  

BIT DESCRIPTION 

15:0 
This register contains the address of the next instruction to be executed and is automatically 
incremented by 1 after each program fetch. Writing an address value to this register will cause 
program flow to jump to that address. Reading from this register will not affect program flow.   

 
3.12 – Stack Pointer Register (SP, 0Dh[01h])  
Initialization: This register is cleared to 001Fh on all forms of reset.  
Access: Unrestricted direct read/write access.  

BIT DESCRIPTION 
15:4 Reserved; all reads return 0.  

4:0 
These four bits indicate the current top of the hardware stack, from 0h to 1Fh. This pointer is 
incremented after a value is pushed on the stack and decremented before a value is popped from 
the stack.  

 
3.13 – Interrupt Vector Register (IV, 0Dh[02h])  
Initialization: This register is cleared to 0000h on all forms of reset.  
Access: Unrestricted direct read/write access.  

BIT DESCRIPTION 

15:0 This register contains the address of the interrupt service routine. The interrupt handler will 
generate a CALL to this address whenever an interrupt is acknowledged.  

 
3.14 – Loop Counter 0 Register (LC[0], 0Dh[06h])  
Initialization: This register is cleared to 0000h on all forms of reset.  
Access: Unrestricted direct read/write access.  

BIT DESCRIPTION 

15:0 
This register is used as the loop counter for the DJNZ LC[0], src operation. This operation 
decrements LC[0] by one and then jumps to the address specified in the instruction by src if LC[0] 
= 0.  

 
3.15 – Loop Counter 1 Register (LC[1], 0Dh[07h])  
Initialization: This register is cleared to 0000h on all forms of reset.  
Access: Unrestricted direct read/write access.  

BIT DESCRIPTION 

15:0 
This register is used as the loop counter for the DJNZ LC[1], src operation. This operation 
decrements LC[1] by one and then jumps to the address specified in the instruction by src if LC[1] 
= 0. 

 
3.16 – Frame Pointer Offset Register (OFFS, 0Eh[03h])  
Initialization: This register is cleared to 00h on all forms of reset.  
Access: Unrestricted direct read/write access.  

BIT DESCRIPTION 

7:0 

This 8-bit register provides the Frame Pointer (FP) offset from the base pointer (BP). The Frame 
Pointer is formed by unsigned addition of Frame Pointer Base Register (BP) and Frame Pointer 
Offset Register (Offs). The contents of this register can be post-incremented or post-decremented 
when using the Frame Pointer for read operations and may be pre-incremented or pre-
decremented when using the Frame Pointer for write operations. A carry out or borrow resulting 
from an increment/decrement operation has no effect on the Frame Pointer Base Register (BP).  
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3.17 – Data Pointer Control Register (DPC, 0Eh[04h])  
Initialization: This register is cleared to 001Ch on all forms of reset.  
Access: Unrestricted direct read/write access.  

BIT NAME DESCRIPTION 
15:5 RESERVED Reserved. All reads return 0.   

4 WBS2 
Word/Byte Select 2. This bit selects access mode for BP[OFFS]. When WBS2 is set to logic 1, the 
BP[Offs] is operated in word mode for data memory access; when WBS2 is cleared to logic 0, 
BP[Offs] is operated in byte mode for data memory access. 

3 WBS1 
Word/Byte Select 1. This bit selects access mode for DP[1]. When WBS1 is set to logic 1, the 
DP[1] is operated in word mode for data memory access; when WBS1 is cleared to logic 0, DP[1] 
is operated in byte mode for data memory access.  

2 WBS0 
Word/Byte Select 0. This bit selects access mode for DP[0]. When WBS0 is set to logic 1, the 
DP[0] is operated in word mode for data memory access; when WBS0 is cleared to logic 0, DP[0] 
is operated in byte mode for data memory access.  

1:0 SDPS[1:0] 

Source Data Pointer Select Bits[1:0]. These bits select one of the three data pointers as the active 
source pointer for the load operation. A new data pointer must be selected before being used to 
read data memory:  

SDPS1 SDPS0 SOURCE POINTER SELECTION 
0 0 DP[0] 
0 1 DP[1] 
1 0 FP (BP[Offs]) 
1 1 Reserved (select FP if set) 

These bits default to 00b but do not activate DP[0] as an active source pointer until the SDPS bits 
are explicitly cleared to 00b or the DP[0] register is written by an instruction. Also, modifying the 
register contents of a data/frame pointer register (DP[0], DP[1], BP or Offs) will change the setting 
of the SDPS bits to reflect the active source pointer selection.  

 
3.18 – General Register (GR, 0Eh[05h])  
Initialization: This register is cleared to 0000h on all forms of reset.  
Access: Unrestricted direct read/write access.  

BIT DESCRIPTION 

15:0 
This register is intended primarily for supporting byte operations on 16-bit data. The 16-bit register 
is byte-readable, byte-writeable through the corresponding GRL and GRH 8-bit registers and byte-
swappable through the GRS 16-bit register.   

 
3.19 – General Register Low Byte (GRL, 0Eh[06h])  
Initialization: This register is cleared to 00h on all forms of reset.  
Access: Unrestricted direct read/write access.  

BIT DESCRIPTION 

7:0 
This register reflects the low byte of the GR register and is intended primarily for supporting byte 
operations on 16-bit data. Any data written to the GRL register will also be stored in the low byte of 
the GR register.   

 
3.20 – Frame Pointer Base Register (BP, 0Eh[07h])  
Initialization: This register is cleared to 0000h on all forms of reset.  
Access: Unrestricted direct read/write access.  

BIT DESCRIPTION 

15:0 

This register serves as the base pointer for the Frame Pointer (FP). The Frame Pointer is formed 
by unsigned addition of Frame Pointer Base Register (BP) and Frame Pointer Offset Register 
(Offs). The content of this base pointer register is not affected by increment/decrement operations 
performed on the offset (OFFS) register.   
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3.21 – General Register Byte-Swapped (GRS, 0Eh[08h])  
Initialization: This register is cleared to 0000h on all forms of reset  
Access: Unrestricted read-only access.  

BIT DESCRIPTION 

15:0 This register is intended primarily for supporting byte operations on 16-bit data. This 16-bit read 
only register returns the byte-swapped value for the data contained in the GR register.   

 
3.22 – General Register High Byte (GRH, 0Eh[09h])  
Initialization: This register is cleared to 00h on all forms of reset.  
Access: Unrestricted direct read/write access.  

BIT DESCRIPTION 

7:0 
This register reflects the high byte of the GR register and is intended primarily for supporting byte 
operations on 16-bit data. Any data written to the GRH register will also be stored in the high byte 
of the GR register.   

 
3.23 – General Register Sign Extended Low Byte (GRXL, 0Eh[0Ah])  
Initialization: This register is cleared to 0000h on all forms of reset. 
Access: Unrestricted direct read-only access.  

BIT DESCRIPTION 
15:0 This register provides the sign extended low byte of GR as a 16-bit source.  

 
3.24 – Frame Pointer Register (FP, 0Eh[0Bh])  
Initialization: This register is cleared to 0000h on all forms of reset.  
Access: Unrestricted direct read-only access.  

BIT DESCRIPTION 
15:0 This register provides the current value of the frame pointer (BP[Offs]).   

 
3.25 – Data Pointer 0 Register (DP[0], 0Fh[03h])  
Initialization: This register is cleared to 0000h on all forms of reset.  
Access: Unrestricted direct read/write access.  

BIT DESCRIPTION 

15:0 
This register is used as a pointer to access data memory. DP[0] can be automatically incremented 
or decremented following each read operation or can be automatically incremented or 
decremented before each write operation.   

 
3.26 – Data Pointer 1 Register (DP[1], 0Fh[07h])  
Initialization: This register is cleared to 0000h on all forms of reset.  
Access: Unrestricted direct read/write access.  

BIT DESCRIPTION 

15:0 
This register is used as a pointer to access data memory. DP[1] can be automatically incremented 
or decremented following each read operation or can be automatically incremented or 
decremented before each write operation.  
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SECTION 4 – PERIPHERAL REGISTER DESCRIPTIONS 
Reg M0 M1 M2 M3 M4 M5 

0 PO2 I2CBUF_M I2CBUF_S MCNT ADCN QTDATA 

1 PO1 I2CST_M I2CST_S MA SENR QTCN 
2 PO0 I2CIE_M MPNTR MB ADST LTIL 
3 EIF2 PO6 I2CTXFST MC2 ADST1 HTIL 
4 EIF1 CRC8IN I2CTXFIE MC1 ADDATA SPIB_M 
5 EIF0 MIIR1 I2CRXFST MC0 SPIB_S PWMDATA 
6 GTV1 EIF6 I2CRXFIE GTCN2 DADDR PWMCN 
7 GTCN1 EIE6 I2CST2_S SHFT MIIR4 PWMSYNC 
8 PI2 PI6 RPNTR MC1R TEMPCN LTIH 
9 PI1 SVM I2CCN_S MC0R SHCN HTIH 

10 PI0    GTC2  QTLST 
11 GTC1    GTV2 PINSEL  
12   I2CCN_M I2CSLA_S GP_REG1 REFAVG  
13 EIE2 I2CCK_M I2CSLA2_S GP_REG2    
14 EIE1 I2CTO_M I2CSLA3_S MACSEL TWR MIIR5 
15 EIE0 I2CSLA_M I2CSLA4_S USER_INT RPCFG   

16 PD2 EIES6 I2CIE2_S GP_REG3 SPICN_S   
17 PD1 PD6 MADDR GP_REG4 SPICF_S   
18 PD0   MADDR2 GP_REG5 SPICK_S SPICN_M 
19 EIES2   MADDR3 GP_REG6 I2C_SPB SPICF_M 
20 EIES1   MADDR4 GP_REG7 DEV_NUM SPICK_M 
21 EIES0 CRC8OUT CUR_SLA GP_REG8 DACD0   
22     I2CIE_S GP_REG9 DACD1   
23   ADCG1   GP_REG10 DACD2   
24   ADCG2 ICDT0 GP_REG11 DACD3   
25   ADVOFF ICDT1 GP_REG12 DACD4   
26     ICDC GP_REG13 DACD5   
27   ADCG3 ICDF GP_REG14 DACD6   
28   ADCG4 ICDB GP_REG15 DACD7   
29   CHIPREV ICDA GP_REG16 DACCFG   
30   I2CSLA2_M ICDD   ADADDR   
31            

 
The DS4830A has sixteen 16-bit general-purpose registers GP_REG1-16 for application usage. 
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4.1 – Module 0 Peripheral Registers 

 
 
 

 

MODULE 0 
Register index 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

PO2 00h                 PO2[7:0] 

PO1 01h                 PO1[7:0] 

PO0 02h                 PO0[7:0] 

EIF2 03h                 IFP2[7:0] 

EIF1 04h                 IFP1[7:0] 

EIF0 05h                 IFP0[7:0] 

GTV1 06h GTV1[15:0] 

GTCN1 07h - - - GTR MODE CLK_SEL[1:0] GTIE - - - GTIF - GTPS[2:0] 

PI2 08h                 PI2[7:0] 

PI1 09h                 PI1[7:0] 

PI0 0Ah                 PI0[7:0] 

GTC1 0Bh GTC1[15:0] 

EIE2 0Dh                 IEP2[7:0] 

EIE1 0Eh                 IEP1[7:0] 

EIE0 0Fh                 IEP0[7:0] 

PD2 10h                 PD2[7:0] 

PD1 11h                 PD1[7:0] 

PD0 12h                 PD0[7:0] 

EIES2 13h                 IESP2[7:0] 

EIES1 14h                 IESP1[7:0] 

EIES0 15h                 IESP0[7:0] 
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4.2 – Module 1 Peripheral Registers 
MODULE 1 

Register index 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
I2CBUF_M 00h D[15:0] 

I2CST_M 01h I2CBUS I2CBUSY - I2CAMI2 I2CSPI I2CSCL I2CROI I2CGCI I2CNACKI - I2CAMI I2CTOI I2CSTRI I2CRXI I2CTXI I2CSRI 

I2CIE_M 02h - - - - I2CSPIE I2CAMI2E I2CROIE I2CGCIE I2CNACKIE - I2CAMIE I2CTOIE I2CSTRIE I2CRXIE I2CTXIE I2CSRIE 

PO6 03h                 - PO6[6:0] 

CRC8IN 04h                 CRC8IN[7:0] 

MIIR1 05h - - - - - - - I2CM SVM P6_6 P6_5 P6_4 P6_3 P6_2 P6_1 P6_0 

EIF6 06h                 - IFP6[6:0] 

EIE6 07h                 - IEP6[6:0] 

PI6 08h                 - PI6[6:0] 

SVM 09h - - - - SVMTH[3:0] - - - - SVMI SVMIE SVMRDY SVMEN 

I2CCN_M 0Ch - - - I2CM_ALT ADD2EN SMB_MOD I2CSTREN I2CGCEN I2CSTOP I2CSTART I2CACK I2CSTRS - - I2CMST I2CEN 

I2CCK_M 0Dh I2CCKH[7:0] I2CCKL[7:0] 

I2CTO_M 0Eh                 I2CTO[7:0] 

I2CSLA_M 0Fh                 SLAVE_ADDRESS[7:1] I2CMODE 

EIES6 10h                 - IESP6[6:0] 

PD6 11h                 - PD6[6:0] 

CRC8OUT 15h - CRC8OUT[7:0] 

ADCG1 17h ADC VOLTAGE SCALE TRIM FOR GAIN1[13:0] - - 

ADCG2 18h ADC VOLTAGE SCALE TRIM FOR GAIN2[13:0] - - 

ADVOFF 19h ADC VOLTAGE OFFSET [15:0] 

ADCG3 1Bh ADC VOLTAGE SCALE TRIM FOR GAIN3[13:0] - - 

ADCG4 1Ch ADC VOLTAGE SCALE TRIM FOR GAIN4[13:0] - - 

CHIPREV 1Dh CHIPREV[15:0] 

I2CSLA2_M 1Eh                 SLAVE_ADDRESS[7:1] I2CMODE 
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4.3 – Module 2 Peripheral Registers 
MODULE 2 

Register index 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
I2CBUF_S 00h D[15:0] 

I2CST_S 01h I2CBUS I2CBUSY - - - I2CSCL I2CROI I2CGCI I2CNACKI - I2CAMI I2CTOI I2CSTRI I2CRXI I2CTXI I2CSRI 

MPNTR 02h - - - - - PAGE[2:0] MEM_PNTR[7:0] 

I2CTXFST 03h                 - - - - - - THSH - 

I2CTXFIE 04h                 TXPG_EN - - - - - THSH - 

I2CRXFST 05h                 - - - - FULL - THSH EMPTY 

I2CRXFIE 06h                 RXFIFO_EN - - - FULL - THSH EMPTY 

I2CST2_S 07h                 - - I2CSPI SADI MADI - I2CXFRON - 

RPNTR 08h - - - - - PAGE[2:0] MEM_PNTR[7:0] 

I2CCN_S 09h - - ADDR4EN ADDR3EN ADDR2EN SMB_MOD I2CSTREN I2CGCEN I2CSTOP I2CSTART I2CACK I2CSTRS - I2CMODE - I2CEN 

I2CSLA_S 0Ch                 SLAVE_ADDRESS[7:1] I2CMODE 

I2CSLA2_S 0Dh                 SLAVE_ADDRESS[7:1] I2CMODE 

I2CSLA3_S 0Eh                 SLAVE_ADDRESS[7:1] I2CMODE 

I2CSLA4_S 0Fh                 SLAVE_ADDRESS[7:1] I2CMODE 

I2CIE2_S 10h                 - - I2CSPIE SADIE MADIE - - - 

MADDR 11h - - - ROLLOVR - PAGE[2:0] MEM_ADDR[7:0] 

MADDR2 12h - - - ROLLOVR - PAGE[2:0] MEM_ADDR[7:0] 

MADDR3 13h - - - ROLLOVR - PAGE[2:0] MEM_ADDR[7:0] 

MADDR4 14h - - - ROLLOVR - PAGE[2:0] MEM_ADDR[7:0] 

CURR_SLA 15h                 MADR_EN4 MADR_EN3 MADR_EN2 MADR_EN1 SLA4 SLA3 SLA2 SLA1 

I2CIE_S 16h - - - - - - I2CROIE I2CGCIE I2CNACKIE - I2CAMIE I2CTOIE I2CSTRIE I2CRXIE I2CTXIE I2CSRIE 

ICDT0 18h ICDT0[15:0] 

ICDT1 19h ICDT1[15:0] 

ICDC 1Ah                 DME - REGE - CMD[3:0] 

ICDF 1Bh                 - - - - PSS1 PSS0 JTAG_SPE TXC 

ICDB 1Ch                 ICDB[7:0] 

ICDA 1Dh ICDA[15:0] 

ICDD 1Eh ICDD[15:0] 
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4.4 – Module 3 Peripheral Registers 
MODULE 3 

Register index 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
MCNT 00h                 OF MCW CLD SQU OPCS MSUB MMAC SUS 

MA 01h MA[15:0] 

MB 02h MB[15:0] 

MC2 03h MC2[15:0] 

MC1 04h MC1[15:0] 

MC0 05h MC0[15:0] 

GTCN2 06h - - - GTR MODE CLK_SEL[1:0] GTIE - - - GTIF - GTPS[2:0] 

SHFT 07h                 SHC - - - - - SR SL 

MC1R 08h MC1R[15:0] 

MC0R 09h MC0R[15:0] 

GTC2 0Ah GTC2[15:0] 

GTV2 0Bh GTV2[15:0] 

GP_REG1 0Ch GP_REG1[15:0] 

GP_REG2 0Dh GP_REG2[15:0] 

MACSEL 0Eh                 - - - - - - - MACRSEL 

USER_INT 0Fh                 SW_F3 SW_F2 SW_F1 SW_F0 SW_INT3 SW_INT2 SW_INT1 SW_INT0 

GP_REG3 10h GP_REG3[15:0] 

GP_REG4 11h GP_REG4[15:0] 

GP_REG5 12h GP_REG5[15:0] 

GP_REG6 13h GP_REG6[15:0] 

GP_REG7 14h GP_REG7[15:0] 

GP_REG8 15h GP_REG8[15:0] 

GP_REG9 16h GP_REG9[15:0] 

GP_REG10 17h GP_REG10[15:0] 

GP_REG11 18h GP_REG11[15:0] 

GP_REG12 19h GP_REG12[15:0] 

GP_REG13 1Ah GP_REG13[15:0] 

GP_REG14 1Bh GP_REG14[15:0] 

GP_REG15 1Ch GP_REG15[15:0] 

GP_REG16 1Dh GP_REG16[15:0] 
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4.5 – Module 4 Peripheral Registers 
MODULE 4 

Register index 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

ADCN 00h ADCCLK[2:0] NUM_SMP[4:0] ADDAINV ADCONT ADDAIE LOC_OVR ADACQ[3:0] 

SENR 01h                 - - INT_TRIG_EN1 INT_TRIG1 - - INT_TRIG_EN0 INT_TRIG0 

ADST 02h - - - - ENABLE_2X - - - ADCAVG ADCONV ADCFG ADIDX[4:0] 

ADST1 03h                 - - SH1DAI SH0DAI     INTDAI ADDAI 

ADDATA 04h ADDATA[15:0], SEE ADC SECTION FOR DETAILS 

SPIB_S 05h SPIB[15:0] 

DADDR 06h ADDR[6:0] RWN DATA[7:0] 

MIIR4 07h                 - - - - - SPI_S TWI ADC 

TEMPCN 08h  - - - - - INT_IEN - - - - - INT_ALIGN - - - INT_TEMP 

SHCN 09h SSC[3:0] FAST_MODE PIN_DIS1 PIN_DIS0 SH_DUAL - SH1_ALGN SHDAI1_EN SMP_HLD1 CLK_SEL SH0_ALGN SHDAI0_EN SMP_HLD0 

PINSEL 0Bh PINSEL[15:0] 

REFAVG 0Ch - - - - - - REFOUT INTAVG - - INTAVG[1:0] SH1AVG[1:0] SH0AVG[1:0] 

TWR 0Eh                 TWEN TWCP[2:0] TWIE TWCSDIS TWI BUSY 

RPCFG 0Fh                 - - - - - - REFB_CFG REFA_CFG 

SPICN_S 10h                 STBY SPIC ROVR WCOL MODF MODFE MSTM SPIEN 

SPICF_S 11h                 ESPII SAS - - - CHR CKPHA CKPOL 

SPICK_S 12h                 SPICK[7:0] 

I2C_SPB 13h                 - - - - - - - I2C_SPE 

DEV_NUM 14h                 BOOT_DIS DEVNUM[6:0] 

DACD0 15h - - - - DACD0[11:0] 

DACD1 16h - - - - DACD1[11:0] 

DACD2 17h - - - - DACD2[11:0] 

DACD3 18h - - - - DACD3[11:0] 

DACD4 19h - - - - DACD4[11:0] 

DACD5 1Ah - - - - DACD5[11:0] 

DACD6 1Bh - - - - DACD6[11:0] 

DACD7 1Ch - - - - DACD7[11:0] 

DACCFG 1Dh DACCFG7[1:0] DACCFG6[1:0] DACCFG5[1:0] DACCFG4[1:0] DACCFG3[1:0] DACCFG2[1:0] DACCFG1[1:0] DACCFG0[1:0] 

ADADDR 1Eh - - - ADSTART[4:0] - - - ADEND[4:0] 
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4.6 – Module 5 Peripheral Registers 
MODULE 5 

Register index 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
QTDATA 00h QTDATA[15:0] SEE QUICK TRIP FOR DETAILS 

QTCN 01h - - - QTEN - - - - RW_LST - - LTHT QTIDX[3:0] 

LTIL 02h LTIE[7:0] LTIF[7:0] 

HTIL 03h HTIE[7:0] HTIF[7:0] 

SPIB_M 04h SPIB[15:0] 

PWMDATA 05h PWMDATA[15:0] SEE PWM SECTION FOR DETAILS 

PWMCN 06h - - - M_EN - - - UPDATE PWM_SEL[3:0] - - REG_SEL[1:0] 

PWMSYNC 07h - - - - - - PWMSYNC[9:0] 

LTIH 08h LTIE[15:8] LTIF[15:8] 

HTIH 09h HTIE[15:8] HTIF[15:8] 

QTLIST 0Ah - - - - - - - - QTSTART[3:0] QTSTOP[3:0] 

MIIR5 0Eh                 - - - - - I2C_M QT SPI_M 

SPICN_M 12h                 STBY SPIC ROVR WCOL MODF MODFE MSTM SPIEN 

SPICF_M 13h                 ESPII SAS - - - CHR CKPHA CKPOL 

SPICK_M 14h                 SPICK[7:0] 
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SECTION 5 – INTERRUPTS 
The DS4830A provides a single, programmable interrupt vector (IV) that can be used to handle internal and external 
interrupts. Interrupts can be generated from system level sources (e.g., watchdog timer) or by sources associated 
with the peripheral modules. Only one interrupt can be handled at a time, and all interrupts naturally have the same 
priority. A programmable interrupt mask register allows software-controlled prioritization and nesting of high-priority 
interrupts.  igure 5-1 shows a diagram of the interrupt hierarchy. 
 

System Module
WATCHDOG INTERRUPT

 WDCN.WDIF

 WDCN.EWDI
(local enable)

IMR.IMS
Module Enable

Module 0
GPIO INTERRUPTS

External Interrupt Pn.: EIFn.IFPn_m
Local Enable EIEn.IEPn_m

n can be  0,1 or 2 and m can be 0 to 7

TIMER1 INTERRUPT
Timer1 Flag GTIF

Timer Local Enable GTIE

IMR.IM0
Module0 Enable

IIR.IIS

IIR.II0

Module 3

IMR.IM3
Module3 Enable

IIR.II3

TIMER2 INTERRUPT

Timer Local Enable GTIE

External Interrupt P2.0: EIF2.IFP2_0
Local Enable EIE2.IEP2_0

Timer2 Flag GTIF

Note: Only a few of the DS4830A modules and interrupt sources are shown in this interrupt hierarchy 
figure.  Please refer to the corresponding sections of this user’s guide for more detailed information 
about all of the possible interrupts.

Module 1

External Interrupt P6.m: EIF6.IFP6_m

Local Enable EIE6.IEP6_m
m can be 0 to 6

PORT6 GPIO INTERRUPTS

Master I2C START Interrupt 
I2CST_M.I2CSRI

Local Enable I2CIE_M.I2CSRIE

Any I2C Interrupt I2CST_M.x

Local Enable I2CIE_M.x

SVM Interrupt SVM.SVMI

Local Enable SVM.SVMIE

MASTER I2C INTERRUPTS

SVM INTERRUPT

Module1 Enable

IIR.III1

JUMP TO 
INTERRUPT 

VECTOR

IC.INS
Interrupt is NOT 

in Service

IC.IGE
Global Enable

IMR.IM1

SW Interrupt flag

Figure 5-1: Interrupt Hierarchy 
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Note: Some of the DS4830A module and peripheral interrupts sources are shown in the Figure 5-1 interrupt 
hierarchy diagram. See the corresponding sections of this user’s guide for more detailed information about all of the 
possible interrupts.  
 
5.1 – Servicing Interrupts 
For the DS4830A to service an interrupt, interrupts must be enabled locally, modularly, and globally. The Interrupt 
Global Enable (IGE) bit is located in the Interrupt Control (IC) register acts as a global interrupt mask. This bit 
defaults to 0, and it must be set to 1 before any interrupt takes place. 
 
The local interrupt-enable bit for a particular source is in one of the peripheral registers associated with that 
peripheral module, or in a system register for any system interrupt source. Between the global and local enables are 
intermediate per-module and system interrupt mask bits. These mask bits reside in the Interrupt Mask system 
register. By implementing intermediate per-module masking capability in a single register, interrupt sources spanning 
multiple modules can be selectively enabled/disabled in a single instruction. This promotes a simple, fast, and user-
definable interrupt prioritization scheme.  The interrupt source-enable hierarchy is illustrated in Figure 5-1 as well as 
Table 5-1. 
 
Table 5-1: Interrupt Sources and Control Bits 

INTERRUPT INTERRUPT FLAG LOCAL ENABLE BIT 
MODULE 

INTERRUPT 
IDENTIFICATI

ON BIT 

INTERRUPT 
IDENTIFICATION 

BIT 

MODULE 
ENABLE 

BIT 

External Interrupt Pp.n 
(here p = 0,1,2 and n = 0 to 7) EIFp.IEn EIEp.EXn - IIR.II0 IMR.IM0 
Timer1 Interrupt GTCN1.GTIF GTCN1.GTIE - 
External Interrupt Pp.n 
(here p = 6 and n = 0 to 6) EIFp.IEn EIEp.EXn MIIR1.Pp_n 

IIR.II1 IMR.IM1 

Supply Voltage Monitor Interrupt SVM.SVMI SVM.SVMIE MIIR1.SVM 
I2C Master Start Interrupt I2CST_M.I2CSRI I2CIE_M.I2CSRIE 

MIIR1.I2CM 

I2C Master Transmit Complete 
Interrupt I2CST_M.I2CTXI I2CIE_M.I2CTXIE 

I2C Master Receive Ready Interrupt I2CST_M. I2CRXI I2CIE_M.I2CRXIE 
I2C Master Clock Stretch Interrupt I2CST_M.I2CSTRI I2CIE_M.I2CSTRIE 
I2C Master Timeout Interrupt I2CST_M.I2CTOI I2CIE_M.I2CTOIE 
I2C Master NACK Interrupt I2CST_M.I2CNACKI I2CIE_M.I2CNACKIE 
I2C Master Receiver Overrun Interrupt I2CST_M.I2CROI I2CIE_M.I2CROIE 
I2C Master Stop Interrupt I2CST_M.I2CSPI I2CIE_M.I2CSPIE 
I2C Slave Start Interrupt I2CST_S.I2CSRI I2CIE_S.I2CSRIE 

- IIR.II2 IMR.IM2 

I2C Slave Transmit Complete Interrupt I2CST_S.I2CTXI I2CIE_S.I2CTXIE 
I2C Slave Receive Ready Interrupt I2CST_S. I2CRXI I2CIE_S.I2CRXIE 
I2C Slave Clock Stretch Interrupt I2CST_S.I2CSTRI I2CIE_S.I2CSTRIE 
I2C Slave Timeout Interrupt I2CST_S.I2CTOI I2CIE_S.I2CTOIE 
I2C Slave Address Match Interrupt I2CST_S.I2CAMI I2CIE_S.I2CAMIE 
I2C Slave NACK Interrupt I2CST_S.I2CNACKI I2CIE_S.I2CNACKIE 
I2C Slave General Call Interrupt I2ST_S.I2CGCI I2CIE_S.I2CGCIE 
I2C Slave Receiver Overrun Interrupt I2CST_S.I2CROI I2CIE_S.I2CROIE 
I2C Slave Stop Interrupt I2CST2_S.I2CSPI I2CIE2_S.I2CSPIE 
I2C Slave Start Address Interrupt I2CST2_S.SADI I2CIE2_S. SADIE 
I2C Slave Memory Address Interrupt I2CST2_S.MADI I2CIE2_S. MADIE 
I2C Slave Page Threshold Interrupt I2CTXFST.THSH I2CTXFIE.THSH 
I2C Slave FIFO Threshold Interrupt I2CRXFST.THSH I2CRXFIE.THSH 
Timer2 Interrupt GTCN1.GTIF GTCN1.GTIE - 

IIR.II3 IMR.IM3 Software Interrupts SW.Fn 
(n = 0,1,2,3) - - 

ADC Data Available Interrupt ADST1.ADDAI ADCN.ADDAIE  
 
 

MIIR4.ADC 
 
 IIR.II4 IMR.IM4 

Internal Temperature Interrupt ADST1.INTDAI TEMPCN.INT_IEN 
Sample and Hold 0 Interrupt ADST1.SH0DAI SHCN.SHDAI0_EN 

Sample and Hold 1 Interrupt ADST1.SH1DAI SHCN.SHDAI1_EN 

3- Wire Interrupt TWR.TWI TWR.TWIE MIIR4.TW 
SPI Slave Transfer Complete SPICN_S.SPIC  

SPICF_S.ESPII 
 

MIIR4.SPI_S  SPI Slave Write Collision SPICN_S.WCOL 
SPI Slave Receive Overrun SPICN_S.ROVR 
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INTERRUPT INTERRUPT FLAG LOCAL ENABLE BIT 
MODULE 

INTERRUPT 
IDENTIFICATI

ON BIT 

INTERRUPT 
IDENTIFICATION 

BIT 

MODULE 
ENABLE 

BIT 

LT 0 Interrupt LTIL.IF0 LTIL.IE0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MIIR5.QT 

IIR.II5 IMR.IM5 

LT 1 Interrupt LTIL.IF1 LTIL.IE1 
LT 2 Interrupt LTIL.IF2 LTIL.IE2 
LT 3 Interrupt LTIL.IF3 LTIL.IE3 
LT 4 Interrupt LTIL.IF4 LTIL.IE4 
LT 5 Interrupt LTIL.IF5 LTIL.IE5 
LT 6 Interrupt LTIL.IF6 LTIL.IE6 
LT 7 Interrupt LTIL.IF7 LTIL.IE7 
LT 8 Interrupt LTIH.IF8 LTIH.IE8 
LT 9 Interrupt LTIH.IF9 LTIH.IE9 
LT 10 Interrupt LTIH.IF10 LTIH.IE10 
LT 11 Interrupt LTIH.IF11 LTIH.IE11 
LT 12 Interrupt LTIH.IF12 LTIH.IE12 
LT 13 Interrupt LTIH.IF13 LTIH.IE13 
LT 14 Interrupt LTIH.IF14 LTIH.IE14 
LT 15 Interrupt LTIH.IF15 LTIH.IE15 
HT 0 Interrupt HTIL.IF0 HTIL.IE0 
HT 1 Interrupt HTIL.IF1 HTIL.IE1 
HT 2 Interrupt HTIL.IF2 HTIL.IE2 
HT 3 Interrupt HTIL.IF3 HTIL.IE3 
HT 4 Interrupt HTIL.IF4 HTIL.IE4 
HT 5 Interrupt HTIL.IF5 HTIL.IE5 
HT 6 Interrupt HTIL.IF6 HTIL.IE6 
HT 7 Interrupt HTIL.IF7 HTIL.IE7 
HT 8 Interrupt HTIH.IF8 HTIH.IE8 
HT 9 Interrupt HTIH.IF9 HTIH.IE9 
HT 10 Interrupt HTIH.IF10 HTIH.IE10 
HT 11 Interrupt HTIH.IF11 HTIH.IE11 
HT 12 Interrupt HTIH.IF12 HTIH.IE12 
HT 13 Interrupt HTIH.IF13 HTIH.IE13 
HT 14 Interrupt HTIH.IF14 HTIH.IE14 
HT 15 Interrupt HTIH.IF15 HTIH.IE15 
SPI Master Transfer Complete SPICN_M.SPIC 

SPICF_M.ESPII MIIR5.SPI_M SPI Master Write Collision SPICN_M.WCOL 
SPI Master Receive Overrun SPICN_M.ROVR 
SPI Master Mode Fault SPICN_M.MODF SPICN_M.MODFE 
Watchdog Interrupt WDCN.WDIF WDCN.EWDI N/A IIR.IIS IMR.IMS 
 
When an interrupt condition occurs, its individual flag is set, even if the interrupt source is disabled at the local, 
module, or global level. Interrupt flags must be cleared within the user interrupt routine to avoid repeated interrupts 
from the same source. Since all interrupts vector to the address contained in the Interrupt Vector (IV) register, the 
Interrupt Identification Register (IIR) may be used by the interrupt service routine to determine the module source of 
an interrupt. The IIR contains a bit flag for each peripheral module and one flag associated with all system interrupts; 
if the bit for a module is set, then an interrupt is pending that was initiated by that module.   
 
In the DS4830A MIIR registers are defined for module 1, 4, and 5. In these modules the DS4830A provides two ways 
to determine which block inside a module (for module 1, 4, and 5 only) caused an interrupt to occur.   Module 1, 4 
and 5 has Module Interrupt Identification Registers MIIR1, MIIR4 and MIIR5 respectively that indicate which of the 
module’s interrupt sources has a pending interrupt.  The peripheral register bits inside the module also provide a way 
to differentiate among interrupt sources.  Section 5.2 has more detail on the Module Interrupt Identification Registers.  
 
The Interrupt Vector (IV) register provides the location of the interrupt service routine. It may be set to any location 
within program memory. The IV register defaults to 0000h on reset or power-up, so if it is not changed to a different 
address, the user program must determine whether a jump to 0000h came from a reset or interrupt source. 
 
5.2 – Module Interrupt Identification Registers  
The MIIR registers are implemented to indicate which particular function within a peripheral module has caused the 
interrupt. The DS4830A has 6 peripheral modules, M0 through M5. MIIR registers are implemented in peripheral 
module 1, 4 and 5. The MIIR registers are 16-bit read-only registers and all of them default to 0000h on system 
reset.  
 
Each defined bit in an MIIR register is the final interrupt from a specific function, i.e., the interrupt enable bit(s) 
ANDed with the interrupt flag(s). A function can have multiple flags, but they all are ANDed with corresponding 
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enable bits and combined to create a single interrupt identification bit for that specific function. For example, the I2C 
master has several interrupt sources; however, they all are combined to form a single identification bit, MIIR1.I2CM.  
The individual register bit functions are defined as follows. 
 
Peripheral Module 1 Interrupt Identification Register (MIIR1) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - - - I2CM SVM P6_6 P6_5 P6_4 P6_3 P6_2 P6_1 P6_0 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r r r r r r r r r r r r 
 
BIT NAME DESCRIPTION 
15:9 Reserved Reserved. A read returns 0. 
8 I2CM This bit is set when there is an interrupt from the I2C master block. The I2C interrupt is a 

combination of all interrupts defined in the I2CST_M register for the I2C master block. The 
Master I2C section has more detail on the individual interrupts. 

7 SVM This bit is set when there is an interrupt from Supply Voltage Monitor (SVM). 
6 P6_6 This bit is set when there is an External GPIO Interrupt at P6.6. 
5 P6_5 This bit is set when there is an External Interrupt at P6_5. 
4 P6_4 This bit is set when there is an External Interrupt at P6.4. 
3 P6_3 This bit is set when there is an External Interrupt at P6.3. 
2 P6_2 This bit is set when there is an External Interrupt at P6.2. 
1 P6_1 This bit is set when there is an External Interrupt at P6.1. 
0 P6_0 This bit is set when there is an External Interrupt at P6.0. 

 
Peripheral Module 4 Interrupt Identification Register (MIIR4) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - - - - - - - - - I2CS TW ADC 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Access r r r r r r r r r r r r r r r r 
 
BIT NAME DESCRIPTION 
15:3 Reserved Reserved. A read returns 0. 
2 SPI_S This bit is set when there is an interrupt at SPI Slave.  
1 TW  This bit is set when there is an interrupt from the 3Wire Block. 
0 ADC  This bit is set when there is an Interrupt from the ADC. 

 
Peripheral Module 5 Interrupt Identification Register (MIIR5) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - - - - - - - - - - QT SPI_M 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Access r r r r r r r r r r r r r r r r 
 
BIT NAME DESCRIPTION 
15:2 Reserved Reserved. A read returns 0. 
1 QT This bit is set when there is an interrupt from the fast comparator 
0 SPI_M  This bit is set when there is an interrupt at SPI Slave. 

 
5.3 – Interrupt System Operation  
The interrupt handler hardware responds to any interrupt event when it is enabled. An interrupt event occurs when 
an interrupt flag is set. All interrupt requests are sampled at the rising edge of the clock and can be serviced by the 
processor one clock cycle later, assuming the request does not hit the interrupt exception window. The one-cycle 
stall between detection and acknowledgement/servicing is due to the fact that the current instruction may also be 
accessing the stack. For this reason, the CPU must allow the current instruction to complete before pushing the 
stack and vectoring to IV. If an interrupt exception window is generated by the currently executing instruction, the 
following instruction must be executed, so the interrupt service routine will be delayed an additional cycle. 
 
Interrupt operation in the DS4830A CPU is essentially a state machine generated long CALL instruction. When the 
interrupt handler services an interrupt, it temporarily takes control of the CPU to perform the following sequence of 
actions: 
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1. The next instruction fetch from program memory is cancelled. 
2. The return address is pushed on to the stack. 
3. The INS bit is set to 1 to prevent recursive interrupt calls. 
4. The instruction pointer is set to the location of the interrupt service routine (contained in the Interrupt Vector 

register). 
5. The CPU begins executing the interrupt service routine. 

 
Once the interrupt service routine completes, it should use the RETI instruction to return to the main program. 
Execution of RETI involves the following sequence of actions: 
 

1. The return address is popped off the stack. 
2. The INS bit is cleared to 0 to re-enable interrupt handling. 
3. The instruction pointer is set to the return address that was popped off the stack. 
4. The CPU continues execution of the main program. 

 
Pending interrupt requests will not interrupt an RETI instruction; a new interrupt will be serviced after first being 
acknowledged in the execution cycle which follows the RETI instruction and then after the standard one stall cycle of 
interrupt latency. This means there will be at least two cycles between back-to-back interrupts. 
 
5.3.1 – Synchronous vs. Asynchronous Interrupt Sources  
Interrupt sources can be classified as either asynchronous or synchronous. All internal interrupts are synchronous 
interrupts. An internal interrupt is directly routed to the interrupt handler that can be recognized in one cycle. All 
external interrupts are asynchronous interrupts by nature. When the device is not in stop mode, asynchronous 
interrupt sources are passed through a 3-clock sampling/glitch filter circuit before being routed to the interrupt 
handler. The sampling/glitch filter circuit is running on the system clock. An interrupt request with a pulse width less 
than three system clock cycles is not recognized. Note that the granularity of interrupt source is at module level. 
Synchronous interrupts and sampled asynchronous interrupts assigned to the same module produce a single 
interrupt to the interrupt handler.  
 
5.3.2 – Interrupt Prioritization by Software 
All interrupt sources of the DS4830A naturally have the same priority. However, when CPU operation vectors to the 
programmed Interrupt Vector address, the order in which potential interrupt sources are interrogated is left entirely 
up to the user, as this often depends upon the system design and application requirements. The Interrupt Mask 
system register provides the ability to knowingly block interrupts from modules considered to be of lesser priority and 
manually re-enable the interrupt servicing by the CPU (by setting INS = 0). Using this procedure, a given interrupt 
service routine can continue executing, only to be interrupted by higher priority interrupts. An example demonstrating 
this software prioritization is provided in the Handling Interrupts section of Section 19: Programming. 
 
5.3.3 – Interrupt Exception Window 
An interrupt exception window is a noninterruptible execution cycle. During this cycle, the interrupt handler does not 
respond to any interrupt requests. All interrupts that would normally be serviced during an interrupt exception window 
are delayed until the next execution cycle.  
 
Interrupt exception windows are used when two or more instructions must be executed consecutively without any 
delays in between. Currently, there is a single condition in the DS4830A that causes an interrupt exception window: 
activation of the prefix (PFX) register.  
 
When the prefix register is activated by writing a value to it, it retains that value only for the next clock cycle. For the 
prefix value to be used properly by the next instruction, the instruction that sets the prefix value and the instruction 
that uses it must always be executed back to back. Therefore, writing to the PFX register causes an interrupt 
exception window on the next cycle. If an interrupt occurs during an interrupt exception window, an additional latency 
of one cycle in the interrupt handling will be caused as the interrupt will not be serviced until the next cycle. 
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SECTION 6 – DIGITAL-TO-ANALOG CONVERTER (DAC) 
The DS4830A contains eight 12-bit digital-to-analog converters (DACs). Each DAC has a voltage output buffer.  
Each DAC can independently select between a 2.5V internal reference and external reference at REFINA pin for 
DAC0 to DAC3 and at REFINB pin for DAC4 to DAC7.  

12-Bit 
Decoder Data Bus

To DAC Switches
R

R

R

R

R

DAC Output

Internal 
Reference

External 
Reference

Ref Selection

4095

1

0

4094

4093

MUX

10b

01b

Output 
Buffer

 
Figure 6-1: DAC Functional Diagram 

 
6.1 – Detailed Description 
The DS4830A DAC architecture consists of a resistor string with switches and decoder followed by a voltage buffer. 
The DS4830A has eight independent DACs, each having the same architecture. As shown in Figure 6-1, each 
DAC’s reference is software selectable. Each DAC is independently configurable using the DAC configuration and 
DAC data registers. The DAC configuration register (DACCFG) provides the facility to enable or disable DACs 
independently and select the reference. Each DAC can be configured for either an internal (2.5V) or an external 
reference.  
 
The DAC Data register programs the DAC for a particular voltage output depending on the value of this register and 
the reference setting.  The DAC outputs are voltage buffered and have the capability to sink or source current.  Each 
DAC output has output impedance which limits the DAC operating range if configured to sink current (refer to the 
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DS4830A IC data sheet). The DAC output voltage is maintained during any type of reset except POR. All DACs, 
REFINA and REFINB pins default to GPIO on reset. 
 
6.1.1 – Reference Selection 
Each DAC can be independently enabled with 2.5V internal reference or external reference. Each DAC has two bits 
in the DAC configuration register (DACCFG) that are used to enable or disable the DAC with either an internal or an 
external reference.  
 
Any DAC can be enabled for using the internal reference by writing 10b at the corresponding location in the 
DACCFG register. The internal reference automatically powers-down when none of the 8 DACs use it as a reference 
source. 
 
The external reference at REFINA (Port2.6) is selected by writing 01b at the corresponding location in the DACCFG 
for DAC0-3. The REFINA automatically becomes GPIO when none of the lower 4 DACs (DAC0 to DAC3) use 
REFINA as its reference. The external reference at REFINB (Port1.4) is selected by writing 01b at the corresponding 
location in the DACCFG register for DAC4-7. The REFINB pin automatically becomes GPIO when none of the upper 
4 DACs (DAC4 to DAC7) use REFINB as its reference. The DAC internal or external references can be measured at 
the ADC. See ADC section for further detail information. 
 
6.2 – DAC Register Descriptions 
The DAC module has total 9 SFR registers. These are DAC Configuration register DACCFG and 8 DAC Data 
registers DACDx (DACD0 to DACD7). The DACCFG configures all DACs and the data register DACDx (DACD0-
DACD7) controls the corresponding DAC output voltage. These SFRs are located in module 4. 
 
6.2.1 – DAC Configuration Register (DACCFG)  
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name DACCFG7[1:0] DACCFG6[1:0] DACCFG5[1:0] DACCFG4[1:0] DACCFG3[1:0] DACCFG2[1:0] DACCFG1[1:0] DACCFG0[1:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
 
BIT NAME DESCRIPTION 
15:8 DACCFG7[1:0] 

DACCFG6[1:0] 
DACCFG5[1:0] 
DACCFG4[1:0] 

DAC Configuration: These bits configure DAC7-4 and select the DAC reference for 
DAC7-4 when the corresponding DAC is enabled.  

DACCFGx[1:0] DACx Control/Reference Select 
00 DACx is Disabled and is in power down mode. 

01 DACx is enabled and REFINB is selected as the external reference. 
To use the external reference, the REFB_CFG bit in the RPCFG 
register must be set to ‘1’. 

10 DACx is enabled and the 2.5V Internal Reference is selected as the 
DAC reference 

11 Reserved. (User should not write this value+) 
PIN 39 is REFINB (Port1.4). 

7:0 DACCFG3[1:0] 
DACCFG2[1:0] 
DACCFG1[1:0] 
DACCFG0[1:0] 

DAC Configuration: These bits configure DAC3-0 and select the DAC reference for 
DAC3-0 when DAC enabled. 

DACCFGx[1:0] DACx Control/Reference Select 
00 DACx is Disabled and is in power down mode. 

01 DACx is enabled and REFINA is selected as the external reference. 
To external reference, the REFA_CFG bit in the RPCFG register 
must be set to ‘1’. 

10 DACx is enabled and the 2.5V Internal Reference is selected as the 
DAC reference  

11 Reserved. (User should not write this value+) 
PIN 31 is REFINA (Port2.6). 
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6.2.2 – DAC Data Registers (DACD0-DACD7) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - DACDx[11:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r rw rw rw rw rw rw rw rw rw rw rw rw 
 
BIT NAME DESCRIPTION 
15:12 - Reserved. The user should write zero to these bits. 
11:0 DACDx*[11:0] DACDx: These bits set the DACx output voltage according to reference selection 

and reference value.  
DACx Output voltage (in Volts) =  (DAC Count / 4095) * Reference Voltage (in Volts) 

* ‘x’ = 0 to 7 
 
6.2.3 –  Reference Pin Configuration Register (RPCFG) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - - - - - - - - - - REFB_CFG REFA_CFG 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r r r r r r r r r r rw rw 
 
BIT NAME DESCRIPTION 
15:2 - Reserved. The user should not write to these bits. 
1 REFB_CFG REFINB Pin Configuration: Setting this bit to ‘1’ configures the DAC external reference pin 

for any DAC4-7 as analog input. PIN 39 is REFINB (Port1.4).  
0 REFA_CFG REFINA Pin Configuration: Setting this bit to ‘1’ configures the DAC external reference pin 

for any DAC0-3 as analog input. PIN 31 is REFINA (Port2.6). 
 
 
6.3 – DAC Code Examples 
6.3.1 – DAC0 Enabled with Internal Reference and Output Voltage Configured for 50% (1.25V) of Internal 
Reference 
 
RPCFG = 0x0000; 
DACCFG = 0x0002;      //Only DAC0 enabled and internal reference is selected 
DACD0 = 0x0800;         //DACD0 is set for 50% 
 
6.3.2 – DAC2 Enabled with External Reference And Output Voltage Configured for 25% of External Reference 
at REFINA Pin 
 
RPCFG = 0x0001; 
DACCFG = 0x0010;    //Only DAC2 enabled and external reference is selected 
DACD2 = 0x0400;       //DACD2 is set for 25% 
 
6.3.3 – DAC6 Enabled with External Reference and Output Voltage Configured for 25% of External Reference 
at REFINB Pin 
 
RPCFG = 0x0002; 
DACCFG = 0x1000;    //Only DAC6 enabled and external reference is selected 
DACD6 = 0x0400;       //DACD6 is set for 25% 
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SECTION 7 – ANALOG-TO-DIGITAL CONVERTER (ADC) 
The DS4830A provides a 13-bit analog-to-digital converter (ADC) with 26-input MUX. As shown in Figure 7-1, the 
MUX selects the ADC input from 16 external channels, DAC external references at REFINA and REFINB, VDD, DAC 
Internal Reference, Internal Die Temperature, Sample and Hold at GP2-GP3 and GP12-GP13 and ADC Internal 
Offset. The ADC external channels can operate in differential voltage mode or in single-ended voltage mode. An 
internal channel is used exclusively to measure the die temperature. The REFINA and REFINB pins can be used as 
analog channel independent to the DAC reference. 
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Figure 7-1: ADC Functional Diagram 
 
7.1 – Detailed Description 
7.1.1 – ADC Controller 
The ADC controller is the digital interface block between CPU and the ADC. It provides all necessary controls to the 
ADC and the CPU interface. The ADC controller provides 25 buffers (0-24) for various configurations and data 
buffers. By default, the ADC conversion result corresponding to each channel is placed in data buffers at the location 
shown in Table 7-1. The user can override the default buffer locations and define alternate locations in the ADC Data 
and Configuration register (ADDATA) during configuration by settling the LOC_OVR bit to ‘1’ in the ADC Control 
register (ADCN). The internal temperature sensor and Sample and Hold (S/H) use fixed data buffer locations and 
these locations should not be used for other channels if these peripherals are enabled. The ADC internal offset does 
not have any data buffer and its measurement is performed with location override enable. Table 7-1 has the default 
configuration and data buffer locations. The ADC controller provides various internal averaging options for individual 
ADC channels, internal die temperature and S/H. See Section 7.1.9 for ADC Averaging. 
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Table 7-1: ADC Configuration and Data Buffers 
DATA BUFFER CONFIGURATION/DATA BUFFER SELECTION 

0-15 External Channels (0-15 in single-ended or 0-7 in differential) 
16 REFINA 
17 REFINB 
18 VDD (Supply Voltage) 
19 DAC Internal Reference 

20-21 Reserved, can be used with Location Override 
22 Internal Die Temperature 
23 Sample and Hold 0 
24 Sample and Hold 1 

0-24 (Any) ADC Internal Offset (with Location Override) 
 
By default, the external channels GP0-15 are general-purpose inputs. The DS4830A has the Pin Select Register 
(PINSEL) which is used to configure these external channels as analog pins for ADC or/and Quick Trip use. Each bit 
location in this register corresponds to the ADC/QT input pin. The ADC controller uses a set of Special Function 
Registers (SFRs) to configure the ADC for the desired mode of operation. The DS4830A ADC can operate in the 
three modes mentioned below.   

1. ADC Sequence Mode Conversions  
2. Temperature Mode Conversions 
3. Sample and Hold Mode Conversions 

 
7.1.2 – ADC Conversion Sequencing 
The DS4830A ADC controller performs a user defined sequence for up to 16 single-ended or 8 differential external 
voltage channels. Additionally, the ADC controller allows the user to measure voltages of the DAC internal and 
external references (REFINA and REFINB) and VDD . The REFINA and REFINB can be used as analog channels 
independent of DAC operation. Thus the DS4830A provides 18 analog channels for application usage. The ADC 
controller provides 24 ADC internal configuration and averaging configuration registers. The configuration registers 
are accessed by writing to the ADDATA register when ADST.ADCFG = 1 and ADST.ADCAVG = 0. The averaging 
configuration registers are accessed by writing to the ADDATA register when ADST.ADCAVG = 1 and 
ADST.ADCFG = 0.  Each conversion in a sequence is setup using one of the ADC configuration and averaging 
configuration registers. The results from the ADC converter are located in the 25 data buffers.  These are accessed 
by reading from the ADDATA register when ADST.ADCFG = 0 and ADST.ADCAVG = 0.  See Figure 7-2 for ADC 
configurations and data buffers. 
 
The configuration register pointed to by ADDATA is selected using the ADIDX bits in the ADST register when 
ADCFG = 1 and ADCAVG = 0.  The individual configuration registers allows each of the conversions in a sequence 
to select from the following options.   

• ADC channel selection 
• Differential or single-ended conversion 
• Full scale range 
• Extended acquisition enable 
• ADC conversion data alignment (left or right) 
• Alternate location 

For more information, see the configuration register description for the ADDATA register. 
 
A sequence is setup in the ADC Address register (ADADDR) by defining the starting conversion configuration 
address (ADSTART) and an ending conversion configuration address (ADEND).  The configuration start address 
designates the configuration register to be used for the first conversion in a sequence. The configuration end 
address designates the configuration register used for the last conversion in a sequence. A single channel 
conversion can be viewed as a special case for sequence conversion, where the starting and ending configuration 
address is the same. The configuration registers can be viewed as a circular register array where ADSTART does 
not have to be less than ADEND. For example, if ADSTART = 1 and ADEND = 5, then the sequence of conversions 
would be configurations 1, 2, 3, 4, 5.  If ADSTART = 5 and ADEND = 1, then the sequence of conversions would be 
configurations 5, 6, 7 . . . 23 , 0, 1. 
The ADC has two conversion sequence modes, single and continuous which are set by the ADCONT bit.  When the 
start conversion bit (ADCONV) is set to ‘1’, the ADC controller starts the ADC conversion sequence.  In single 
sequence mode (ADCONT=0), the ADCONV bit remains set until the ADC has finished the conversion of the last 
channel in the sequence. In continuous mode (ADCONT=1), the ADCONV bit remains set until the continuous mode 
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is stopped.  Writing a ‘0’ to the ADCONV bit stops the ADC operation at the completion of the current ADC 
conversion.  Writing a ‘1’ to the ADCONV bit when ADCONV bit is already set to ‘1’ is ignored by the ADC controller.  
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Figure 7-2: ADC Configurations and Data Buffers 
Note: With location override enabled, a single channel can be added multiple times as demonstrated in Example 
7.3.2. 
 
7.1.3 – Internal Die Temperature Conversion  
The DS4830A allows monitoring of internal die temperature. The internal temperature channel can be independently 
enabled by writing a ‘1’ to the bit 0 in the Temperature Control register (TEMPCN). The internal die temperature has 
a temperature conversion complete flag located in the ADST register. Data buffer 22 is reserved for the result of the 
internal die temperature sensor. The TEMPCN register has separate bits for interrupt enable and data alignment.  
 
A DS4830A temperature conversion provides 0.062 °C of resolution. The time required for a temperature conversion 
is approximately 42µsec at the default ADC Clock.  If temperature conversion is enabled simultaneously with voltage 
conversions, the temperature conversion gets time slots at the end of ADC sequence. See Figure 7-3 ADC Frame 
Sequence for more details.   
 
Note: If only internal temperature conversions are being performed (no voltage or sample/hold conversions are 
enabled), to disable the temperature conversion, a dummy ADC conversion must be performed by setting 
ADCONV=1. 
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7.1.4 – Sample and Hold Conversion 
The DS4830A has two Sample and Hold (S/H) inputs at pins GP2-GP3 and GP12-GP13. These can be 
independently enabled or disabled by writing to their corresponding bit locations in the Sample and Hold Control 
register (SHCN). See the Sample and Hold description in Section 8. The Sample and Hold uses data buffer 23 and 
24 for S/H0 and S/H1 respectively. The Sample and Hold conversion complete flags are located in the ADST 
register. When enabled with voltage conversions, the sample and hold conversions get time slots in between each 
voltage conversion. See Figure 7-3, ADC Frame Sequence for more details.  
 
7.1.5 – ADC Frame Sequence 
When all modes (voltage, temperature, and sample and hold) are used simultaneously, the ADC controller uses time 
slicing. The ADC controller uses the ADC sequence of voltage conversions as “primary channels” and sample and 
hold as secondary channels. The time slicing rules are 

1. The primary channels (ADC voltage channels) have priority over the secondary channels (S/Hs).  
2. S/H0 has priority over S/H1 if both S/Hs are ready for conversion. However, in next slot for S/H, the S/H1 will 

get slot even if S/H0 is also ready. 
3. The internal die temperature gets the conversion slots at the end of ADC sequence. 

 
For example, if the ADC sequence mode conversion is enabled for channel 0, 4, 5, 6, both S/Hs and internal die 
temperature are enabled and ready for conversion then the sequence of conversion is performed as shown in Figure 
7-3. 

CH0 CH4 S/H1 CH5 S/H0 CH6 Int
Temp CH0 S/H1 CH4 ……..……..

Every alternate 
channel is primary 

channel

Both S/H0 & S/H1 
are ready. S/H0 
gets priority over 

S/H1

S/H1 gets 
chance here 
even if S/H0 

is ready.

Sequence 
keeps 

repeating

SH0 or 1 if 
triggered by 
internal or 
SHEN0/1l

S/H0

End of Sequence. 
Internal 

Temperature gets 
chance here.

 
Figure 7-3: ADC Frame Sequence  
Notes: 

1. Both Sample and Hold channels can occur simultaneously as they have dedicated resources. 
2. Averaging is disabled. 

 
7.1.6 – ADC Reference 
The ADC has a 1.2V internal reference that must be enabled before the start of ADC conversion sequence. The 
ADC controller provides INT_REF bit in the REFAVG register to control the ADC internal reference. By setting this bit 
to ‘1’, the internal reference is enabled. The ADC internal reference needs approximate 1ms of stabilization time. The 
ADC conversion should be started only after this stabilization time. 
 
The ADC controller provides an option to bring out the ADC internal reference at GP1 pin (PIN6, Port2.1). By setting 
REF_OUT bit in the REFAVG register and the bit 1 of the PINSEL register, the ADC internal reference is brought out 
at GP1 pin. 
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7.1.7 – ADC Conversion Time 
The ADC clock is derived from the system clock with a divide ratio defined by the ADC Clock Divider Bits ADCCLK 
[2:0] in the ADC Control register (ADCN). Each sample takes 15 ADC clock cycles to complete. Two of the 15 ADC 
clock cycles are used for sample acquisition, and the remaining 13 clocks are used for data conversion. The ADC 
automatically reads each measurement twice and outputs the average of the two readings. This makes the resulting 
time for one complete conversion to be 30 ADC clock cycles. Additionally, 4 core clocks are used in data processing 
for each of the two readings. 
Knowing this, it is possible to calculate the fastest ADC sample rate.  The fastest ADC clock is: 

ADC Clock = Core Clock / 8 = 10 MHz / 8 = 1250 kHz = 0.8 µs 
One conversion requires 30 ADC Clocks + 8 Core Clocks 

 Conversion Time = (30 ADC Clocks Time+ 8 Core Clocks Time) 
  = 30 * 0.8 + 0.8 µs 
  = 24.8 µs per ADC Conversion  

Sample Rate       = 40.3 ksps 
 
The ADC has an internal power management system that automatically shuts down the ADC when conversions are 
complete by clearing ADCONV to 0.  After being shut down, the ADC begins conversions again when the ADCONV 
bit is set to 1 again.  After ADCONV is set to 1, the ADC requires 20 ADCCLK cycles to setup and power up prior to 
beginning the first conversion of the sequence. So the first ADC conversion time is ~40µs at the fastest ADC Clock. 
If the quick trip is also enabled and if the ADC controller and the quick trip are sampling the same channel, the ADC 
sampling is delayed by two quick trip conversions (3.2µs) to prevent collision. 
 
In applications where extending the acquisition time is desired, the user can make use of the ADC Acquisition 
Extension Bits (ADACQ[3:0] in the ADCN register). When the ADC Acquisition Extension is enabled (ADACQEN=1), 
the sample is acquired over a prolonged period during the sample acquisition. The extended acquisition time is 
determined by ADACQ[3:0]. Table 7-2 shows the extended acquisition time in terms of core clocks at different 
ADACQ[3:0] The total acquisition time, ACQ, is two ADC clocks plus the Extended Acquisition Time (ADACQ, as 
listed in Table 7-2).  Figure 7-4 shows the clocking required for one conversion.  
 

Table 7-2: Extended Acquisition Time in Terms of Core Clock and Time (µs) 
 
 
 
 
 
 
 
 
 
 

ADACQ[3:0] # of Core Clocks Time (µs) 
0 2 0.2 
1 6 0.6 
2 14 1.4 
3 30 3.0 
4 62 6.2 
5 126 12.6 
6 254 25.4 
7 520 52 
8 1032 103.2 
9 2056 205.6 

10 4104 410.4 
11 8190 819 
12 16382 1638.2 
13 32766 3276.6 
14 65534 6553.4 
15 131070 13107 
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Figure 7-4: Extended Acquisition Time 
 
7.1.8 – Location Override 
By default, the ADC controller stores ADC conversion results in the ADC buffer location corresponding to the 
channel number (as defined in Table 7.1). The ADC controller allows the user to override the default data buffer 
location and store the ADC result at any of the buffer location (0-24). The location override is enabled by setting the 
LOC_OVR bit to ‘1’ in the ADCN register. The user has to define the alternate location for storing the ADC 
conversion result during ADC configuration (when ADST.ADCFG = 1). The alternate location is defined by 
ADDATA[12:8] (ALT_LOC). Location override is demonstrated in Example 7.3.2, 
 
Note: If the location override will be using the buffer locations designed for internal temperature or sample and hold, 
these corresponding peripherals should be disabled (as mentioned in 7.1.1). Example, if the buffer location 22 is 
used in the ADC sequence with the location override option, the internal die temperature should be disabled.  
 
7.1. 9 – Averaging 
The ADC controller supports various averaging options for each ADC channel, internal die temperature and S/Hs. 
This averaging is performed automatically by the ADC controller which reduces application overheads. The ADC 
controller has ADCAVG bit in the ADST register which is used to configure number of ADC samples to be averaged 
for each channel. When the ADCFG bit is set to 0 and ADCAVG bit is set to ‘1’, writing to ADDATA [1:0] configures 
the number of ADC samples to be averaged. User can write any value between 0-3 to select 1, 4, 8 or 16 ADC 
samples averaged. See Section 7.1.2 for averaging configuration register and 7.3.3 for ADC averaging example 
code.  
 
The ADC controller has the REFAVG register to configure different averaging options for internal die temperature 
and S/H. Each sample of the internal temperature is converted after the ADC sequence. See the REFAVG register 
description for detailed information about averaging options for internal die temperature and sample and hold 
channels.  
 
When averaging configuration is enabled in the ADC sequence for ADC channels, internal die temperature and 
S/Hs, the ADC frame sequence is changed and explained in Figure 7-5. The ADC and S/H samples are converted 
back to back by the ADC controller and averaged values are reported in the data buffers. After every end of 
sequence, the ADC controller converts a sample of internal die temperature. 
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Figure 7-5 shows the ADC frame sequence for the following programmed sequence of ADC channels. 
1. CH0: Average of 4 Samples 
2. CH4: Average of 8 Samples 
3. CH5: Average of 16 Samples 
4. CH6: Average of 1 Sample 
5. S/H0: Average of 2 Samples 
6. S/H1: Average of 4 Samples 
7. Internal Temperaute: Average of 16 Samples 

CH0
(4)

CH4
(8)

S/H1
(4)

CH5
(16)

S/H0
(2)

CH6
(1)

Int
Temp

(1)
CH0
(4) ……..……..

Every alternate 
channel is 

primary channel

Both S/H0 & S/H1 are ready. S/
H0 samples will get converted 
by ADC and average value is 

reported.

S/H1 samples 
will get 

converted by 
ADC.

Sequence 
keeps repeating

SH0 or 1 if 
triggered by 
internal or 
SHEN0/1l

S/H0
(2)

End of Sequence. 
One Sample of 

Internal Temperature 
gets chance here.

CH0 
samples get 
converted 
by ADC

t = 0 t = 144µs t = 216µs t = 504µs t = 648µs t = 1224µs t = 1338µst = 1296µs t = 1332µs t = 1512µs

Note: Conversion time is using the default clock.

 
Figure 7-5: ADC Frame Sequence with Averaging    
 
7.1.10 – ADC Data Reading 
The ADC has a circular data buffer that can hold the results from 25 conversions. When the location override 
(LOC_OVR = 0) is disabled, the ADC controller writes the ADC conversion result at the data buffer location 
corresponding to ADC channel number, see Table 7-1. When location override is enabled, the ADC controller writes 
the result to the data buffer location configured in the ALT_LOC[4:0] bits in the ADDATA during ADC configuration 
(ADST.ADCFG = 1). Using the location override feature, multiple conversions for a single channel can be stored to 
data buffers as explained in example code 7.3.2. This buffer is accessed by reading the ADDATA register when 
ADCFG is set to 0.  The data buffer pointed to by ADST.ADIDX [4:0] is the buffer returned when ADDATA is read.  
The ADIDX is automatically incremented following a read of ADDATA.  This allows repeated reads of ADDATA to 
return the results from multiple conversions. The ADC continues writing to the data buffer until the end of the buffer. 
Once the end of the data buffer is reached, the ADC index rolls over and reading continues from data buffer 0. 
    
7.1.11 – ADC Interrupts 
The ADC Data Available Ready ADDAI bit in the ADST1 register is set when conversions are complete. This flag 
generates an interrupt if enabled by setting the ADCN.ADDAIE interrupt enable bit.  The condition that causes the 
ADDAI flag to be set can be selected using the ADCN.ADDAINV bit.  
 
Table 7-3: ADC Interrupt Intervals 

ADDAINV SET ADDAI AFTER 
0 End of Every Sequence (ADSTART to ADEND) 

1 After End of Every Sequence (ADSTART to ADEND) and After 
(NUM_SMP + 1) ADC Conversions 
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For example, if ADSTART = 0, ADEND = 6 and NUM_SMP = 3 with ADDAINV = 1, then ADDAI is set to ‘1’ after 
every (NUM_SMP + 1) ADC conversions and every End of Sequence. In the given example, ADDAI is set after 
4,7,8,12,14… ADC Samples. Interrupts after 4, 8 and 12 ADC Samples are because of (NUM_SMP+1) 
configurations and interrupts after 7 and 14 are because of “End of Sequence”. Figure 7-6 demonstrates above ADC 
example sequence.  
 
If ADC averaging is used, each of the converstions for an average is counted as a sample for interrupts.  For 
example, if four samples are being averaged for each channel and interrupts are set to trigger every four 
converstions, then an interrupt will occur after each channel completes its four samples. 
 

SAMPLE0 SAMPLE1 SAMPLE2 SAMPLE3 SAMPLE4 SAMPLE5 SAMPLE6 SAMPLE0 ……...

ADDAI Set
After 

(NUM_SMP + 1)
ADC Samples

ADDAI Set 
After END of 
Sequence

4 ADC Samples 4 ADC Samples

ADDAI Set
After 

(NUM_SMP + 1)
ADC Samples

ADC 
SAMPLES

ADDAI 
Flag

Figure 7-6: ADC Interrupt Intervals with NUM_SMP 
 
The ADDAI flag is cleared by software by writing a ‘0’, or it is automatically cleared when a new conversion 
sequence is started by setting the ADCONV bit to a ‘1’. 
 
Note: The ADC controller processes ADC, internal die temperature and sample and holds conversions according to 
ADC frame sequence and sets the corresponding flags in the ADST1 flag. The user should process and clear an 
interrupt flag when it is set before another flag in the ADST1 is set by the ADC controller. 
 
7.1.12 – ADC Internal Offset 
The DS4830A ADC controller allows for ADC internal offset measurement. The ADC controller does not have a 
dedicated buffer for the internal offset so it can only be accessed with location override enabled. For measurement of 
ADC internal offset, the ADC controller connects internal ground to the ADC input and performs an ADC conversion. 
Using this feature, software can calibrate the ADC internal offset.   
 
Refer to Application Note 5321: Calibrating the ADC Internal Offset of the DS4830 Optical Microcontroller. 
 
7.1.13 – DAC External Reference Pins (REFINA and REFINB) as ADC Channels  
The DS4830A provides an option to measure the voltage applied to the DAC external reference pins REFINA and 
REFINB without enabling any DACs. The ADC controller has RPCFG register to configure REFINA and REFINB as 
analog pins. This allows flexibility to use the REFINA and REFINB pins as two additional analog input channels and 
can also be used as DAC external reference.  
 
7.1.14 – Fast Conversion Mode (ADST.ENABLE_2X)   
The DS4830A ADC controller can be used in fast mode to reduce the sample conversion time. The Enable_2x bit in 
ADST register has to be set to 1 to use the ADC in fast mode. In normal operating mode, the ADC reads two input 
samples and outputs the average of the results of both the samples. In Fast conversion mode, the ADC reads only 
one input sample and outputs the result as such. The ADC conversion time is reduced by half when operating in fast 
mode. 
 

http://www.maximintegrated.com/an5321


DS4830A User’s Guide 
  

  56 

7.2 – ADC Register Descriptions 
The ADC is controlled by the ADC SFR registers. The PINSEL register is used to configure pins as analog pins for 
ADC use.  Six of the registers, ADST, ADST1, ADADDR, ADCN, RPCFG, REFAVG and ADDATA are used for 
setup, control, and reading from the ADC.  Registers ADCG1-4 and ADVOFF which are used to adjust the gains and 
offsets applied to ADC results.  To avoid undesired operations, the user should not write to bits labeled as 
“Reserved”. 
7.2.1 – ADC Control Register (ADCN) 
 

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name ADCCLK[2:0] NUM_SMP[4:0] ADDAINV ADCONT ADDAIE LOC_OVR ADACQ[3:0] 
Reset 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* 
* Unrestricted read, but can only be written to when ADCONV = 0 except ADDAIE bit. 
 
BIT NAME DESCRIPTION 
15:13 ADCCLK[2:0] ADC Clock Divider. These bits select the ADC conversion clock in relationship to the 

Core Clock. 
ADCCLK[2:0] ADC Clock 

000 System Clock/8 

001 System Clock/10 

010 System Clock/12 

011 System Clock/14 

100 System Clock/16 

101 System Clock/18 

110 System Clock/20 

111 System Clock/40 
 

12:8 NUM_SMP[4:0] Interrupt After Number of Sample. These bits define the Number of ADC samples 
required for an ADC interrupt when ADDAINV = 1. If ADDAINV is set to ‘1’, then ADC 
Interrupt occurs after (NUM_SMP + 1) ADC samples and End of Sequence.  

7 ADDAINV ADC Data Available Interrupt Interval. This bit selects the condition for setting the 
data available interrupt flag (ADDAI).  
When ADDAINV = 0, ADDAI is set after End of Sequence. 
When ADDAINV = 1, ADDAI is set after End of Sequence and after ADC Samples = 
(NUM_SMP + 1).  

6 ADCONT ADC Continuous Sequence Mode. Setting this bit to ‘1’ enables the continuous 
sequence mode. Clearing this bit to ‘0’ disables the continuous sequence mode. In 
single sequence mode, the ADC conversion is stopped after the end of the sequence. 
The user should set this bit to ‘1’, when temperature and sample and hold are also 
enabled. 

5 ADDAIE ADC Data Available Interrupt Enable. Setting the ADDAIE bit to ‘1’ enables an 
interrupt to be generated when the ADDAI=1. Clearing this bit to ‘0’ disables an 
interrupt from generating when ADDAI=1. This bit is unconditional writable. 

4 LOC_OVR Location override bit. Setting this bit to ‘1’ enables the user to select an alternate 
location for storing ADC conversion results. The alternate location is defined by 
ADDATA[12:8] (ALT_LOC). By default, the ADC conversion results are stored in ADC 
buffer location corresponding to channel number. See Table 7-1. 

3:0 ADACQ[3:0] ADC Acquisition Extension Bits [3:0]. These bits are used to extend sample 
acquisition time if the corresponding ADC Acquisition Extension is enabled 
(ADDATA.ADACQEN =1 when ADST.ADCFG is set to ‘1’). See ADC Conversion Time 
Section for details. The ADC acquisition extension should not be used when the fast 
comparator is used for the same channel.  
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7.2.2 – ADC Status Register (ADST) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - ENALE_2X - - - ADCAVG ADCONV ADCFG ADIDX[4:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r rw r r r rw rw rw rw rw rw rw rw 

 
BIT NAME DESCRIPTION 
15:12 - Reserved. The user should not write to these bits. 
11 ENABLE_2X ADC Fast Conversion Mode. When ADST.ENABLE_2X = 1, the ADC operates in the 

fast mode. If reset to 0, normal conversion mode is used. 
7 ADCAVG ADC Average Configuration Register Select.  

When ADCAVG = 1 and ADCFG = 0, the ADDATA register points to the ADC Channel 
averaging configuration registers which allow configuration of averaging for each ADC 
channel.  See 7.2.6.2 for ADC sample average configurations. 

6 ADCONV ADC Start Conversion. Setting this bit to ‘1’ starts the ADC conversion process. This 
bit remains set until the ADC conversion process is finished. In single sequence mode, 
this bit is cleared to ‘0’ when the ADC conversion sequence is finished. In continuous 
sequence mode, this bit remains set until the ADC conversion is stopped. To stop ADC 
conversion at any time, write ‘0’ to this bit. The ADC stops acquiring data after the 
current conversion is finished or if the ADC is waiting during extended acquisition time, 
the ADC stops immediately.  

5 ADCFG ADC Conversion Configuration Register Select.  
ADCFG = 0: The ADDATA register points to the data buffers.  The ADIDX[4:0] bits 
determine which data buffer is currently being accessed.  When ADCFG=0 and 
ADCAVG = 0, ADDATA is read only. 
ADCFG = 1: The ADDATA register points to the ADC sequence configuration registers.  
The ADIDX[4:0] bits determine which configuration register is currently being accessed.  
When ADCFG=1, ADDATA has read/write access.     

4:0 ADIDX[4:0] ADC Register Index Bits [4:0]. These bits together with ADCFG and ADCAVG select 
the source / destination for ADDATA access. This register value is auto-incremented on 
successive access (read/write) of ADDATA register. When ADCFG=1, ADIDX [4:0] are 
used to address one of 24 configuration registers. When ADCFG=0, ADIDX [4:0] are 
used to select one of 25 data buffers.  
ADCFG=1, ADCAVG=0: ADIDX[4:0] used to address one of 24 configuration registers 
ADCFG=0, ADCAVG=1: ADIDX[4:0] used to address one of 24 average configurations 
ADCFG=0, ADCAVG=0: ADIDX[4:0] used to select one of 25 data buffers. 

 
7.2.3 – PIN Select Register (PINSEL) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name PINSEL[15:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
 
Each bit in this register corresponds to an ADC input pin. When these bits are set the corresponding pins are 
dedicated for ADC use. On POR, the pin selection register is 0000h which corresponds to GP0 to GP15 being GPIO. 
For using these pins as ADC input, Sample and Hold or Quick Trip inputs the corresponding PINSEL bit should be 
set to ‘1’. 
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7.2.4 –  ADC Status Register (ADST1) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - -  - - - - - - SH1DAI SH0DAI - - INTDAI ADDAI 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r r r r r r rw rw r r rw rw 

 
BIT NAME DESCRIPTION 
15:6 - Reserved. The user should not write to these bits. 
5 SH1DAI Sample and Hold 1 Data Available Interrupt Flag. This bit is set to ‘1’ when Sample 

and Hold is completed on GP12-GP13 in dual mode and data is ready at buffer location 
24. This flag causes an interrupt if the SH1DAI_EN (SHCN.5) is set to ‘1’. This bit is 
cleared by software writing a ‘0’. 

4 SH0DAI Sample and Hold 0 Data Available Interrupt Flag. This bit is set to ‘1’ when Sample 
and Hold is completed on GP2-GP3 if only S/H0 is used or after completion of S/H1 
conversion on GP12-GP13 when both are used in single mode. The S/H0 and S/H1 data 
is ready at buffer location 23 and 24 respectively. This flag causes an interrupt if the 
SH0DAI_EN (SHCN.1) is set to ‘1’. This bit is cleared by software writing a ‘0’. 

3:2 - Reserved. The user should not write to these bits. 
1 INTDAI Internal Temperature Data Available Interrupt Flag. This bit is set to ‘1’ when an 

internal temperature conversion is complete and data is ready in buffer location 22. This 
flag causes an interrupt if the INT_IEN (TEMPCN.10) is enabled. This bit is cleared by 
software writing a ‘0’. 

0 ADDAI ADC Data Available Interrupt Flag. This bit is set to ‘1’ when the condition matching 
ADDAINV bit is met. This flag causes an interrupt if the ADDAIE bit is set. This bit is 
cleared by software writing a ‘0’ or when software changes ADCONV bit from '0' to ‘1’. 

 
7.2.5 – ADC Address Register (ADADDR) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - ADSTART[4:0] - - - ADEND[4:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r rw* rw* rw* rw* rw* r r r rw* rw* rw* rw* rw* 
* Unrestricted read, but can only be written to when ADCONV = 0. 
 
BIT NAME DESCRIPTION 
15:13 - Reserved. The user should not write to these bits. 
12:8 ADSTART[4:0] ADC Conversion Configuration Start Address Bits [4:0]. These bits select the first 

conversion configuration register. 

7:5 - Reserved. The user should not write to these bits. 
4:0 ADEND[4:0] ADC Conversion Configuration Ending Address Bits [4:0]. These bits select the 

last conversion configuration register. This register is inclusive when defining the 
sequence. 

 
7.2.6 – ADC Data and Configuration Register (ADDATA) 
The ADDATA register is used to setup the ADC sequence configurations and also to read the results of the ADC 
conversions.  If the ADST.ADCFG bit is set to a 1 and ADST.ADCAVG = 0, writing to ADDATA writes to one of the 
configuration registers. If ADST.ADCFG is set to 0 and ADST.ADCAVG is set to 1, writing to ADDATA writes to one 
of the averaging configuration registers. If ADST.ADCFG and ADST.ADCAVG is set to 0, reading from ADDATA 
reads one of the conversion results. 
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7.2.6.1 – ADC Configuration Register (ADDATA when ADCFG = 1 and ADCAVG = 0) 
When ADCFG = 1 and ADCAVG = 0, writing to the ADDATA register writes to one of the configuration registers.  
The configuration register written to is selected by the ADIDX[4:0] bits. The ADIDX[4:0] bits are automatically 
incremented after a write to ADDATA.  This allows consecutive writes of ADDATA to setup consecutive configuration 
registers. The configuration registers are reset to ‘0’ on all forms of reset.   
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - ADGAIN[1:0] ALT_LOC[4:0] ADACQEN ADALIGN ADDIFF ADCH[4:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Access r rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* 

* When ADCFG = 1, unrestricted read, but can only be written to when ADCONV = 0. 
 
BIT NAME DESCRIPTION 
15 - Reserved. The user should not write to this bit. 
14:13 ADGAIN[1:0] ADC Gain Select. This bit selects the ADC scale factor. 

ADGAIN[1:0] ADC SCALE Full Scale (typ) 
00 ADCG1 1.2V 
01 ADCG2 0.6V 
10 ADCG3 2.4V 
11 ADCG4 6.55* 

* When the ADCG4 select, the ADC input should not be above 3.6V. It is limited by VDD 
operating range. 

12:8 ALT_LOC[4:0] Alternate location for conversion result. These bits specify the alternate location for 
storing the ADC conversion result when LOC_OVR bit in the ADCN register is set to ‘1’. 

7 ADACQEN ADC Acquisition Extension Enable. Setting this bit to ‘1’ enables additional acquisition 
time to be inserted prior to this conversion. Clearing this bit to ‘0’ disables the extended 
acquisition time. 

6 ADALIGN ADC Data Alignment Select. This bit selects the ADC data alignment mode. Setting this 
bit to ‘1’ returns ADC data left aligned in ADDATA [15:2] with ADDATA[1:0] zero padded. 
Clearing this bit to ‘0’ returns ADC data in right aligned format in ADDATA[13:0] with 
ADDATA[15:14] sign-extended by ADDATA[13].  

5 ADDIFF ADC Differential Mode Select. This bit selects the ADC conversion mode. When this bit 
is set to ‘1’, the ADC conversion is in differential mode. When this bit is cleared to ‘0’, the 
ADC conversion is performed in single-ended mode. In single-ended mode, the sample is 
measured between the ADC Channel and ground.  

4:0 ADCH[4:0] ADC Channel Select. These bits select the input channel source for configuration of ADC 
conversion. 

ADCH [4:0] ADDIFF = 0 ADDIFF=1 
00000 ADC-S0 ADC-D0P- ADC-D0N 
00001 ADC-S1 ADC-D1P- ADC-D1N 
00010 ADC-S2 ADC-D2P- ADC-D2N 
00011 ADC-S3 ADC-D3P- ADC-D3N 
00100 ADC-S4 ADC-D4P- ADC-D4N 
00101 ADC-S5 ADC-D5P- ADC-D5N 
00110 ADC-S6 ADC-D6P- ADC-D6N 
00111 ADC-S7 ADC-D7P- ADC-D7N 
01000 ADC-S8 NOT VALID 
01001 ADC-S9 NOT VALID 
01010 ADC-S10 NOT VALID 
01011 ADC-S11 NOT VALID 
01100 ADC-S12 NOT VALID 
01101 ADC-S13 NOT VALID 
01110 ADC-S14 NOT VALID 
01111 ADC-S15 NOT VALID 
10000 ADC-REFINA ADC-REFINA 
10001 ADC-REFINB ADC-REFINB 
10010 VDD VDD 
10011 DAC_INT_REF DAC_INT_REF 

10100- 11000 NOT VALID NOT VALID 
11001 ADC OFFSET ADC OFFSET 
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7.2.6.2 – ADC Average Register (ADDATA when ADCAVG = 1 and ADCFG = 0) 
When ADCAVG = 1 and ADCFG = 0, writing to the ADDATA register writes to one of the averaging configuration 
registers.  The averaging configuration register written to is selected by the ADIDX[1:0] bits. The ADIDX[1:0] bits are 
automatically incremented after a write to ADDATA.  This allows consecutive writes of ADDATA to setup consecutive 
average registers. The average registers are reset to ‘0’ on all forms of reset.   
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - - - - - - - - - - AVG[1:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r r r r r r r r r r rw* rw* 
* When ADCAFG = 1, unrestricted read, but can only be written to when ADCONV = 0. 
 
BIT NAME DESCRIPTION 
15:2 - Reserved. The user should not write to these bits. 
1:0 AVG[1:0] ADC Average Select: These bits select number of ADC samples to be averaged by the 

ADC controller. 
AVG[1:0] Samples Average 

00 1 
01 4 
10 8 
11 16 

 

 
7.2.6.3 – ADC Data Buffer (ADDATA when ADCFG = 0 and ADCAVG = 0) 
When ADCFG = 0 and ADCAVG = 0, reading from the ADDATA register reads the ADC results stored in one of the 
25 data buffers. The ADIDX[4:0] bits point to the data buffer to be read. Reading ADDATA register returns the 14-bits 
(13 bits plus a sign bit) of ADC conversion data from the selected data buffer memory. The ADIDX[4:0] bits are 
automatically incremented after a read of ADDATA. This allows multiple reads of ADDATA to access consecutive 
data buffer locations without needing to change the ADIDX[4:0] bits. The data buffers are reset to 0 on all forms of 
reset and are not writable by the user.   
 
The data that is read from the ADC Buffer may be from either a temperature or voltage conversion. Also, the data 
may be right or left aligned.  Table 7-4 shows the returned bit weighting for each type of conversion. 
 
Table 7-4: Voltage Data (ADC and Sample and Hold) and Temperature Bit Weighting with Alignment Option 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Temperature Right Aligned S S S 28 27 26 25 24 23 22 21 20 2-1 2-2 2-3 2-4 
Temperature Left Aligned S 28 27 26 25 24 23 22 21 20 2-1 2-2 2-3 2-4 0 0 
Voltage Right Aligned S S S 212 211 210 29 28 27 26 25 24 23 22 21 20 
Voltage Left Aligned S 212 211 210 29 28 27 26 25 24 23 22 21 20 0 0 
 
The ADC controller produces temperature, sample and hold and ADC data reading in the 2’s complement format. 
 
7.2.7 – Reference Pin Configuration Register (RPCFG) 
See Section 6.2.3 –  Reference Pin Configuration Register (RPCFG) for detailed information about RPCFG SFR. 
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7.2.8 –  Temperature Control Register (TEMPCN) 
The Temperature Control register TEMPCN configures and enables internal die temperature. The Internal 
Temperature has a dedicated data buffer at address 22. The DS4830A ADC controller forces current into the internal 
diode and integrates voltage across diode. After integration the voltage is measured at ADC and the voltage is 
converted into temperature.  
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - INT_IEN - - - - - INT_ALIGN - - - INT_TEMP 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r rw r r r r r rw r r r rw 
 
BIT NAME DESCRIPTION 
15:11 - Reserved. The user should not write to these bits. 
10 INT_IEN Internal Temperature Interrupt Enable: Setting this bit to ‘1’ enables an interrupt 

generation on completion of an internal temperature conversion. 
9:5 - Reserved. The user should not write to these bits. 
4 INT_ALIGN Internal Temperature Data Align. Setting this bit to ‘1’ configures internal temperature 

conversion data in left aligned mode. Setting this bit to ‘0’ configures internal temperature 
conversion data in right aligned mode. 

3:1 - Reserved. The user should not write to these bits. 
0 INT_TEMP Internal Temperature Enable. Setting this bit to ‘1’ initiates internal temperature 

conversion. The internal temperature typical conversion time is 42µs for default ADC clock. 
After internal temperature conversion, result is available in data buffer 22. 

 
7.2.9 –  Average and  Reference Control Register (REFAVG) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - - REFOUT INTAVG - - INTAVG[1:0] SH1AVG[1:0] SH0AVG[1:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r r rw rw r r rw rw rw rw rw rw 
 
BIT NAME DESCRIPTION 
15:10 - Reserved. The user should not write to these bits. 
9 REFOUT Internal Reference Control: Setting this bit to ‘1’ outputs the ADC internal reference at 

GP1 (Pin no 6, Port2.1). 
8 INTREF Internal Reference Control: Setting this bit to ‘1’ enables the ADC internal reference and 

setting this bit to ‘0’ disables the ADC internal reference.  
7:6 - Reserved. The user should not write to these bits. 
5:4 INTAVG Internal Die Temperature Sample Average Control Register: These bits configure the 

number of Internal Die Temperature samples to be averaged. 
Internal Die Temperature Number of Samples for Averaging 

00b 1 
01b 8 
10b 16 
11b 32 

 

3:2 SH1AVG[1:0] SH1 Sample Average Control Register: These bits configure the number of SH1 samples 
to be averaged. 

SH1AVG Number of Samples for Averaging 
00b 1 
01b 2 
10b 4 
11b 8 

 

1:0 SH0AVG[1:0] SH0 Sample Average Control Register: These bits configure the number of SH0 samples 
to be averaged. 

SH0AVG Number of Samples for Averaging 
00b 1 
01b 2 
10b 4 
11b 8 
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7.2.10 – ADC Voltage Offset Register (ADVOFF) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name S S S 212 211 210 29 28 27 26 25 24 23 22 21 20 
Reset s s s s s s s s s s s s s s s s 
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
s = special, initial value is dependent on trim settings  
 
This register contains the ADC voltage offset for the voltage mode.  This is calibrated for ADCG1 at the factory to 
cancel out any offset that may be present in the ADC.  The user can add or subtract any offset that they desire by 
altering this register.  This offset is applied to the raw data from the ADC prior to the value being stored into the data 
buffer.  The value stored in the data buffer will be raw_adc + ADVOFF, where raw_adc is the converted voltage 
without any offset compensation. 
 
7.2.11 – ADC Voltage Scale Trim Registers (ADCG1, ADCG2, ADCG3 and ADCG4) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name ADCG[15:0] 
Reset s s s s s s s s s s s s s s s s 
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
s = special, initial value is dependent on trim settings  
 
These registers are used to adjust the ADC full scale by changing the gain applied to the ADC reference (internal).  
These registers are set at the factory to work with the internal reference.  The internal reference voltage is set to 
1.2V and cannot be changed by the user.   
 
These gain registers are provided so the ADC full scale can be adjusted to meet the needs of the targeted 
application.  Only bits ADCG[15:2] are used to adjust the full scale level.  Some approximate settings are: 

• ADCGx = 32A8h: The full scale is ~1X the reference level 
• ADCGx = 1960h: The full scale is ~2X the reference level 
• ADCGx = 0B90h: The full scale is ~4X the reference level 
• ADCGx = 0328h: The full scale is ~6X the reference level 

 
It is not recommended that a gain other than 1X, 2X, 4X or 6X be used.  This is because the weightings of the 
ADCGx [15:0] bits are non-linear.  An application specific program needs to be developed that tests the ADC full 
scale for each possible code setting until the proper full scale is achieved. It is recommended that the user should 
not change ADCG1. The ADC controller uses ADCG1 (not user selectable) for Sample and Hold. 
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7.3 – ADC Code Examples 
7.3.1 – One Sequence of 4 Voltage Conversions for Ch0 (Diff), Ch1 (Diff), Ch14 (Single), and Ch15 (Single) 
 
PINSEL = 0xC00F;                  //Configure Pin as ADC Ch0 (Diff), Ch1 (Diff), Ch14 (Single) and Ch15(Single) 
 
REFAVG_bit.INTREF = 1; //Enable ADC internal reference 
 
 for(iCounter = 0; iCounter < 1000; iCounter++); //Wait ~1ms to settle ADC internal reference 
     
ADCN_bit.ADCONT = 0; //run a single conversion sequence 
     
ADST_bit.ADCFG = 1;        //set ADDATA for configuration (ADCFG) 
ADST_bit.ADIDX = 0;        //ADIDX = 0, set to ADCFG [0] 
     
ADDATA = 0x0020;  //ADCFG [0]: Differential voltage, CH0,      1.2V FS, Right Aligned  
ADDATA = 0x2021;  //ADCFG [1]: Differential voltage, CH1,       0.6V FS, Right Aligned  
ADDATA = 0x400E;  //ADCFG [2]: Single voltage,         CH14,    2.4V FS, Right Aligned  
ADDATA = 0x600F;  //ADCFG [3]: Single voltage,         CH15,    6.55V FS, Right Aligned  
     
ADST_bit.ADCFG = 0; //set ADDATA to data buffer 
     
ADADDR_bit.ADSTART = 0; //start sequence with ADCFG [0] 
ADADDR_bit.ADEND = 3;      //end sequence with ADCFG [3] 
     
 ADST_bit.ADCONV = 1; //start the conversions  
 
while (!ADST_bit.ADDAI); //wait for conversions to complete 
 
ADST_bit.ADDAI = 0;              //Clear ADDAI flag 
         
ADST_bit.ADIDX = 0; //set ADDATA to data buffer [0] 
         
ch0_volt = ADDATA;  //read and store ch0 voltage to variable 
ch1_volt = ADDATA;  //read and store ch1 voltage to variable 
         
ADST_bit.ADIDX = 14; //set ADDATA to data buffer [14] (according to channel number) 
         
ch14_volt = ADDATA;  //read and store ch14 voltage to variable 
ch15_volt = ADDATA;  //read and store ch15 voltage to variable      
 
7.3.2 – Continuous Conversion of 16 Samples of Ch0 with Location Override 
 
PINSEL = 0x0003;                   //Configure Pins as ADC Ch0 (Diff) 
 
REFAVG_bit.INTREF = 1; //Enable ADC internal reference 
 
 for(iCounter = 0; iCounter < 1000; iCounter++); //Wait ~1ms to settle ADC internal reference 
 
ADCN_bit.ADCONT = 1; //run a continuous conversion sequence 
ADCN_bit.LOC_OVR = 1; //location override enable 
 
ADST_bit.ADCFG = 1;        //set ADDATA as configuration (ADCFG) 
ADST_bit.ADIDX = 0;        //ADIDX = 0, set to ADCFG [0] 
   
ADDATA = 0x0020;  //ADCFG [0]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 0  
ADDATA = 0x0120;  //ADCFG [1]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 1  
ADDATA = 0x0220;  //ADCFG [2]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 2  
ADDATA = 0x0320;  //ADCFG [3]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 3  
 
ADDATA = 0x0420;  //ADCFG [4]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 4  
ADDATA = 0x0520;  //ADCFG [5]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 5  
ADDATA = 0x0620;  //ADCFG [6]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 6  
ADDATA = 0x0720;  //ADCFG [7]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 7  
 
ADDATA = 0x0820;  //ADCFG [8]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 8  
ADDATA = 0x0920;  //ADCFG [9]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 9  
ADDATA = 0x0A20;  //ADCFG [10]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 10  
ADDATA = 0x0B20;  //ADCFG [11]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 11  
 
ADDATA = 0x0C20;  //ADCFG [12]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 12  
ADDATA = 0x0D20;  //ADCFG [13]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 13  
ADDATA = 0x0E20;  //ADCFG [14]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 14 
ADDATA = 0x0F20;  //ADCFG [15]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 15  
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ADST_bit.ADCFG = 0; //set ADDATA to data buffer 
 
ADADDR_bit.ADSTART = 0; //start sequence with ADCFG [0] 
ADADDR_bit.ADEND = 15;     //end sequence with ADCFG [15] 
 
ADST_bit.ADCONV = 1; //start the conversions  
 
while (1) 
{ 
    while (!ADST_bit.ADDAI); //wait for conversions to complete 
 
    ADST_bit.ADDAI = 0;  
     
    ADST_bit.ADIDX = 0; //set ADDATA to data buffer [0] 
 
    for (iCount = 0; iCount < 16; iCount++) 
         ch0 [iCount]= ADDATA;  //read and store ch0 voltage to variable              
 }   
 
7.3.3 – Continuous Conversion of 16 Samples of Ch0 Using ADC Averaging  
 
PINSEL = 0x0003;                     //Configure Pins as ADC Ch0 (Diff) 
 
REFAVG_bit.INTREF = 1;           //Enable ADC internal reference 
 
for(iCounter = 0; iCounter < 1000; iCounter++); //Wait ~1ms to settle ADC internal reference 
 
ADCN_bit.ADCONT = 1;           //run a continuous conversion sequence 
 
ADST_bit.ADCFG = 1;              //set ADDATA as configuration (ADCFG) 
ADST_bit.ADIDX = 0;                //ADIDX = 0, set to ADCFG [0] 
 
ADDATA = 0x0020;          //ADCFG [0]: Differential voltage, CH0, 1.2 V FS, Right Aligned 
 
ADST_bit.ADCFG = 0;              //set ADDATA to data buffer 
 
ADST_bit.ADCAVG = 1;            //set ADDATA to data buffer 
ADDATA = 0x0003;                   // Average of 16 samples of Ch0 
ADST_bit.ADCAVG = 0; 
 
ADADDR_bit.ADSTART = 0;    //start sequence with ADCFG[0] 
ADADDR_bit.ADEND = 0;        //end sequence with ADCFG[0] 
 
ADST_bit.ADCONV = 1;            //start the conversions 
 
while (1) 
{ 
        while (!ADST1_bit.ADDAI);    //wait for conversions to complete 
 
        ADST_bit.ADIDX = 0;           //set ADDATA to data buffer [0] 
 
        ch0 = ADDATA;                  //read and store ch0 voltage to variable 
 
        ADST1_bit.ADDAI = 0;   //clear ADDAI flag 
} 
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SECTION 8 – SAMPLE AND HOLD 
The DS4830A has two independent, but identical, Sample and Hold differential channels.  Sample and Hold 0 (S/H0) 
is on GP2-GP3 and Sample and Hold 1 (S/H1) is on GP12-GP13. The sample and hold function can be configured 
for internal or external triggering. Each sample and hold has a dedicated pin for external trigger.   
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Figure 8-1: Sample and Hold Functional Block Diagram 
 
8.1 – Detailed Description 
As shown in Figure 8-1, each Sample and Hold consists of fully differential sampling capacitors (Cs), control logic 
and a differential output buffer. The sample and hold also contains a charge injection nulling circuit. Additionally, it 
has a discharge circuit to discharge parasitic capacitance on the input node and the sample capacitor before it starts 
sampling. The input voltage is sampled using 5pF capacitor on the positive input and another 5pF capacitor on the 
negative input. The negative input pin is used to reduce ground offset and noise. The capacitors are connected to 
the input pins when sample trigger signal SHEN (either internal or external) is high. During high period of sample 
pulse, the sample and hold performs sampling which ends at negative edge of the sample pulse SHEN. In addition to 
the sampling capacitors, the input pins also have parasitic capacitance. When the sample and hold is configured for 
internal triggering, the sample pulse is internally generated by the sample and hold hardware. 
 
8.1.1 – Operation 
When the SHEN signal goes high, the sample-and-hold capacitors are connected to the sample-and-hold input pins 
(GPx) for sampling of the input signal. The minimum sample time should be 300ns for proper sampling. When the 
SHEN signal goes low, the sampling is stopped and voltage stored at sampling capacitors are converted by the ADC 
controller. See Figure 8-2 for Sample and Hold Timings. Each Sample and Hold can be independently enabled by 
setting their respective enable bit in the Sample and Hold Control Register (SHCN). The sample and hold has two 
modes of operation “Single Mode” and “Dual Mode”.   
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For proper first sample capturing on power up, the sample and hold should be initialized as explained below. 
1. Enable sample and hold for internal sample 
2. Apply internal pulse for few µs 
3. Wait for conversion to complete, clear the flags and discard the result. 
4. Configure S/H according to application requirement without disabling the S/H. 

Sample Time 
(min 300nSec)

Conversion Time 
Depends upon ADC 

Sequencing

Sample and Hold Sample and Conversion Timings

Sample Pulse
Internal or External

Min 125uSec in Fast Mode or 250uSec in Normal Mode

Pin Discharge, if 
Enabled

SH Sample & 
Conversion Timings

 
Figure 8-2: Sample and Hold Conversion Timings without Averaging 
 
8.1.1.1 – Single Mode Operation 
During the single mode operation, the SHEN signal (either internal trigger or external trigger at SHEN0) acts as a 
sample pulse for both sample and hold 0 and 1. The SH0DAI bit in the ADST register is set to ‘1’, after conversion of 
both sample and holds by the ADC and an interrupt is generated if enabled. The results are available at data buffer 
locations 23 and 24 respectively for both sample and holds after the ADC conversion is complete.   
 
In the single mode operation the SH0DAI bit is set to ‘1’  

a. At the completion of both sample and hold channels ADC conversion, if both sample and holds are enabled. 
b. At the completion of only enabled sample and hold channel if any one sample and hold enabled. 

 
The sample and hold interrupt for both sample and hold circuits can be enabled by the setting the SHDAI0_EN bit in 
the SHCN register. In single mode operation, the SENR[1:0] register bits control the SHEN source for both of the 
sample and holds. 
 
8.1.1.2 – Dual Mode Operation 
Dual mode operation is selected when SH_DUAL bit in the SHCN register is set to ‘1’. In this mode of operation, both 
the sample and hold circuits work independently.  Each sample and hold can have separate internal or external 
triggers. The SHEN0 and SHEN1 provide sample pulses to Sample and Hold 0 and Sample and Hold 1 respectively 
for external trigger. The Sample and Hold Internal Trigger Enable Register (SENR) has bits to enable the internal 
trigger for both sample and hold circuits individually. In the dual mode operation each sample and hold generates its 
own Sample and Hold Data Available Interrupt Flag (SH0DAI and SH1DAI) in the ADST register. Each of these flags 
can generate an interrupt if enabled.  The results are available in ADC data buffer (ADDATA, see the ADC SFR 
description for detail) 23 and 24, respectively.  
 
8.1.2 – Fast Mode Operation 
The DS4830A Sample and Hold provides a special “Fast Mode” feature which gives priority to a sample and hold 
conversion over an ADC voltage conversion. The “Fast Mode” is enabled by setting the FAST_MODE bit to ‘1’ in the 
SHCN register. This mode is useful when only Sample and Hold 0 is used. In fast mode operation the Sample and 
Hold 0 is guaranteed to get a conversion slot in the ADC conversion sequence every 125µs (If averaging is not 
enabled). In this mode, the user is allowed to issue SHEN pulses (either internal of external pulse) at every 125µs 
interval. This bit should be used with care, as it creates priority for the Sample and Hold0 over other sequence mode 
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channels and hence their ADC conversion will be delayed. When the FAST_MODE bit is set to ‘0’, the user can 
issue SHEN pulse every 250µs time interval. 
 
Note: When averaging is used for ADC channels or S/H’s, the S/H conversion time slot changes as shown in Figure 
7-5 and cannot be guaranteed to get conversion slot in 125µs or 250µs. The S/H conversion time depends upon 
number of ADC samples to be averaged. 
 
8.1.3 – Sampling Control 
The sample and hold circuitry provides the option to select the internal peripheral clock or the external clock. When 
the clock select bit CLK_SEL (located in the SHCN register) is set to ‘0’, the peripheral clock is used for the sample 
and hold circuit. When the clock select bit CLK_SEL is set to ‘1’, the external clock (CLKIN on the DACPW2 pin) is 
used for the sample and hold circuit.   
 

Sample 
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External 
Trigger

Internal
Trigger

0

1

Mux

INTTRIG_EN

0

Non-
Zero

Mux

SSC

SHEN OUT { SHEN OUT when  SSC=0

Sampling Pulse depends 
upon SSC Value

 
Figure 8-3: Sample Pulse 
 
The end of the sample and hold sample time is controlled by the Sampling Stop Control bits SSC[3:0] in the SHCN 
register.  These bits are used along with the CLK_SEL bit to determine the length of the sample pulse. When the 
SSC[3:0] bits have non-zero values and the CLK_SEL bit is set to ‘1’, the stop sampling depends upon the number 
of external clock cycles. When the SSC[3:0] bits have non-zero values and the CLK_SEL bit is ‘0’, the stop sampling 
depends upon the time from the rising edge of SHEN0/1 (See Figure 8-3 for Sample Pulse). See SSC[3:0] bit 
description for stop sampling timings. 

 

Falling edge (Sample stop) depends 
upon SSC[3:0]

SHEN0/1 
or

INT_REIG0/1

Sample 
Pulse

Sample Pulse Width with peripheral clock

300ns
min

SSC[3:0] = 0

 
Figure 8-4: Sample Pulse Width with the Peripheral Clock  
 
As shown in Figure 8-4, the sample pulse width time depends upon the SSC bits value when the peripheral clock is 
selected (CLK_SEL = 0). 
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Figure 8-5: Sample Pulse Width with the External Clock  
 
As shown in Figure 8-5, the sample pulse width time depends upon the SSC bits value when the external clock is 
selected (CLK_SEL = 1). 
 
8.1.4 – Pin Capacitance Discharge 
Before the sample and hold circuitry start sampling, the DS4830A has an option to discharge pin capacitance. The 
SHCN register has PIN_DIS0 and PIN_DIS1 bits to enable the pin discharge function before sampling begins.  This 
is an optional feature, which generates a discharge pulse that discharges the pin or PCB capacitance for the sample 
and hold channels. The discharge pulse is active after the corresponding sample and hold channel’s conversion is 
complete and goes inactive on the rising edge of SHEN0 or SHEN1 pulse. See pin discharge timing is shown in 
Figure 8-6.  
 

Sample Time 
(min 300nSec)

Conversion Time

Pin discharge function

Pin Discharge 
Pulse

Min 125uSec in Fast Mode or 250uSec in Normal Mode

Pin Discharge

SHEN0/1
or 

INT_TRIG0/1
Pulse

 
Figure 8-6: Pin Discharge Operation 
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8.1.5 – Sample and Hold Data Reading 
Each sample and hold has defined data buffer locations where the ADC controller writes sample and hold results 
after the ADC conversion. The data buffer location 23 and 24 are reserved for Sample and Hold 0 and 1 respectively. 
The ADC controller uses ADCG1 (1.2V full scale) for ADC conversion of the sampled signal of both sample and 
holds. 
 
8.1.6 – Sample and Hold Interrupts 
The DS4830A sample and hold has two interrupt flags SH0DAI and SH1DAI in the ADST register. The SH1DAI bit is 
used only when both Sample and Hold are enabled in the dual mode operation. In single mode operation, SH0ADI is 
set only when:  

1. Both sample and holds are enabled, then after the ADC conversion of both samples.  
2. If only one sample and hold is enabled, then after the ADC conversion of the enabled sample and hold.  
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8.2 – Sample and Hold Register Descriptions 
The sample and hold has two SFRs. These are Sample and Hold Control Register (SHCN) and Sample and Hold 
Internal Trigger Enable register (SENR).  The SHCN register controls both sample and holds.  The SENR controls 
the internal sample pulse for both sample and holds. The sample and hold SFRs are located in module 4. 
 
8.2.1 –  Sample and Hold Control Register (SHCN) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name SSC[3:0] FAST_MODE PIN_DIS1 PIN_DIS0 SH_DUAL - SH1_ALIGN SHDAI1_EN SMP_HLD1 CLK_SEL SH0_ALIGN SHDAI0_EN SMP_HLD0 

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Access rw rw rw rw rw rw rw rw r rw rw rw rw rw rw rw 

 
BIT NAME DESCRIPTION 
15:12 SSC[3:0] 

 
 
 
 
 

 

STOP Sample Control. These bits control the end of the sample and hold sampling 
relative to the SHEN0 and SHEN1 pulse.  

CLK_SEL = 0 
SSC[3:0] STOP Sampling 

0000 Falling Edge of SHEN0/SHEN1 
0001 Reserved 
0010 Reserved 
0011 Reserved 
0100 300ns after rising edge of SHEN0/SHEN1 
0101 350ns after rising edge of SHEN0/SHEN1 
0110 450ns after rising edge of SHEN0/SHEN1 
0111 550ns after rising edge of SHEN0/SHEN1 
1000 750ns after rising edge of SHEN0/SHEN1 
1001 1us after rising edge of SHEN0/SHEN1 
1010 1.5us after rising edge of SHEN0/SHEN1 
1011 1.75us after rising edge of SHEN0/SHEN1 
1100 2us after rising edge of SHEN0/SHEN1 
1101 2.5us after rising edge of SHEN0/SHEN1 
1110 4us after rising edge of SHEN0/SHEN1 
1111 5us after rising edge of SHEN0/SHEN1 

 
CLK_SEL = 1 

SSC[3:0] STOP Sampling 
0000 Falling Edge of SHEN0/SHEN1 
0001 21 ext-clock after rising edge of SHEN0/SHEN1 
0010 22 ext-clock after rising edge of SHEN0/SHEN1 
0011 23 ext-clock after rising edge of SHEN0/SHEN1 
0100 24 ext-clock after rising edge of SHEN0/SHEN1 
0101 25 ext-clock after rising edge of SHEN0/SHEN1 
0110 26 ext-clock after rising edge of SHEN0/SHEN1 
0111 27 ext-clock after rising edge of SHEN0/SHEN1 
1000 28 ext-clock after rising edge of SHEN0/SHEN1 
1001 29 ext-clock after rising edge of SHEN0/SHEN1 
1010 30 ext-clock after rising edge of SHEN0/SHEN1 
1011 31 ext-clock after rising edge of SHEN0/SHEN1 
1100 32 ext-clock after rising edge of SHEN0/SHEN1 
1101 33 ext-clock after rising edge of SHEN0/SHEN1 
1110 34 ext-clock after rising edge of SHEN0/SHEN1 
1111 35 ext-clock after rising edge of SHEN0/SHEN1 

Note: A minimum sample time of 300nSec must be used when external clock is 
used to guarantee accurate results. 

11 FAST_MODE Fast Mode Enable. Setting this bit to ‘1’ enables the fast operation for Sample and Hold 
0. In this mode, Sample and Hold 0 is guaranteed to get a conversion slot in the ADC 
conversion sequence every 125µs and the user can issue sample pulses at an interval 
of 125µs. During fast mode, the sample and hold conversion priority is increased over 
voltage channels in the sequence and the voltage conversions will be delayed. When 
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this bit is ‘0’, Sample and Hold 0 acts in the normal mode in which Sample and Hold 0 
gets a conversion slot in the ADC sequence every 250µs.  

10 PIN_DIS1 Pin Discharge Enable 1. Setting this bit to ‘1’ enables the pin discharge function for 
Sample and Hold 1. The discharge function discharges pin capacitances (GP12-GP13) 
after the Sample and Hold 1 ADC conversion.  

9 PIN_DIS0 Pin Discharge Enable 0. Setting this bit to ‘1’ enables pin discharge function at Sample 
and Hold 0. The discharge function discharges pin capacitances (GP2-GP3) after the 
Sample and Hold 0 ADC conversion.  

8 SH_DUAL Sample and Hold Dual Mode. Setting this bit to ‘1’ configures in “Dual Mode” Sample 
and Hold operation. In dual mode, both sample and holds act independently and use 
different sample trigger input signals. SHEN0 (pin 23) acts as the sample trigger input 
signal for Sample and Hold 0.  SHEN1 (pin 21) acts as the sample trigger input signal 
for Sample and Hold 1.  In single mode operation both sample and hold circuits are 
triggered by the SHEN0 signal. 

7 - Reserved. The user should write 0 to this bit. 
6 SH1_ALGN Sample and Hold 1 Data Alignment Select. This bit selects the Sample and Hold 1 

data alignment mode. Setting this bit to ‘1’ returns data left aligned in ADDATA[15:2] 
with ADDATA[1:0] zero padded. Clearing this bit to ‘0’ returns data in right aligned 
format in ADDATA[13:0] with ADDATA[15:14] sign-extended by ADDATA[13]. 

5 SHDAI1_EN Sample and Hold 1 Interrupt Enable. Setting this bit to ‘1’ enables interrupt generation 
on the completion of Sample and Hold 1 ADC conversion in the dual mode.  

4 SMP_HLD1 Sample and Hold 1 Enable. Setting this bit to ‘1’ enables Sample and Hold 1 operation 
on GP12-GP13 input pins. The conversion results are available in ADC data buffer 
location 24.  

3 CLK_SEL Clock Select for Sample and Holds Trigger delayed rising edge control. This bit 
selects the clock used to stop sampling when operating in SSC mode. During this mode 
SSC[3:0] bits controls the delay from the start to stop of sampling..  
When this bit is set to ‘0’, the peripheral clock is used for generating the SHEN pulse. 
When this bit is set to ‘1’, the External Clock (CLKIN pin) is used for generating the 
SHEN pulse.  
See the SSC[3:0] bit description to see the effect of CLK_SEL on the SHEN0/SHEN1 
pulse generation. 

2 SH0_ALGN Sample and Hold 0 Data Alignment Select. This bit selects the Sample and Hold 0 
data alignment mode. Setting this bit to ‘1’ returns data left aligned in ADDATA[15:2] 
with ADDATA[1:0] zero padded. Clearing this bit to ‘0’ returns data in right aligned 
format in ADDATA[13:0] with ADDATA[15:14] sign-extended by ADDATA[13]. 

1 SHDAI0_EN Sample and Hold 0 Interrupt Enable. Setting this bit to ‘1’ enables interrupt generation 
on the completion of Sample and Hold 0 ADC conversion when operating in dual mode 
operation.  In the single mode operation, this bit is set at the completion of both sample 
and hold conversions.  

0 SMP_HLD0 Sample and Hold 0 Enable. Setting this bit to ‘1’ enables Sample and Hold 0 operation 
on GP2-GP3 input pins. The conversion results are available in ADC data buffer 
location 23.  
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8.2.2 –  Sample and Hold Internal Trigger Enable Register (SENR)  
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name  INT_TRIG_EN1 INT_TRIG1 - - INT_TRIG_EN0 INT_TRIG0 

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Access r r r r r r r r r r rw rw r r rw rw 

 
BIT NAME DESCRIPTION 
15:6 - Reserved. The user should write 0 to these bits. 
5 INT_TRIG_EN1 Sample and Hold 1 Internal Trigger Enable. Setting this bit to ‘1’ enables internal 

trigger mode for Sample and Hold 1. When this bit is set to ‘1’, writing a ‘1’ to 
INT_TRIG1 starts an internal sample pulse for Sample and Hold 1. When this bit is 
‘1’, sample pulses on SHEN1 are igonred. 
Setting this bit to ‘0’ configures Sample and Hold 1 for external sample pulse. 
This bit is used in the dual mode operation only. 

4 INT_TRIG1 Sample and Hold 1 Internal Trigger. This bit is used when INT_TRIG_EN1 is set to 
‘1’. Setting this bit to ‘1’ starts internal sample pulse for Sample and Hold 1.  The 
sample pulse will end when this bit is set back to 0 if SSC[3:0] = 0, or after the time 
defined by SSC[3:0] if these bits are not equal to 0. This bit is used in the dual mode 
operation only. 

3:2 - Reserved. The user should write 0 to these bits. 
1 INT_TRIG_EN0 Sample and Hold Internal Trigger Enable. Setting this bit to ‘1’ enables internal 

trigger mode for Sample and Hold 0. When this bit is set to ‘1’, writing a ‘1’ to 
INT_TRIG0 starts an internal sample pulse for Sample and Hold 0. When this bit is 
‘1’, sample pulses on SHEN0 are igonred. 
Setting this bit to ‘0’ configures Sample and Hold 0 for external sample pulse. 
In the single mode operation, this bit is used for both sample and holds. 

0 INT_TRIG0 Sample and Hold0 Internal Trigger. This bit is used when the INT_TRIG_EN0 is set 
to ‘1’. Setting this bit to ‘1’ starts internal sample pulse for Sample and Hold 0.  The 
sample pulse will end when this bit is set back to 0 if SSC[3:0] = 0, or after the time 
defined by SSC[3:0] if these bits are not equal to 0.In the single mode operation, this 
bit is used for both sample and holds. 

 
8.2.3 –  Sample and Hold Interrupt flag 
See ADST1 description for Sample and Hold interrupts flags SH0DAI and SH1DAI descriptions. 
   
8.2.4 –  Sample and Hold Averaging 
See REFAVG description in ADC section for sample and hold averaging options. 
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SECTION 9 – QUICK TRIP (FAST COMPARATOR) 
The DS4830A has 10-bit quick trips with a 16-input analog MUX (Figure 9-1). The MUX selects the quick trip analog 
input from 16 external channels. The quick trip external channels can be configured to operate as eight fully 
differential inputs or sixteen single-ended inputs. The quick trip monitors all configured quick trip channels in a round 
robin sequence. 
 

   QT CONFIGURATIONS

ADC-S0

ADC-S1

ADC-S14

ADC-S15

A
N
A
L
O
G

M
U
X

QT SEQUENCER

Q
TS

TA
R

T

Q
TE

N
D

Q
TE

N

QT HIGH 
THRESHOLD

QT LOW 
THRESHOLD

CHSEL[3:0]DIFF

Digital MUX

10-Bit 
Internal 

DAC

HT Register[0]

HT Register[14]

HT Register[1]

HT Register[15]

16 High Threshold 
Registers

LT Register[0]

LT Register[14]

LT Register[1]

LT Register[15]

16 Low Threshold 
Registers

LIST REGISTER[0]

LIST REGISTER[14]

LIST REGISTER[1]

LIST REGISTER[15]

16 List Configurations
5 bit Each

LTI / HTILTIE / HTIE

Interrupt

Q
T 

C
LO

C
K

QTDATA[15:0]

Comparator

QT- 2.42V 
Internal 

Reference

.

.

.

RW_LST = 0

LTHT = 0

RW_LST = 1

.

.

.

.

.

.

RW_LST = 0

LTHT = 1

 
Figure 9-1: Quick Trip Functional Diagram 
 
9.1 – Detailed Description 
As shown in Figure 9-1, the DS4830A Quick Trip (QT) controller has a 16-input analog MUX and Quick Trip 
Sequencer. The QT sequencer creates a list of configurations and sets user defined low and high threshold for 
external channels. The quick trip controller has 16 low trip threshold and 16 high trip threshold internal registers.  
 
The Quick Trip Control Register (QTCN) has two bits RW_LST and LTHT which are used to configure thresholds 
and list creation. The QTIDX[3:0] bits (located in the QTCN register) together with LTHT and RW_LST bits select the 
source or destination address for the QTDATA register access. Figure 9-1 illustrates the threshold configuration and 
list creation.  
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By default, the external channels GP0-15 are general-purpose input. The DS4830A has the Pin Select Register 
(PINSEL). The PINSEL register is used to configure the external channels as an analog pin for ADC or/and Quick 
Trip use. Each bit location in this register corresponds to the ADC/Quick Trip input pin. 
 
Table 9-1: Low and High Thresholds Configuration and List Creation 

RW_LST LTHT QTIDX REGISTER SELECTED 
0 0 N(0 to 15) Low threshold configuration for the channel defined in list N 
0 1 N(0 to 15) High threshold configuration for the channel defined in list N 
1 X N(0 to 15) Nth  register of list configuration 

 
Thresholds Configuration 
Each configuration has two threshold registers to configure low and high threshold. Each threshold register is 
addressed by the QTIDX[3:0] bits. These bits are auto incremented on any read or write operation to the QTDATA 
register. The low trip thresholds are configured by writing to the QTDATA register when the RW_LST and LTHT bits 
are set to ‘0’. The high trip thresholds are configured by writing to the QTDATA register when the RW_LST bit is set 
to ‘0’ and LTHT bit is set to ‘1’.  
 
List Creation 
As shown in Figure 9-1, the quick trip controller has 16 list registers. These are configured by writing to the QTDATA 
register when the RW_LST bit is set to ‘1’. The list address is addressed by the QTIDX[3:0] bits. Each list register 
uses only lower 5 bits. The first 4 lower bits CHSEL [3:0] specifies the quick trip input channel. The DIFF bit selects 
between single-ended mode (when DIFF bit is set to ‘0’) and differential mode (when DIFF bit is set to ‘1’) quick trip 
comparison. The start and stop addresses of the list are provided by the Quick Trip List Register (QTLST). Any 
channel can be used multiple times at any location in the list. 
 
See Section 9.2 - Quick Trip Register Descriptions for details. 
 
As shown in Figure 9-1, the quick trip sequencer selects a channel from 16 external channels. The quick trip 
controller has an internal 10-bit DAC which generates voltage for low and high threshold comparisons with the 
external channel input. The quick trip is also called a “Fast Comparator” as it compares the input with threshold using 
the fast comparator. The conversion time is 1.6µs for each threshold; so each channel’s thresholds are compared in 
3.2µs (1.6µs for low trip threshold + 1.6µs for high trip threshold).  
 
9.1.1 – Quick Trip List Sequencing 
The DS4830A quick trip controller performs the user defined sequence of up to 16 single-ended or 8 differential 
external channels conversions.  
 
A sequence is setup in the QTLST register by defining the starting conversion configuration address (QTSTART) and 
an ending conversion configuration address (QTEND).  The configuration start address designates the configuration 
register to be used for the first conversion in a sequence. The configuration end address designates the 
configuration register used for the last conversion in a sequence. A single channel conversion can be viewed as a 
special case for sequence conversion, where the starting and ending configuration address is the same. The 
configuration registers can be viewed as a circular register array where QTSTART does not have to be less than 
QTEND. For example, if QTSTART = 1 and QTEND = 5, then the sequence of conversions would be configurations 
1, 2, 3, 4, 5. If QTSTART = 5 and QTEND = 1, then the sequence of conversions would be configurations 5, 6, 7 . . . 
15, 0, 1. 
 
9.1.2 – Operation 
The quick trip is enabled by setting the Quick Trip Enable (QTEN) bit to ‘1’ in the QTCN register. The Quick Trip 
Controller takes ~120 core clocks to wake up after enable and then starts scanning through the list of channels 
specified in the channel list register QTLST continuously in the round robin sequence. The quick trip sequence reads 
the list, selects the input channel and reads the low trip threshold and performs 10-bit comparison, then reads the 
high trip threshold and again performs 10-bit comparison. The quick trip has separate interrupt flag registers for the 
low and high trip threshold. The low trip interrupt flag is set when the input voltage is less than the configured low 
threshold. Similarly, the high trip interrupt flag is set when the input voltage is greater than the configured high 
threshold. The interrupt can be generated if enabled. 
 
The channel list can be filled up using the QTDATA register by setting the RW_LST bit to ‘1’ in the QTCN register. 
For example to scan channels S5, S6 and S14-15 having configurations for channels 5 & 6 in the single-ended 
mode, channel 7 (S14-S15) in the differential mode and channel 6 again (any channel can be configured multiple 
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times in the QT list). The quick trip list can be filled sequentially with data 05h (channel 5 + single-ended), 06h 
(channel 6 + single-ended), 17h (channel 7 + differential mode) and 06h (channel 6 + single-ended). See Table 9-2 
for the quick trip list configurations.  
 
To scan  these list registers shown in Table 9-2, the QTSTART bits are set to 0 (0000b) and the QTSTOP bits are 
set to 3 (0011b). Each channel is compared twice (see Figure 9-2). First the low trip threshold (LT) is compared and 
then the high trip threshold (HT). The sequence of comparisions is shown is Figure 9-2. 
 
Table 9-2: Quick Trip List Configuration 

 
Quick Trip Start address (QTSTART) = 0 
Quick Trip Stop address (QTEND) = 3 
 

Channel 5

LT HT

Channel 6

LT HT

Channel 7

LT HT
……….

Channel 5

LT HT

Channel 6

LT HT

Channel 7

LT HT
……….

Channel 6*

LT HT

Channel 6*

LT HT

* Note: Channels can be defined multiple times in the list.

Figure 9-2: Quick Trip Operation 
 
9.1.3 – Setting Quick Trip Thresholds 
 
The quick trip threshold can be calculated by using the following formula. 

 
Table 9-3 demonstrates Quick Trip low and high threshold configuration. 
 
Table 9-3: Quick Trip Low Threshold Configuration 

 
 
 
 
 
 

QTCN = 0x0000;  //Low Threshold Configuration Register, Index = 0      
QTDATA = 0x00FE; //0.6V Low Threshold Configuration for List0 Configuration       
QTDATA = 0x0153; //0.8V Low Threshold Configuration for List1 Configuration             
QTDATA = 0x01A7; //1.0V Low Threshold Configuration for List2 Configuration       
QTDATA = 0x01D1; //1.1V Low Threshold Configuration for List3 Configuration   
   

QT LIST 
NUMBER QTDATA DESCRIPTION LIST REGISTERS USED FOR 

COMPARISON 
0 05h Channel 5 (S5) in single-ended mode LT0 and HT0 
1 06h Channel 6 (S6) in single-ended mode LT1 and HT1 
2 17h Channel 7(S14-S15)  in differential mode LT2 and HT2 
3 06h Channel 6 (S6) in single-ended mode LT3 and HT3 

QT LIST NUMBER LOW THRESHOLD VALUE (AS EXAMPLE) QTDATA 
0 0.6V 0x00FE 
1 0.8V 0x0153 
2 1.0V 0x01A7 
3 1.1V 0x01D1 
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Table 9-4: Quick Trip High Threshold Configuration 
 
 
 
 
 
 

 
QTCN = 0x0010;   //High Threshold Configuration Register, Index = 0      
QTDATA = 0x03A3; //2.2V High Threshold Configuration for List0 Configuration     
QTDATA = 0x034E; //2.0V High Threshold Configuration for List1 Configuration       
QTDATA = 0x02FA; //1.8V High Threshold Configuration for List2 Configuration 
QTDATA = 0x02A5; //1.6V High Threshold Configuration for List3 Configuration 
 
9.1.4 – Quick Trip Interrupts 
The DS4830A quick trip has four interrupt flag registers the Low Trip Interrupt Lower Flag Register (LTIL), High Trip 
interrupt Lower Flag Register (HTIL), Low Trip Interrupt High Register and High Trip Interrupt High Register. See the 
register descriptions for the quick trip interrupt operation. 

QT LIST NUMBER HIGH THRESHOLD VALUE (AS EXAMPLE) QTDATA 
0 2.2V 0x03A3 
1 2.0V 0x034E 
2 1.8V 0x02FA 
3 1.6V 0x02A5 
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9.2 – Quick Trip Register Descriptions 
The quick trip has 7 SFRs. These are the Quick Trip Control Register (QTCN), Quick Trip List Register (QTLST), 
Quick Trip Data Register (QTDATA), Low Trip Interrupt Lower Flag Register (LTIL), High Trip Interrupt Lower Flag 
Register (HTIL), Low Trip Interrupt High Register (LTIH) and High Trip Interrupt High Register (HTIH). The QTCN 
register controls the quick trip operation. The QTLIST register defines the list for the quick trip controller. The 
QTDATA register is used to read and write list and threshold (high and low threshold) registers. The LTIL and HTIL 
are interrupt flag registers for high and low threshold. The LTIH and HTIH are the interrupt enable registers. The 
Quick Trip SFRs are located in module 5. 
 
9.2.1 –  Quick Trip Control Register (QTCN) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - QTEN - - - - RW_LST - - LTHT QTIDX[3:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r rw r r r r rw r r rw rw rw rw rw 

 
BIT NAME DESCRIPTION 
15:13 - Reserved. The user should write these bits to ‘0’. 
12 QTEN Quick Trip Enable. When this bit is set to ‘1’, it enables the quick trip operation. After 

setting the QTEN bit to ‘1’, there is an initial delay for 120 core clock to wake up the 
quick trip circuitry. When this bit is set to ‘0’, it disables the quick trip operation.  

11:8 - Reserved. The user should write these bits to ‘0’. 
7 RW_LST Read List Register: When this bit is set to ‘1’, it selects one of the sixteen list register 

(addressed by QTIDX[3:0], see below) in the list configuration. When this bit is set to ‘0’, 
the low or high threshold register (depends upon the LTHT bit) are configured. 

6:5 - Reserved. The user should write these bits to ‘0’. 
4 LTHT Low or High Threshold Select: This bit is used only when RW_LST is set to ‘0’. This 

bit is used to select low or high threshold read or write. When the LTHT bit is set to ‘0’, it 
points to the low threshold configuration register list. When this bit is set to ‘1’, it points to 
the high threshold configuration register list. The address of low or high threshold 
configuration is addressed by QTIDX[3:0] bits. 

3:0 QTIDX[3:0] Quick Trip Index Select. These bits together with LTHT and RW_LST bits select the 
source or destination address for the QTDATA register access. 
 
When the RW_LST and LTHT bits are set to ‘0’, the QTIDX[3:0] bits address to one of 
the sixteen low threshold register for read or write. When RW_LST = 0 and LTHT = 1, 
the QTIDX[3:0] bits address one of the sixteen high threshold register for read or write.  
 
When RW_LST = 1 (irrespective of LTHT bit), the QTDATA register selects the list 
register addressed by QTIDX[3:0] bits for read and write operation. A read or write 
operation on the QTDATA register reads or writes to the list register addressed by 
QTIDX[3:0]. 
 
These bits are auto incremented on any read or write operation to the QTDATA register. 

 
9.2.2 Quick Trip Data Register (QTDATA) 
 
The Quick Trip Data register is used with LTHT, RW_LST and QTIDX[3:0] bits to configure thresholds and list 
configurations. The QTDATA register selects the list register and threshold registers addressed by QTIDX[3:0] bits 
for read and write operation.  
 
Threshold registers are selected when the bit RW_LST is set to ‘0’. List registers are selected when the bit RW_LST 
is set to ‘1’. See the following tables for RW_LST = 0 and RW_LST = 1. 
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QTDATA Register map when RW_LST = 0 (in the QTCN Register) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - LOW or HIGH THRESHOLD 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r r rw rw rw rw rw rw rw rw rw rw 
 
BIT NAME DESCRIPTION 
15:10 - Reserved. The user should write these bits to ‘0’. 
9:0 QTDATA[9:0] a. Low Threshold Configuration (When the LTHT bit in the QTCN register is set to ‘0’) 

The QTDATA register selects low threshold register addressed by QTIDX[3:0] bits in 
the QTCN register for read and write operation. The low threshold registers are 10-bit 
wide and the upper QTDATA [15:10] bits are ignored and return 0.  
 
b. High Threshold Configuration (When the LTHT bit in the QTCN register is set to ‘1’) 
The QTDATA selects high threshold register addressed by QTIDX[3:0] bits in the 
QTCN register for read and write operation. The high threshold registers are 10-bit 
wide and upper QTDATA [15:10] bits are ignored and return 0.  

 
QTDATA Register map when RW_LST = 1 (in the QTCN Register) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - - - - - - - DIFF CHSEL[3:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r r r r r r r rw rw rw rw rw 
 
BIT NAME DESCRIPTION 
15:5 - Reserved. The user should write these bits to ‘0’. 
4 DIFF Mode Selection (DIFF): This bit selects the Quick trip input channel source either as 

single-ended or differential mode. When this bit is set to ‘0’, quick trip channel 
(addressed by CHSEL[3:0]) is selected as “single-ended” input. When this bit is set to 
‘1’, quick trip channel (addressed by CHSEL[3:0]) is selected as “Differential Mode” 
input. See the below table for various quick trip input channel configuration in single-
ended as well as differential mode.  

3:0 CHSEL [3:0] QT Channel Select (CHSEL [3:0]): These bits select the Quick trip input channel 
source for the quick trip list configuration. 
 

CHSEL[3:0] DIFF = 0 
Channel Selected 

Single-Ended 

DIFF = 1 
Channel Selected 
Differential Mode 

0000 ADC-S0 ADC-D0P – ADC-D0N 
0001 ADC-S1 ADC-D1P – ADC-D1N 
0010 ADC-S2 ADC-D2P – ADC-D2N 
0011 ADC-S3 ADC-D3P – ADC-D3N 
0100 ADC-S4 ADC-D4P – ADC-D4N 
0101 ADC-S5 ADC-D5P – ADC-D5N 
0110 ADC-S6 ADC-D6P – ADC-D6N 
0111 ADC-S7 ADC-D7P – ADC-D7N 
1000 ADC-S8 NOT VALID 
1001 ADC-S9 NOT VALID 
1010 ADC-S10 NOT VALID 
1011 ADC-S11 NOT VALID 
1100 ADC-S12 NOT VALID 
1101 ADC-S13 NOT VALID 
1110 ADC-S14 NOT VALID 
1111 ADC-S15 NOT VALID 
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9.2.3 Low Trip Interrupt Lower Register (LTIL) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name IE[7:0] IF[7:0] 
Reset                 
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
 
BIT NAME DESCRIPTION 
15:8 IE[7:0] Low Trip Interrupt Enable. This register is used to enable/mask the corresponding 

LTIL register interrupts. For Example, if LTIL = 0x0100 then Quick Trip list 0 can 
generate an interrupt when LTIL LSB is set to ‘1’ and all other interrupts from LTIL are 
ignored. Similarly, if LTIL = 0xFF00, then all 8 interrupts from LTIL generate interrupts. 

7:0 IF[7:0] Low Trip Interrupt Flag. The corresponding bit of the Low Trip Interrupt register is set 
when a low threshold trip is occurred on a channel list register. In other words, when 
voltage across channel is less than the low threshold configuration for the channel.  
For example, if a low trip occurs on the list register 0 then LTIL is set to 0x0001. If the 
corresponding IE bit is also ‘1’, and then this generates an interrupt. Software should 
clear the Low Trip Interrupt Flag once it is set by hardware. Setting this bit to ‘1’ by 
software generates an interrupt if enabled.   

 
9.2.4 High Trip Interrupt Lower Register (HTIL) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name IE[7:0] IF[7:0] 
Reset                 
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
 
BIT NAME DESCRIPTION 
15:8 IE[7:0] High Trip Interrupt Enable. This register is used to enable/mask the corresponding 

HTIL register interrupts. For example, if HTIL = 0x0100 then Quick Trip list 0 can 
generate an interrupt when HTIL LSB is set to ‘1’ and all other interrupts from HTIL are 
ignored. Similarly, if HTIL = 0xFF00, then all 8 flags from HTIL generate interrupts. 

7:0 IF[7:0] High Trip Interrupt Flag. The corresponding bit of the High Trip Interrupt register is 
set when a high threshold trip is occurred on a channel list register. In other words, 
when voltage across channel is greater than the high threshold configuration for the 
channel.  
For example, if a high trip occurs on the list register 0 then HTIL is be set to 0x0001. If 
the corresponding IE bit is also ‘1’, and then this generates an interrupt. Software 
should clear the how trip interrupt flag once it is set by hardware. Setting this bit to ‘1’ 
by software generates an interrupt if enabled.   
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9.2.5 Low Trip Interrupt High Register (LTIH) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name IE[15:8] IF[15:8] 
Reset                 
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
 
BIT NAME DESCRIPTION 
15:8 IE[15:8] Low Trip Interrupt Enable. This register is used to enable/mask the corresponding 

LTIH register interrupts for upper 8 comparisions. For example, if LTIH = 0x0100 then 
Quick Trip list 8 can generate an interrupt when LTIH LSB is set to ‘1’ and all other 
interrupts from LTIH are ignored. Similarly, if LTIH = 0xFF00, then all 8 flags from LTIH 
generate interrupts. 

7:0 IF[15:8] Low Trip Interrupt Flag. The corresponding bit of the low trip interrupt register is set 
when a low threshold trip is occurred on a channel list register. In other words, when 
voltage across channel is less than the low threshold configuration for the channel.  
For example, if a low trip occurs on the list register 8 then LTHI is set to 0x0001. If the 
corresponding IE bit is also ‘1’, and then this generates an interrupt. Software should 
clear the Low Trip Interrupt Flag once it is set by hardware. Setting this bit to ‘1’ by 
software generates an interrupt if enabled.   

 
9.2.6 High Trip Interrupt High Register (HTIH) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name IE[15:8] IF[15:8] 
Reset                 
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
 
BIT NAME DESCRIPTION 
15:8 IE[15:8] High Trip Interrupt Enable. This register is used to enable/mask the corresponding 

HTIH register interrupts for the upper 8 comparisons. For Example, if HTIH = 0x0100 
then Quick Trip list 8 can generate an interrupt when HTIH LSB is set to ‘1’ and all 
other interrupts from HTIH are ignored. Similarly, if HTIH = 0xFF00, then all 8 flags 
from HTIH generate interrupts. 

7:0 IF[15:8] High Trip Interrupt Flag. The corresponding bit of the High Trip Interrupt register is 
set when a high threshold trip is occurred on a channel list register. In other words, 
when voltage across channel is more than the high threshold configuration for the 
channel.  
For example, if a high trip occurs on the list register 8 then HTIH is set to 0x0001. If 
the corresponding IE bit is also ‘1’, and then this generates an interrupt. Software 
should clear the High Trip Interrupt Flag once it is set by hardware. Setting this bit to 
‘1’ by software generates an interrupt if enabled.   

 
9.2.7 – Quick Trip List Register (QTLST) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - QTSTART[3:0] - - - - QTEND[3:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r rw rw rw rw r r r r rw rw rw rw 
 
BIT NAME DESCRIPTION 
15:12 - Reserved. The user should write these bits to ‘0’. 
11:8 QTSTART[3:0] Quick Trip Configuration Start Address Bits [3:0]. These bits select the start 

address of quick trip channel list. 

7:4 - Reserved. The user should write these bits to ‘0’. 
3:0 QTEND[3:0] Quick Trip Configuration Ending Address Bits [3:0]. These bits select the stop 

address of quick trip channel list.  
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SECTION 10 – I2C-COMPATIBLE MASTER INTERFACE 
 
The DS4830A provides an I2C-compatible master controller that allows the DS4830A to communicate with a slave 
device. The I2C master interface can be setup to provide system interrupts after each I2C event.   
 
10.1 – Detailed Description  
10.1.1 – Description of Master I2C Interface 
The master I2C interface uses the MSDA and MSCL pins. These pins are the master I2C controller’s connection to 
the SDA and SCL pins of an I2C bus. In addition to driving these pins, the I2C master port also senses the state of 
both MSDA and MSCL. This allows the I2C master port to offer bus error detection and allows a slave device to clock 
stretch.   
Unless explicitly stated, all references to SDA and SCL in this section refer to the SDA and SCL lines of the I2C bus, 
not the DS4830A’s I2C slave interface SDA and SCL pins. 
 
10.1.2 – Default Operation 
The I2C master controller is disabled by default. The I2C master controller is enabled by setting the I2CEN and 
I2CMST bits in the I2CCN_M register to a 1. Prior to the I2C master controller being used for communication, some 
software setup is required. This setup includes setting the clock rate, timeout period, and which I2C events should 
generate interrupts. The DS4830A master I2C controller is not intended to be used on an I2C bus that has multiple 
masters connected to the bus.   
 
10.1.3 – I2C Clock Generation 
In an I2C system, the master is responsible for generating the SCL signal. The DS4830A I2C Master Controller 
provides complete control over the clock rate and duty cycle. The I2C Master Controller generates SCL from the 
system clock. The bit rate is controlled by the I2C Clock Control Register (I2CCK_M). 
 
The high period of SCL clock is defined by the high byte of the I2C Clock Control register (I2CCKH) whereas 
the low period of SCL is defined by the low byte (I2CCKL). The minimum clock high period is three system clocks 
while the minimum low period has to be at least five system clock periods. The I2C clock characteristics can be 
defined by the following equations: 

• SCL Low Time = System Clock Period x (I2CCKL[7:0] + 1) 
• SCL High Time = System Clock Period x (I2CCKH[7:0] + 1) 
• I2C Clock Rate = System Clock Frequency/(I2CCLK[7:0] + I2CCKH[7:0] + 2) 

 
One feature of the master I2C controller is that it also monitors SCL while the clock is being output. This allows the 
controller to ensure that the SCL level is at the desired level prior to beginning the count for SCL Low or High Time. 
Figure 10-1 illustrates the SCL sampling performed by the master I2C controller. When SCL is released by the 
master I2C controller, the rise time is determined by the capacitive loading and pullup resistance on the SCL line. 
When the controller senses the SCL line has reached a high logic level, the count for SCL High Time is started. The 
same is true for a falling edge. The SCL Low Time is only started after the controller senses the SCL line at a low 
logic level.    
 
Figure 10-1 also illustrates that the calculated I2C clock period is not exactly accurate because the rise and fall time 
of SCL is not taken into consideration.  The actual clock period will be the period set by the I2CCK_M register plus 
any rise and fall time. 
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Figure 10-1: I2C Clock Generation 
 
The master I2C controller’s ability to monitor the state of SCL allows the master to operate with slave devices that 
stretch the clock. A slave device may clock stretch, or hold SCL low, while it is busy or processing data. The master 
I2C controller will always release SCL after holding it low for the SCL Low Time duration. By monitoring the state of 
SCL, the master I2C controller realizes that SCL has not been released and does not begin the SCL High Time 
count. Only after the master controller detects a high state on SCL will begin the I2CCKH count.  This is illustrated in 
Figure 10-2. 
 
 

 
Figure 10-2: Master I2C Clock Generation During Slave Clock Stretching 
 
 
10.1.4 – Timeout   
The Master I2C Controller has a programmable timeout function that allows the controller to recover from a bus 
error. The timeout period is determined by the setting of the I2C Master Timeout Register (I2CTO_M) using the 
following equation: 
  

Timeout Period = I2C Bit Rate x (I2CTO[7:0]+1) 
 

where I2C Bit Rate is determined by the setting of the I2CCK_M register.  The timeout can be disabled by clearing the 
I2CTO_M register to 0. The I2C timeout timer starts counting: 

• When the I2CSTART bit is set to 1. The I2C controller will monitor the bus status until it can generate a 
START condition. The I2C bus is considered busy if another master has generated a START condition 
and no corresponding STOP has been detected (the I2CBUS bit is set to 1) or the SCL line is low. If the 
bus remains busy for a period longer than specified in the timeout register, the I2C controller concludes 
that there is a bus error and will set the I2CTOI flag.   
 
If the I2C Controller has started a transfer (after the first bit rising edge), it will wait for the current byte 
transfer to finish (after the 9th bit (acknowledge) has been transmit) before generating the START 
condition. In this case, the timeout timer will start counting after the end of the 9th bit low time. 

• After the master I2C controller attempts to generate a STOP condition. If a STOP is not detected (I2CSPI = 
1) during the timeout period, the I2CTOI flag will be set.   
 
If the I2C Controller has started a transfer (after the first bit rising edge), it will wait for the current byte transfer to 
finish (after the 9th bit (acknowledge) has been transmit) before generating the STOP condition.  In this case, 
the timeout timer will start counting after the end of the 9th bit low time. 

 
• Whenever SCL goes low.  If the SCL line is low for a period longer than specified in the timeout register, the 

I2C controller concludes that there is a bus error and will set the I2CTOI flag.  
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For all of these cases, when the I2C timeout period is reached, the I2CTOI flag will be set.  The setting of I2CTOI can 
generate an interrupt if enabled.  If the master I2C controller is in the process of transferring data when the timeout 
occurs, the controller will abort the current transfer and clear the I2CBUSY flag. The I2CBUS flag will continue to be set 
until a STOP condition is detected or I2CEN is set to 0. 
 
 
10.1.5 – Generating a START 
To initiate a data transfer, the I2C master controller must first issue a START command. The master I2C controller’s 
flow when attempting to issue a START command is shown in Figure 10-3. A START command is generated by 
setting the I2CSTART bit to 1.  The I2C controller will then determine the state of the I2C bus. If the bus is busy 
(I2CBUS = 1), the controller will not generate a START until the bus is available. The I2C bus is considered busy if 
another master has generated a START condition and no corresponding STOP has been detected (the I2CBUS 
bit is set to 1) or SCL is being held low.      
 
If the bus is not busy, the I2C master controller will attempt to generate a START.  Because the SDA line is 
feedback into the device, when the master generates a START, it can also detect the START condition.  When a 
START condition is detected, the I2C START interrupt flag (I2CSRI) will be set and an interrupt will be generated if 
enabled.  The I2CBUS bit will be set to indicate that the I2C bus is now in use and the I2CSTART bit will be 
cleared.   
 
When the I2CSTART bit is set to a 1, the I2C controller will start its timeout timer if enabled (I2CTO_M ≠ 0).  If 
the timer expires before the START can be generated, t he  I2C timeout interrupt flag (I2CTOI) will be set and an 
interrupt is generated if enabled. If a timeout occurs, the I2C master controller will reset to an idle state and the 
I2CSTART bit will be cleared. 
 
If the I2CSTART bit is set when the I2C Controller is in the middle of a byte transfer (after the first bit rising edge), 
the controller will wait for the current byte transfer to finish (after the 9th bit) before generating the START 
condition.  In this case, the timeout timer will not start counting until after the end of the 9th bit low time. 
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10.1.6 – Generating a STOP 
To end an I2C transfer, a STOP must be transmitted.  A STOP is generated by setting the I2CSTOP bit.  The 
master I2C controller’s flow when attempting to issue a STOP command is shown in Figure 10-3.      
 
If the I2CSTOP bit is set when the I2C Controller is in the middle of a byte transfer (after the first bit rising edge), it will 
wait for the current byte transfer to finish (after the 9th bit) before generating the STOP condition.   
 
Because the SDA line is feedback into the device, when the master generates a STOP, it will also detect the 
STOP condition.  When a STOP condition is detected, the I2C STOP interrupt flag (I2CSPI) will be set and an 
interrupt will be generated enabled.  The I2CBUS bit will be cleared to indicate that the I2C bus is now idle and the 
I2CSTOP bit will be cleared.   
 
When the master I2C controller attempts to generate the STOP condition, it will also start the timeout timer if this 
feature is enabled.  If a timeout is generated before the STOP condition is detected, a timeout will occur.  When a 
timeout occurs, the I2CTOI bit will be set, which can generate an interrupt if enabled, and the I2CSTOP bit will also 
be cleared to 0. 
 
10.1.7 – Transmitting a Slave Address 
The first byte after an I2C START or restart condition is the slave address byte. This byte, which is transmitted by the 
master, contains seven bits of slave address followed by the R/W bit. The transmission of the slave address begins 
with writing 7-bit slave address + the R/W bit to I2CBUF_M. 
 
Figure 10-4 shows the format for slave address 36h in write mode. The address bits A[6:0], which is the slave 
address the R/W bit is written to I2CBUF_M[6:0]. Bit 0 of I2CBUF_M is copied to bit 0 I2CMODE of the  I2CSLA_M 
register. When bit 0 is ‘1’, the I2C master is operating in receiver mode (data read from slave). When bit 0 is ‘0’, the 
I2C master is operating in transmitter mode (data write to slave).  
 

  
Figure 10-4: Slave Address Format 
 
After the slave address has been written to I2CBUF_M, the I2C master controller will set the I2CBUSY bit to indicate 
the controller is actively participating in a transaction.  The eight bits in I2CBUF_M[7:0] will be transmitted on SDA.  
The data for the 8th bit transmit, which is the R/W bit, is copied in the I2CMODE bit of the I2CSLA_M register.  The 
I2C master then issues the 9th clock, which is for the acknowledge bit, and reads SDA for an acknowledgment from a 
slave device.  The I2C master controller then performs the following steps. This is illustrated in Figure 10-5. 

• Set the I2CNACKI bit with the value of the received acknowledgement.   
• The I2CTXI bit will then be set to indicate a byte was transmit. 
• Clear the I2CBUSY flag.  

 
Upon transmitting the slave data byte (7 bits of slave address + R/W bit + acknowledge), the I2C master controller 
will enter one of the three states. 

• Data Transmit: The I2CMODE (R/W) bit was set to a 0, indicating that the master will be writing data to a 
slave device.  The DS4830A will retain control of the SDA line. 

• Data Receive: The I2CMODE (R/W) bit was set to a 1, indicating that the master will be receiving data from 
a slave.  The DS4830A releases control of SDA to allow a slave device to output data.  The DS4830A 
Master I2C controller automatically begins clocking bytes of data from the slave. 

• The slave address was NACKed. The master I2C controller will retain control of SDA and is able to transmit 
data. 

 
10.1.8 – Transmitting Data  
The DS4830A I2C Master Controller enters into data transmission mode after transmitting a slave address with the 
R/W bit (I2CMODE) set to a 0.  The steps of data transmission are shown in Figure 10-5.  Data transmission is 
started by software loading a byte of data into the I2CBUF_M register.  Loading I2CBUF_M causes the I2CBUSY bit 
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to be set.  Once set, writes to I2CBUF_M will be ignored.  The first bit of data (most significant bit) will be shifted to 
SDA when SCL is low.  Each of the next seven bits will then be shifted following high to low transitions of SCL.   
 
Following the 8th bit of data (least significant bit) being shifted to SDA, the SDA line will be released by the DS4830A 
master controller.  This allows the slave to signal an ACK or NACK during the 9th clock cycle.  The DS4830A I2C 
master controller samples the acknowledge bit following the 9th SCL rising edge.  After the acknowledge bit is 
sampled, the DS4830A I2C master controller will perform the following tasks: 

• Set or clear the I2CNACKI flag to reflect the received acknowledge bit.  The setting of I2CNACKI can 
generate an interrupt if enabled.   

• Set the I2CTXI flag to indicate that the I2C master controller transmit a complete byte.  This can generate an 
interrupt if enabled. 

• Clear the I2CBUSY flag to indicate that the I2C master controller is not actively participating in the transfer of 
data. 
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Figure 10-5: Master I2C Data Flow 
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10.1.9 – Receiving Data  
The DS4830A I2C Master Controller enters data reception mode after transmitting a slave address with the R/W bit 
(I2CMODE) set to a 1.  The steps of data reception are shown in Figure 10-5.  After transmitting the slave address, 
the master controller will switch to receiver mode and automatically begin outputting SCL clock pulses and shifting in 
data from SDA. 
 
When receiving data, the DS4830A I2C master controller uses a double buffer consisting of the I2CBUF_M register 
and the shift register.  This allows the I2C module to continue receiving data while the previous data byte is being 
processed.  When a full byte of data (8 bits) has been received by the I2C master controller, the master must send an 
acknowledgement to the slave.  This occurs during the 9th clock cycle when the value in I2CACK is transmitted to the 
slave.  
 
After a complete byte (8 bits) of data is received, the I2C master controller will attempt to copy the received data from 
the shift register to I2CBUF_M.  There are two possible results from the I2C master controller’s attempt to copy the 
shift register to I2CBUF_M.   
 

1. If I2CBUF_M is empty, the I2C master controller will copy the data from the shift register into I2CBUF_M.  
The I2CRXI flag will be set to indicate a received byte is ready to be read.  The setting of I2CRXI can 
generate an interrupt if enabled. 
 

2. If I2CBUF_M is full, the data in the shift register cannot be copied into I2CBUF_M.  This causes a receive 
overrun condition.  The receive overrun flag, I2CROI, will be set which can generate an interrupt if enabled.  
I2CBUF_M will be full if it was not read by software following the reception of a previous byte.   
 

After receiving a byte of data and the I2CRXI flag being set, it is up to software to read I2CBUF_M prior to a second 
byte being received.  Reading the I2CBUF_M register returns the received data and also clears I2CBUF_M.  As long 
as the previous byte of data is read from I2CBUF_M before the next byte has completed, receive overrun will not 
occur. 
  
When receive overrun is detected and I2CROI bit is set, the DS4830A master I2C controller will stop outputting SCL 
clocks and not clock the acknowledge bit until the receive overrun condition is cleared. The receive overrun condition 
and the I2CROI flag can only be cleared by software reading the first byte received from I2CBUF_M. When the 
receive overrun condition is cleared, the I2C master controller will copy the second byte that was received into 
I2CBUF_M, and again set I2CRXI to indicate a byte of data was received.  The I2C master controller will resume 
clocking SCL after satisfying SCL low time requirements.   
 
The master I2C controller will continue to automatically clock bytes of data until any of the following conditions occur.   

1) A receive overrun condition occurs. 
2) A STOP command is issued (I2CSTOP=1) prior to the master I2C controller beginning to clock a new byte.   
3) The master I2C controller has clock stretching enabled and the clock is currently being held low by the 

master. 
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10.1.10 – I2C Master Clock Stretching 
The Master I2C Controller is capable of clock stretching at the end of each transfer cycle.  Clock stretching is when 
SCL is held low.  If the I2C Clock Stretch Enable bit (I2CSTREN) is set to a 1, the I2C controller will hold SCL low 
after the clock pulse defined by the I2C Clock Stretch Select bit (I2CSTRS).  If I2CSTRS=0, the I2C controller will hold 
SCL low after the falling edge of the 9th clock pulse.  If I2CSTRS=1, the I2C controller will hold SCL low after the 
falling edge of the 8th clock pulse. When the I2C controller is holding SCL low, the I2C Clock Stretch Interrupt flag 
(I2CSTRI) will be set, which can generate an interrupt if enabled.  The I2C slave controller will hold SCL low until 
I2CSTRI is cleared to 0 by software.    
 
If clock stretching is enabled after the 8th clock pulse, the master I2C controller will continue outputting the value of 
the I2CACK bit until clock stretching is released by clearing I2CSTRI.  This allows software time to examine the data 
that was received prior to sending an ACK or NACK to the slave.  The continuous output of I2CACK will occur even if 
the master I2C controller is transmitting data.  In this mode, the slave should be sending the acknowledgement.  To 
allow the slave to send the proper acknowledgement, the I2CACK bit should be set to a 1, which prompts the master 
I2C controller to release SDA.   
 
The Master I2C Controller may need to use clock stretching when receiving data from a slave.  When receiving data, 
the master I2C controller automatically generates clock pulses.  Without using clock stretching, this automatic clock 
generation is only halted when a STOP command is issued or a receive overrun occurs.  If clock stretching is 
enabled, software can control when each byte of data is clocked from the slave device.   
 
10.1.11 – Resetting the I2C Master Controller  
The I2C master controller can be reset by disabling the I2C master controller by writing ‘0’ at I2CEN = 0 in the I2CCN 
I2CCN_M register. A reset will force the master I2C controller to release both MSDA and MSCL if they are being held 
low by the I2C master controller. A reset may reset few or all bits of  I2CCN, I2CST and I2CBUF I2C registers, and 
reset the I2C master controller’s internal state machine.  Following a reset, the I2C master controller must be re-
initialized before it can be used again. 
 
After a reset, the master I2C controller will be in a known state but the slave devices may be in an unknown state.  It 
is recommended that the master I2C controller attempts to reset the slave devices prior to beginning communication.  
A reset of slave devices can be performed by outputting at least 9 clock pulses on the MSCL line while MSDA is 
high.  This easiest way to achieve this is to use MSDA and MSCL as GPIO pins (see the GPIO section) while the 
master I2C controller is disabled (I2CEN=0).  After the 9 clock pulses, a STOP command should be generated.  This 
can be done either using GPIO, or by enabling the master I2C controller and generating a STOP. 
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10.1.12 – Alternate Location   
The DS4830A has 3-Wire, SPI and I2C Master on the same pins and some application may need the I2C Master and  
3-Wire or SPI interfaces. To support such applications, the DS4830A provides an I2C Master alternate location. 
When I2CCN_M bit 12 is set to ‘1’, the DACPW4 and DACPW5 pins are used as I2C SDA and I2C SCL pins as I2C 
Master alternate locations.  
 
10.1.13 – Operation as a Slave  
The DS4830A contains two I2C interfaces, the master (MSDA and MSCL) and slave (DS4830A SDA and SCL pins).  
These are two totally separate blocks within the DS4830A.  However, both of the blocks are identical.  Because of 
this, it is possible to operate the master as a slave and also operate the slave as a master. 
 
To operate the master (MSDA and MSCL) as a slave I2C interface, the I2CMST bit in I2CCN_M needs to be set to a 
0.  When the master is operating as a slave, it will use the same registers (I2CCN_M, I2CST_M, etc.) that it uses for 
master operation.  However, the bits in these registers will have different functionality, as described in the I2C Slave 
Interface Section.  The I2CCN_M.SMB_MOD bit only affects the interface when it is operating as a slave.  See the 
I2C Slave Interface section for details on initializing and using a slave I2C interface. The I2C Master can be used in 
the slave mode and allows two user programmable slave addresses using I2CSLA_M and I2CSLA2_M slave 
address register. The I2CSLA2_M can be enabled by setting ADD2EN bit in the I2CCN_S register. When I2C Master 
Interface is used as the I2C slave mode, it does not have any TX Page or Receive FIFO which are available in the 
I2C slave interface (Section 11) only. 
 
10.1.14 – GPIO  
When the I2C master controller is disabled (I2CEN=0), the MSDA and MSCL pins can be used as GPIO pins.  The 
MSDA pin is mapped to GPIO port P1.0 and MSCL is mapped to GPIO port P1.1.  When used as GPIO outputs, the 
MSDA and MSCL pins are push pull outputs.  See the General-Purpose I/O Section for more information on using 
MSDA and MSCL as GPIO pins. 
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10.2 – I2C Master Controller Register Description 
Following are the registers that are used to control the I2C Master Interface, which is the MSDA and MSCL pins. 
These registers are used to control the I2C master interface if it is operating as either a master or slave. The bit 
descriptions below detail how to use these registers when operating in master mode. When operating in slave mode, 
some of the bits and registers have different functionality. See the I2C Slave Interface for more information on how to 
control the I2C Master Interface when it is operating as a slave. 
 
10.2.1 – I2C Master Control Register (I2CCN_M) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - I2CM_ALT ADD2EN SMB_MOD I2CSTREN I2CGCEN I2CSTOP I2CSTART I2CACK I2CSTRS - - I2CMST I2CEN 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
Access r r r rw rw rw rw rw rw rw rw rw r r rw* rw* 
* Unrestricted Read. Unrestricted write access when I2CBUSY=0. Writes to I2CEN are disabled when I2CBUSY=1.  
 
BIT NAME DESCRIPTION 
15:11 Reserved Reserved. The user should write 0 to these bits. 
12 I2CM_ALT I2C Master Alternate Location: When this bit is set to ‘1’, the DACPW4 and DACPW5 

will be used as SDA and SCL respectively as I2C Master alternative location. 
11 ADD2EN Slave Address2 Enable: This bit has no function in master mode. In the slave mode, 

setting this bit to ‘1’, enables I2CSLA2_M slave address. 
10 SMB_MOD SMBus Mode Enable. This bit enables the SMBUS timeout feature only when the master 

I2C interface (MSDA and MSCL) is enabled to be a slave interface.  See the Operation as 
a Slave section for more details. 

9 I2CSTREN I2C Master Clock Stretch Enable. Setting this bit to ‘1’ will stretch the clock (hold SCL 
low) at the end of the clock cycle specified by I2CSTRS. Clearing this bit disables clock 
stretching. 

8 I2CGCEN I2C General Call Enable. This bit has no function when operating in master mode. 
7 I2CSTOP I2C STOP Enable.  Setting this bit to ‘1’ generates a STOP condition. This bit is 

automatically cleared to ‘0’ after the STOP condition has been generated.  
The setting of I2CSTOP will start the timeout timer if enabled. If the timeout timer expires 
before the STOP condition is generated, the I2CTOI flag is set, which can generate an 
interrupt if enabled.  A timeout will also clear the I2CSTOP bit. 

6 I2CSTART I2C START Enable.  Setting this bit to ‘1’ generates a START or repeated START 
condition.  This bit is automatically cleared to ‘0’ after the START condition has been 
generated. 
The setting of I2CSTART will start the timeout timer if enabled. If the timeout timer 
expires before the START condition is generated, the I2CTOI flag is set, which can 
generate an interrupt if enabled.  A timeout will also clear the I2CSTART bit. 

5 I2CACK I2C Master Data Acknowledge Bit. This bit selects the acknowledge bit returned by the 
master I2C controller while acting as a receiver. Setting this bit to ‘1’ will generate a NACK 
(leaving SDA high). Clearing the I2CACK bit to ‘0’ will generate an ACK (pulling SDA 
LOW) during the acknowledgement cycle. This bit will retain its value unless changed by 
software or hardware.   

4 I2CSTRS I2C Master Clock Stretch Select. Setting this bit to ‘1’ will enable clock stretching after 
the falling edge of the 8th clock cycle. Clearing this bit to ‘0’ will enable clock stretching 
after the falling edge of the 9th clock cycle. This bit has no effect when clock stretching is 
disabled (I2CSTREN=0). 

3:2 Reserved Reserved. The user should write 0 to these bits. 
1 I2CMST I2C Master Mode Enable. Setting this bit to ‘1’ will enable I2C master functionality on the 

MSDA and MSCL pins.  Setting this bit to ‘0’ enables I2C slave functionality.  See the I2C 
Slave Interface section for more details.   

0 I2CEN I2C Enable. This bit enables the I2C Master interface.  When set to ‘1’, the I2C Master 
Interface is enabled. When cleared to ‘0’, the I2C function is disabled.  

 
Notes: The I2CSTART and I2CSTOP are mutually exclusive. If both bits are set at the same time, it is considered an 
invalid operation and the I2C controller ignores the request and resets both bits to 0. Setting the I2CSTART bit to 1 
while I2CSTOP = 1 is an invalid operation and is ignored, leaving the I2CSTART bit cleared to 0. 
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10.2.2 – I2C Master Status Register (I2CST_M) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name I2CBUS I2CBUSY - I2CAMI2 I2CSPI I2CSCL I2CROI I2CGCI I2CNACKI - I2CAMI I2CTOI I2CSTRI I2CRXI I2CTXI I2CSRI 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r* r* r rw rw r* rw rw rw* r rw rw rw* rw* rw rw 
* Set by hardware only. 
 
BIT NAME DESCRIPTION 
15 I2CBUS I2C Master Bus Busy. This bit is set to ‘1’ when a START/repeated START condition is 

detected and cleared to 0 when the STOP condition is detected. This bit is reset to ‘0’ when 
I2CEN=0. This bit is controlled by hardware and is read only. 

14 I2CBUSY I2C Master Busy. This bit is used to indicate the current status of the I2C controller. The 
I2CBUSY is set to ‘1’ when the I2C controller is actively participating in a transaction.  This bit 
is controlled by hardware and is read only. 

13 Reserved Reserved. The user should write 0 to this bit. 
12 I2CAMI2 I2C Address Match2 Interrupt Flag. This bit has no function when operating in master 

mode. In the slave mode, this bit is set when I2CSLA2_M address is matched. This bit must 
be cleared to ‘0’ by software once set. 

11  I2CSPI I2C Master STOP Interrupt Flag. This bit is set to ‘1’ when a STOP condition is detected.  
This bit must be cleared to ‘0’ by software once set. Setting this bit to ‘1’ by software will 
cause an interrupt if enabled. 

10 I2CSCL I2C Master SCL Status. This bit reflects the logic state of the SCL signal. This bit is set to ‘1’ 
when SCL is at a high logic level and cleared to ‘0’ when SCL is at a low logic level. This bit is 
controlled by hardware and is read only. 

9 I2CROI I2C Master Receiver Overrun Flag. This bit indicates a receive overrun when set to ‘1’. This 
bit is set to ‘1’ if the receiver has received two bytes since the last software reading of 
I2CBUF_M. This bit can only be cleared to ‘0’ by software reading I2CBUF_M.  Setting this bit 
to ‘1’ by software will cause an interrupt if enabled.  

8 I2CGCI I2C General Call Interrupt Flag. This bit has no function when operating in master mode. 
7 I2CNACKI I2C Master NACK Interrupt Flag. This bit is set by hardware to ‘1’ if a NACK was received 

from a slave or a 0 if an ACK was received from a slave.  The setting of this bit to ‘1’ will 
cause an interrupt if enabled. This bit can be cleared to ‘0’ by software once set.  This bit is 
set by hardware only. 

6 Reserved Reserved. The user should write 0 to this bit. 
5 I2CAMI I2C Address Match Interrupt Flag. This bit has no function when operating in master mode 

and is set when I2CSLA_M address matched in the slave mode. 
4 I2CTOI I2C Master Timeout Interrupt Flag. This bit is set to ‘1’ if the I2C controller cannot generate a 

START or STOP condition or the SCL low time is greater than the timeout value specified in 
the I2CTO_M register.  This bit must be cleared to ‘0’ by software once set. Setting this bit to 
‘1’ by software causes an interrupt if enabled.   

3 I2CSTRI I2C Master Clock Stretch Interrupt Flag. This bit is set to ‘1’ to indicate that the I2C master 
controller is operating with clock stretching enabled and is currently holding the SCL clock 
signal low. The I2C controller will release SCL after this bit has been cleared to ‘0’. This bit 
must be cleared to ‘0’ by software once set. This bit is set by hardware only. 

2 I2CRXI I2C Master Receive Ready Interrupt Flag. This bit is set to ‘1’ to indicate that a data byte 
has been received in I2CBUF_M. This bit must be cleared to ‘0’ by software once set.  This 
bit is set by hardware only. 

1 I2CTXI I2C Master Transmit Complete Interrupt Flag. This bit is set to ‘1’ to indicate that an 
address or a data byte has been successfully shifted out and the I2C controller has received 
an acknowledgment from the receiver (ACK or NACK). This bit must be cleared to ‘0’ by 
software once set. Setting this bit to ‘1’ by software will cause an interrupt if enabled. 

0 I2CSRI I2C Master START Interrupt Flag. This bit is set to ‘1’ when a START condition (or restart) is 
detected.  This bit must be cleared to ‘0’ by software once set. Setting this bit to ‘1’ by 
software will cause an interrupt if enabled. 
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10.2.3 – I2C Master Interrupt Enable Register (I2CIE_M) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - I2CSPIE I2CAMI2IE I2CROIE I2CGCIE I2CNACKIE - I2CAMIE I2CTOIE I2CSTRIE I2CRXIE I2CTXIE I2CSRIE 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r rw rw rw rw rw r rw rw rw rw rw rw 
 
BIT NAME DESCRIPTION 
15:12 Reserved Reserved. The user should write 0 to these bits. 
11 I2CSPIE I2C Master STOP Interrupt Enable. Setting this bit to ‘1’ will enable an interrupt when a 

STOP condition is detected (I2CSPI=1). Clearing this bit to ‘0’ will disable the STOP 
detection interrupt. 

10 I2CAMI2IE I2C Address Match2 Interrupt Enable. This bit has no function when operating in master 
mode and is used in slave mode for interrupt enable for I2CSLA2_M slave address. 

9 I2CROIE I2C Master Receiver Overrun Interrupt Enable. Setting this bit to ‘1’ will enable an 
interrupt when a receiver overrun condition is detected (I2ROI=1). Clearing this bit to ‘0’ will 
disable the receiver overrun detection interrupt. 

8 I2CGCIE I2C General Call Interrupt Enable. This bit has no function when operating in master 
mode. 

7 I2CNACKIE I2C Master NACK Interrupt Enable. Setting this bit to ‘1’ will enable an interrupt when a 
NACK is detected (I2CNACKI=1). Clearing this bit to ‘0’ will disable the NACK detection 
interrupt. 

6 Reserved Reserved. The user should write 0 to this bit. 
5 I2CAMIE I2C Address Match Interrupt Enable. This bit has no function when operating in master 

mode and used in slave mode for interrupt enable for I2CSLA_M slave register. 
4 I2CTOIE I2C Master Timeout Interrupt Enable. Setting this bit to ‘1’ will enable an interrupt when a 

timeout condition is detected (I2CTOI=1). Clearing this bit to ‘0’ will disable the timeout 
interrupt. 

3 I2CSTRIE I2C Master Clock Stretch Interrupt Enable. Setting this bit to ‘1’ will enable an interrupt 
when the clock stretch interrupt flag is set (I2CSTRI=1). Clearing this bit will disable the 
clock stretch interrupt. 

2 I2CRXIE I2C Master Receive Ready Interrupt Enable. Setting this bit to ‘1’ will enable an interrupt 
when receive ready interrupt flag is set (I2CRXI=1). Clearing this bit to ‘0’ will disable the 
receive ready interrupt. 

1 I2CTXIE I2C Master Transmit Complete Interrupt Enable. Setting this bit to ‘1’ will enable an 
interrupt when transmit complete interrupt flag is set (I2CTXI=1). Clearing this bit to ‘0’ 
disables transmit complete interrupt. 

0 I2CSRIE I2C Master START Interrupt Enable. Setting this bit to ‘1’ will enable an interrupt when a 
START condition is detected (I2CSRI=1). Clearing this bit to ‘0’ will disable the START 
detection interrupt. 

 
10.2.4 – I2C Master Data Buffer Register (I2CBUF_M) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - - - - D7 D6 D5 D4 D3 D2 D1 D0 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r r r r rw* rw* rw* rw* rw* rw* rw* rw* 
* Unrestricted read access. This register can be written to only when I2CBUSY = 0. 
 
BIT NAME DESCRIPTION 
15:8 Reserved Reserved. The user should write 0 to these bits. 
7:0 D[7:0] Data for I2C transfer is read from or written to this location.  The I2C transmit and receive buffers are 

separate but both are addressed at this location.  
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10.2.5 – I2C Master Clock Control Register (I2CCK_M) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name I2CCKH[7:0] I2CCKL[7:0] 
Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
 
BIT NAME DESCRIPTION 
15:8 I2CCKH[7:0] I2C Clock High Period. These bits define the high period of the I2C clock.  This period is defined 

by the number of system clocks.  The high time duration is calculated using the following equation:  
I2C High Time Period = System Clock Period x (I2CCKH[7:0] + 1)  

I2CCKH[7:0] must be set to a minimum value of 2 to ensure proper operation. Any value less than 2 
is  set to 2. 

7:0 I2CCKL[7:0] I2C Clock Low Period. These bits define the low period of the I2C clock.  This period is defined by 
the number of system clocks.  The low time duration is calculated using the following equation:  

I2C Low Time Period = System Clock Period x (I2CCKL[7:0] + 1) 
I2CCKL[7:0] must be set to a minimum value of 4 to ensure proper operation. Any value less than 4 
is set to 4. 

 
 
10.2.6 – I2C Master Timeout Register (I2CTO_M) 
 
Bit 7 6 5 4 3 2 1 0 
Name I2CTO7 I2CTO6 I2CTO5 I2CTO4 I2CTO3 I2CTO2 I2CTO1 I2CTO0 
Reset 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw 
 
The I2CTO_M register determines the length of the timeout interval.  The timeout interval is defined by the number of I2C bit 
periods (SCL high + SCL low).  When cleared to 00h, the timeout function is disabled.  When set to any other value, the I2C 
controller waits until the timeout expires and sets the I2CTOI flag.  The timeout period is: 

I2C Timeout = I2C Bit Rate x (I2CTO[7:0] + 1)  
The timeout timer resets to 0 and starts to count after each of the following events. 

• The I2CSTART bit is set. 
• The I2CSTOP bit is set. 
• Any time that SCL goes low.  

 
10.2.7 – I2C Slave Address Register (I2CSLA_M and I2CSLA2_M) 
 
 Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - - - - A6 A5 A4 A3 A2 A1 A0 I2CMODE 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r r r r rw rw rw rw rw rw rw rw 
 
These register have no function when operating in master mode and are used in slave mode to program the slave 
address. 
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SECTION 11 – I2C-COMPATIBLE SLAVE INTERFACE 
The DS4830A provides an I2C-compatible slave controller that allows communication with a host device and 
supports four user-programmable slave addresses. The DS4830A I2C slave controller can support 400kHz I2C 
operation with a host without clock stretching. The DS4830A I2C slave interface also has a dedicated 8-byte transmit 
page for each slave and 8-byte receive FIFO (shared between all four slaves). The DS4830A can also have flash 
programming using I2C bootloading functionality provided by the slave controller. This interface can be set up to 
provide system interrupts after each I2C event. Figure 11-1 shows the basic operation flow of the I2C slave controller. 
The blocks in Figure 11-1 that are shaded are shown in more detail in Figure 11-2. 
 
 

 
 
Figure 11-1: Slave I2C Flow  
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11.1 – Detailed Description 
The I2C slave controller has two different modes that can be used to transmit and receive data. The first option 
transmits and received data one byte at a time. An advanced mode uses 8-byte buffers for transmiting and receiving 
data, which is enabled by setting the TXPG_EN bit in the I2CTXFIE and the FIFO_EN bit in the I2CRXFIE registers. 
Using this advanced mode of operation, the DS4830A can support 400kHz I2C operation without clock stretching.   
 
11.1.1 – Default Operation 
The I2C slave controller is enabled (I2CCN_S.I2CEN=1) by default. As long as the I2C slave controller is enabled, the 
DS4830A I2C bootloader can operate. This allows bootloading of blank devices without any setup of the I2C slave 
controller. Prior to the I2C slave controller being used for normal data communication, the I2C SFRs should be 
configured for necessary I2C communication. These configurations include setting an I2C slave address and enabling 
the slave controller to generate interrupts during I2C events. This controller can also operate as an SMBUS slave. 
 
11.1.2 – Slave Addresses 
Prior to communication, an I2C slave address may need to be selected. By default, the I2C slave controller normally 
responds to two slave addresses. The I2C bootloader uses address 34h. This bootloader address cannot be changed 
and should not be used as the device slave address for normal communication. The second slave address (default 
address 36h) is the address used for communication with the host. This slave address can be programmed by 
writing the desired slave address to the I2CSLA_S register. The address contained in the I2CSLA_S register is the 
address with the R/W bit. If an address other than 36h is desired, the I2CSLA_S register can be programmed with 
this new address.  
 
The DS4830A has three more user-programmable slave addresses that can be programmable using the 
I2CSLA2_S, I2CSLA3_S, and I2CSLA4_S registers, respectively. By default, these slave addresses are disabled 
and can be individually enabled by writing ‘1’ to the ADDR2EN, ADDR3EN, and ADDR4EN bits, which are defined in 
the I2CCN_S register. 
 
The I2C slave controller supports the General Call Address, which is 00h with the I2CSLA_S slave register. This 
feature can be enabled by setting the I2CCN_S.I2CGCEN bit to a 1.   
 
11.1.3 – I2C START Detection 
The I2C Slave Controller always monitors the I2C bus for an I2C START, which is a high to low transition on SDA 
while SCL is held high. If an I2C START (or restart) condition is detected, the I2C slave sets the I2CSRI bit in the 
I2CST_S register, which can cause an interrupt if enabled. The detection of a START brings the I2C controller out of 
its idle state. Following a START, the I2C controller begins to monitor data on the I2C bus and the I2CBUSY bit is set 
to a 1. The I2CBUS bit is also set to a 1 to indicate that the I2C bus is currently busy.    
 
11.1.4 – I2C STOP Detection 
The I2C Slave Controller also always monitors the I2C bus for an I2C STOP, which is a low to high transition on SDA 
while SCL is held high. If an I2C STOP condition is detected, the I2C slave controller sets the I2CSPI bit in the 
I2CST_S register, which can cause an interrupt if enabled. The I2CBUS bit is cleared to 0 following a STOP to 
indicate that the I2C bus is no longer busy.   
 
11.1.5 – Slave Address Matching 
Following an I2C START or restart, the I2C slave controller knows that the next byte of data to be transmitted by the 
host should be the slave address. The I2C slave automatically monitors for the slave address without any software 
interaction. The I2C slave controller compares the first 7 bits received to the slave address programmed in the 
I2CSLA_S register. It also compares the first 7 bits received to the slave addresses programmed in the I2CSLA2_S, 
I2CSLA3_S, and I2CSLA4_S registers, if they are enabled. If the received slave address matches with one of 
enabled I2C Slave addresses, the I2C slave controller does the following steps. This is illustrated in Figure 11-2 
(without RX FIFO and TX Pages) and Figure 11-4 (with RX FIFO and TX Pages).     

• Transmit an ACK or NACK on the 9th clock based upon the setting of the I2CCN_S.I2CACK bit. 
• Set the matched slave address I2CMODE bit with the value of the received R/W bit. This bit can be used by 

software to determine if the I2C slave controller should receive or transmit data. 
• Sets the I2CST_S.I2CAMI bit to indicate that a slave address match was made. The setting of this bit can 

generate an interrupt if enabled. Additionally, the I2C slave controller sets following values in SLA [3:0] bits in 
CUR_SLA register according to the matched slave address. 
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Matched Slave Address CUR_SLA.SLA[3:0] 
I2CSLA_S 1 

I2CSLA2_S 2 
I2CSLA3_S 4 
I2CSLA4_S 8 

• Clears the I2CBUSY flag. 
 
Upon completion of the slave data byte (7 bits of slave address + R/W bit + ACK/NACK), the I2C slave controller 
enters one of the following three states. 

• Data Transmit: The slave address matched and the R/W bit is ‘1’. The host is now expecting data from the 
DS4830A. The I2C slave controller retains control of the SDA line so data can be transmitted to the host. The 
host can start clocking data from the slave at any time. 

• Data Receive: The slave address is matched and the R/W bit is ‘0’. The host wants to write data to the I2C 
slave. After sending the ACK/NACK bit, the DS4830A releases SDA and is ready to receive a byte of data. 

• Wait for START/STOP: The received slave address did not match any enabled slave addresses. The I2C 
controller enters idle state and waits for the next START or STOP condition.  
 

 
Transmitting

Byte
Receiving 

Byte

Y

Receive

Addr[6:0] + R/W

Match
I2CSLA_S[7:1]

?

Transmit
I2CACK

I2CBUSY=0

N

I2CAMI=1

Set 
I2CMODE

According to R/W

Detect START
I2CSRI=1
I2CBUS=1

I2CBUSY=1

I2CNACKI =
ACKNOWLEDGE

Transmit Shift 
Register Byte, 

MSB First

N

Y

I2CBUSY=1

8 Bits
Transmit

?

I2CTXI=1
I2CBUSY=0

Write to 
I2CBUF_S

Receive a Bit into 
Shift Register, MSB first

N

Y

I2CBUSY=1

8 Bits
Received

?

Load Shift 
Register into 
I2CBUF_S
I2CRXI=1

Send 
I2CACK

Y

N

I2CROI=1Receiver 
Full
?

Detect 1st SCL 
Rising Edge

I2CBUSY=0

Receiving Slave 
Address

RECEIVE
ACKNOWLEDGE

 
Figure 11-2: Slave I2C Data Flow  
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11.1.6 – Advanced Mode Operation RX FIFO and TX Pages 
The DS4830A I2C slave controller has a few features that make 400kHz I2C communication without clock stretching 
possible. 
 

Shift Register

Address Match

I2CSLA4_S

I2CSLA3_S

I2CSLA2_S

I2CSLA_S

8-Byte 
Receive FIFO

MUX

TX0 4 WORDS PAGE
TX2 4 WORDS PAGE
TX3 4 WORDS PAGE
TX4 4 WORDS PAGE

SLA[3:0]

SDA

SCL

SLA[3:0]

Write through 
I2CBUF_S

Read through 
I2CBUF_S

 
Figure 11-3: I2C Slave Block Diagram with RX FIFO and TX Pages 
 
The I2C controller allows the user to define a memory map structure in the user SRAM for each individual slave 
address. This is done using the MEM_ADDR[7:0] and PAGE[2:0] bits in the MADDR, MADDR2, MADDR3, and 
MADDR4 registers. These register bits 10:0 are used to define start address (SRAM Address) of the memory map 
structure and bit 12 is used to define memory rollover boundary between 128 and 256. The I2C controller maintains 
the memory address of the individual slave address in the read memory address pointer RPNTR register. Each slave 
address has dedicated RPNTR, which is selected based on the SLA[3:0] bits. The read address (maintained by 
RPNTR) is automatically incremented by 1 word after every write to the I2CBUF_S. The I2C controller handles 128 or 
256 boundary rollover internally on the read memory address. 
 
11.1.6.1 – RX FIFO  
The DS4830A I2C controller has an 8-byte receive FIFO. This FIFO is shared among the enabled slave addresses. 
The receive FIFO is controlled using the I2CRXFIE (I2C Receive FIFO Interrupt Enable) and I2CRXST (I2C Receive 
FIFO Status Flags) registers and is read from the I2CBUF_S register. See the individual bit description in I2C Slave 
Controller Register Description section. This FIFO is shown in Figure 11-3. 
 
11.1.6.2 – Transmit Pages  
The I2C controller has four Transmit (TX) pages, each dedicated to a specific slave address. Each of the TX pages 
holds 4 16-bit words. When transmitting data, the controller automatically selects one of the TX pages based upon 
the SLA[3:0] bits in the CUR_SLA (Current Slave Address) which is set during a successful slave address match 
event. The TX Pages are filled by first setting the SLA[3:0] bits, then writing data to the I2CBUF_S register. I2C 
transmission using the TX Pages is controlled using the I2CTXFIE (I2C Transmit Interrupt Enable) and I2XTXFST 
(I2C Transmit Page Status Flags) registers. See the individual bit description in I2C Slave Controller Register 
Description section. The TX pages are shown in Figure 11-3. 
 
11.1.6.3 Advanced Mode Memory Address Detection  
The I2C Slave Controller provides an option to automaticcaly detect the memory address being accessed by the 
host. The MADDR_EN bits in the CUR_SLA register enable the memory address to be automatically captured by the 
I2C controller. Following an address match with I2CMODE = 0 (Write), the I2C slave controller knows that the next 
byte of data to be received is the memory address of the memory map and copies the received byte into the 
MEM_ADDR[7:0] bits in the MPNTR (Memory address pointer) register with PAGE[2:0] from active slave address.  
When the memory address is captured, the MADI bit in the I2CST2_S register will be set, which can generate an 
interrupt if enabled. The MPNTR shows the current memory address of the active slave address. To enable memory 
address dection, the proper MADDR_EN bit must be set and the RX FIFO must be enabled.   
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Figure 11-4: Slave I2C Data Flow Using 8-Byte Transmit Page and 8-Byte Receive FIFO 
 
11.1.7 – Transmitting Data 
The DS4830A I2C Slave Controller enters into data transmission mode after receiving a matching slave address with 
the R/W bit set to 1.   
 
11.1.7.1 – Normal Mode Data Transmission 
The steps of data transmission are shown in Figure 11-2. Data transmission is started by software loading data into 
the I2CBUF_S register. Loading I2CBUF_S causes the I2CBUSY bit in I2CST_S to be set. Once I2CBUSY bit is set, 
a write to I2CBUF_S is ignored. The first bit of data (most significant bit) is shifted to SDA when SCL is low.  Each of 
the next seven bits is then shifted following high to low transitions of SCL.   
 
Following the 8th bit data (least significant bit) being shifted to SDA, the SDA line is released by the slave controller. 
This allows the host to signal an ACK or NACK during the 9th clock cycle. The I2C slave controller samples the 
acknowledge bit following the 9th SCL rising edge. After the acknowledge bit is sampled, the I2C slave controller 
performs the following tasks: 
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• Sets the I2CST_S.I2CTXI flag to indicate that the I2C slave controller has transmitted a byte.  This can 
generate an interrupt if enabled. 

• Sets or clears the I2CST_S.I2CNACKI flag to reflect the received acknowledge bit. The setting of I2CNACKI 
can generate an interrupt if enabled.   

• Clears the I2CST_S.I2CBUSY flag to indicate that the I2C slave controller is not actively participating in the 
transfer of data. 

 
The detection of an ACK by the I2C slave controller indicates that the host wants to receive another byte of data.  
The I2C slave controller maintains control of SDA following the ACK. The next byte to transmit needs to be loaded 
into I2CBUF_S prior to the host starting to clock this next byte. 
 
The detection of a NACK indicates that the host does not want to receive any additional data. The I2C slave 
controller releases control of SDA following the reception of NACK bit. After the NACK, the slave controller enters 
idle state and monitors the I2C bus for a START or STOP condition.   
 
11.1.7.2 – Advanced Mode Data Transmission 
To achieve 400kHz I2C without clock stretch, the DS4830A I2C Controller has 4-word TX Pages for each slave 
address. The TXPG_EN bit in the I2CTXFIE register enables the TX PAGEs of the all enabled slave addresses. The 
user should pre-fill these 4-word pages to ensure data is available to transmit immedialty following a slave address 
match. When data is being transmit, the I2C controller automatically selects one of the four TX Pages depending 
upon which SLA [3:0] bits are set during the slave address match event. 
   
The individual TX page should be written in the word mode using the I2CBUF_S. See below pseudo code to write 
the TX page of I2CSLA2_S address 
 
MOVE  DP[0],   #01Ch    //DP[0] in word mode 
MOVE  M2[21],  #00F2h   //Select TX PAGE2  in CUR_SLA 
 
MOVE  RPNTR, #0000h   //Initialize RPNTR to current read address.  When written to 0000h,  
      //RPNTR will populate with the correct SRAM memory location for  
      //read data 
 
      //Copy word 1 
MOVE DP[0], RPNTR    //Copy current memory address to the data pointer   
MOVE M2[0], @DP[0]    //Copy data from @DP[0] to I2CBUF_S register (M2[0]) 
      //I2CBUF_S will load data into TX PAGE  
      // RPNTR = RPNTR + 1 automatically when data is loaded  

//into I2CBUF_S.  Rollover handled internally. 
 
      //Copy word 2 
MOVE DP[0], RPNTR    //Copy current memory address in the data pointer  
MOVE M2[0], @DP[0]    //Copy data from @DP[0] to TX PAGE via I2CBUF_S register 
 
      //Copy word 3 
MOVE DP[0], RPNTR    //Copy current memory address in the data pointer  
MOVE M2[0], @DP[0]    //Copy data from @DP[0] to TX PAGE via I2CBUF_S register 
 
      //Copy word 4 
MOVE DP[0], RPNTR    //Copy current memory address in the data pointer  
MOVE M2[0], @DP[0]    // Copy data from @DP[0] to TX PAGE via I2CBUF_S register 
 
 
When TX page is enabled, the SLA[3:0] bits in the CUR_SLA register selects one of the TX pages as shown in 
Figure 11-3. The I2C controller reads data from the selected TX page and writes to the shift register. When the I2C 
controller is transmitting  data, the threshold interrupt flag (THSH) in the I2CTXST register will be set when there are 
4 bytes are remaining. This can generate an interrupt, if enabled. 
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11.1.8 – Receiving Data 
The I2C Slave Controller enters data reception mode after receiving a matching slave address with the R/W bit set to 
0. The steps of data reception are shown in Figure 11-2 and Figure 11-4. The reception process begins when the I2C 
slave controller detects the first rising edge of SCL. This rising edge sets I2CBUSY bit to ‘1’ and clocks the first bit 
(MSB) of data from SDA into the data shift register.   
 
11.1.8.1 – Receiving Data in Normal Mode 
When receiving data, the I2C slave controller uses a double buffer consisting of the I2CBUF_S register and the shift 
register. This allows the I2C module to continue receiving data while the previous data byte is being processed.    
After a byte (8 bits) of data is received, the I2C slave controller attempts to copy the received data from the shift 
register to I2CBUF_S and two possible events can occur during this attempt.  
 

1. If I2CBUF_S is empty, the I2C slave controller copies the data from the shift register into I2CBUF_S. The 
I2CRXI flag is set to indicate a received byte is ready for reading. The setting of I2CRXI can generate an 
interrupt if enabled. Software can now read data from the I2CBUS_S. 

2. If I2CBUF_S is full, the data in the shift register cannot be copied into I2CBUF_S. This causes a receive 
overrun condition. The receive overrun flag, I2CROI is set which can generate an interrupt if enabled.  
I2CBUF_S can be full if it is not read by software following the reception of a previous byte.   
 

When the receive overrun occurs (I2CROI = 1), any new incoming data is not shifted into the I2C slave controller. 
The controller responds to any bytes received with a NACK regardless of the setting of the I2CACK bit. The receive 
overrun condition and the I2CROI flag can only be cleared by software reading received first byte from I2CBUF_S. 
When the receive overrun condition is cleared, the I2C slave controller copies the second byte that is received into 
I2CBUF, and again sets I2CRXI to indicate a byte of data is received. The I2C slave controller resumes its normal 
operation in the next SCL clock cycle after I2CROI is cleared.  To avoid losing any data, I2CROI must to be cleared 
prior to the first SCL clock rising edge of the next byte.   
 
After the 9th bit of any byte has been received, the I2CBUSY bit is cleared to indicate that the controller is no longer 
participating in a data transaction. The value in I2CACK is transmitted to the host on the 9th SCL clock cycle, 
assuming the I2C slave controller is not operating in receive overrun. 
 
11.1.8.2 – Receiving Data in Advanced Mode 
As shown in Figure 11-4, when receive FIFO is enabled, the incoming data is copied into the FIFO. The receive 
FIFO will set flags in the I2CRXFST register when the FIFO is empty, half full with 4 bytes, or full with 8 bytes of 
received data. Interrupts can be generated for these events if the appropriate bits are set in the I2CRXFIE register. 
The receive FIFO is read one word at a time by reading the I2CBUF_S register.   
 
11.1.9 – Clock Stretching 
If slave device cannot receive or transmit another complete byte of data, it may hold SCL low, forcing the master to 
wait. Data transfer continues when the slave is ready for next byte of data after releasing SCL. 
 
The I2C slave controller is capable of holding SCL low at the completion of each byte being transferred. If the I2C 
Clock Stretch Enable bit (I2CSTREN) is set to a 1, the I2C controller holds SCL low after the 8th or 9th clock pulse as  
configured in the I2C Clock Stretch Select bit (I2CSTRS). If I2CSTRS=0, the I2C controller holds SCL low after the 
falling edge of the 9th clock pulse. If I2CSTRS=1, the I2C controller holds SCL low after the falling edge of the 8th 
clock pulse. When the I2C controller is holding SCL low, the I2C Clock Stretch Interrupt bit (I2CSTRI) is set. The I2C 
slave controller holds SCL low until I2CSTRI is cleared to '0' by software. Figure 11-5 shows the I2C slave controller 
clock stretching after receiving the 9th clock of a byte. 
 



DS4830A User’s Guide 
  

  101 

 
Figure 11-5: Slave I2C Clock Stretching 
 
Normally when the I2C slave controller is receiving data, the value of I2CACK is sent after the falling edge of the 8th 
clock. However, if clock stretching is enabled after the 8th clock, the I2C slave controller continues to output the 
I2CACK bit until clock stretching is released by software.  This allows software time to inspect data that is received 
before responding with an appropriate acknowledge bit.   
 
The applications should use clock stretching if the I2C slave interrupts are not assigned the highest priority. Generally 
the application is set to respond only to interrupts from the I2C slave controller, thus not having to continuously poll 
the slave I2C controller. After each byte transfer is complete, the I2C slave controller needs to either read the 
received byte from I2CBUF_S or write the next byte to transmit to I2CBUF_S. Without using clock stretching, the 
host can begin clocking the next byte before the I2C slave controller is prepared.  A few conditions that may require 
clock stretching to be enabled are listed below when used without RX FIFO and TX Pages. 

• When a slave address match is made and the R/W bit is set, the I2C slave controller is expected to transmit 
a byte of data to the host.  This byte of data needs to be written to I2CBUF_S. If clock stretching is not used, 
software may not be able to write the correct data into I2CBUF_S prior to the first clock of the data byte.  

• Following the transmission of data to the host, another byte may be requested by the host sending an ACK 
bit. The I2C slave controller has to write next data to the I2CBUF_S prior to the first clock of the second byte 
which sometimes may not be possible.  

• After a byte is received by the I2C slave controller it may be necessary to stretch the clock. This allows 
software to read the byte from I2CBUF_S and perform data processing.  
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11.1.10 – SMBus Timeout 
The I2C slave controller can also be used for SMBus or PMBus™ communication. To maintain SMBus compatibility, 
a 30ms timer is implemented by the I2C slave controller.  The purpose of this timer is to issue a timeout interrupt 
when SCL is low for greater than 30ms. The timer only starts when none of the following conditions are true: 
 

1. The I2C slave controller is in the idle state and there are no communications on the I2C bus. The timer should 
not generate interrupts regardless of how long SCL is low.  

2. The SMBUS mode bit is not set. This ensures the SMBUS timeout functionality does not interfere with 
normal I2C functionality.  

3. SCL is high. The timer is inactive whenever SCL is high. The timer is reset when it is inactive. 
4. The I2C slave controller is disabled or used as a master I2C controller. The timer is not needed in this case. 

 
The following description explains when the SMBus timer starts, assuming that all other START conditions are met. 
When the I2C slave controller is idle and it receives a START, it exits the idle state and the timer becomes active 
(starts counting) any time SCL goes low. If following the START, the master addresses a different slave on the bus, 
the I2C slave controller is returned to the idle state and the timer is reset and becomes inactive. In short, as soon as 
SCL goes low following a START, the SMBus timer becomes active until the I2C slave controller re-enters into idle 
state.    
 
When a timeout occurs, the timeout bit (I2CTOI) is set, which can generate an interrupt if enabled. If a timeout 
occurs, it may be necessary to reset the I2C slave controller. See the Resetting the I2C Slave Controller section for 
more details. SMBus mode selection is controlled by the SMB_MOD bit in I2CCN_S register. When the Slave 
SMBus Mode Operation bit (SMB_MOD) is set to 1, the SMBUS timeout functionality is enabled.  
 
11.1.11 – Resetting the I2C Slave Controller 
The I2C Slave Controller can be reset by disabling the I2C Slave controller by writing ‘0’ at I2CEN bit in the I2CCN_S 
register. A reset forces the I2C slave controller to release both SDA and SCL if they are being held low by the I2C 
slave controller. The reset may reset few or all bits of I2CCN, I2CST and I2CBUF_S registers and reset the internal 
state machine of the I2C slave controller. Following a reset, the I2C slave controller must be re-initialized. 
 
Note: When the I2C slave interface is disabled, the I2C bootloader is not available.   
 
 
 
PMBus is a trademark of SMIF, Inc. 
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11.2 – I2C Slave Controller Register Description 
Following are the registers that are used to control the I2C Slave Interface.  
 
11.2.1 – I2C Slave Control Register (I2CCN_S) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - ADDR4EN ADDR3EN ADDR2EN SMB_MOD I2CSTREN I2CGCEN - - I2CACK I2CSTRS - I2CMODE - I2CEN 

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Access r r rw rw rw rw rw* rw* r r rw* rw* r r r rw* 

* Unrestricted Read. Unrestricted write access when I2CBUSY=0. Writes to I2CEN are disabled when I2CBUSY=1.  
 
BIT NAME DESCRIPTION 
15:14 Reserved Reserved. The user should not write to these bits. 
13 ADDR4EN I2C Slave Address 4 Enable: Setting this bit to ‘1’, enables slave address I2CSLA4_S and the I2C 

controller uses this slave address during the address match event. When this bit is set to ‘0’, disables 
slave address I2CSLA4_S. 

12 ADDR3EN I2C Slave Address 3 Enable: Setting this bit to ‘1’, enables slave address I2CSLA3_S and the I2C 
controller uses this slave address during the address match event. When this bit is set to ‘0’, disables 
slave address I2CSLA3_S. 

11 ADDR2EN I2C Slave Address 2 Enable: Setting this bit to ‘1’, enables slave address I2CSLA2_S and the I2C 
controller uses this slave address during the address match event. When this bit is set to ‘0’, disables 
slave address I2CSLA2_S. 

10 SMB_MOD Slave SMBUS Mode Operation.  When this bit is set to a ‘1’, SMBus timeout functionality is enabled 
for the I2C slave interface.  When this bit is cleared to ‘0’, the SMBus timeout functionality is disabled.  
See the SMBUS Timeout section for more details. 

9 I2CSTREN I2C Slave Clock Stretch Enable. Setting this bit to '1' stretches the clock (holds SCL low) at the end 
of the clock cycle specified in I2CSTRS. Clearing this bit disables clock stretching. 

8 I2CGCEN I2C Slave General Call Enable. Setting this bit to '1' enables the I2C to respond to a general call 
address (address = 0000 0000). Clearing this bit to '0' disables response to general call address. 

7:6 Reserved Reserved. The user should not write to these bits. 
5 I2CACK I2C Slave Data Acknowledge Bit. This bit selects the acknowledge bit returned by the I2C controller 

while acting as a receiver. Setting this bit to ‘1’ generates a NACK (leaving SDA high). Clearing the 
I2CACK bit to ‘0’ generates an ACK (pulling SDA LOW) during the acknowledgement cycle. This bit 
retains its value unless changed by software or hardware.  

4 I2CSTRS I2C Slave Clock Stretch Select. Setting this bit to ‘1’ enables clock stretching after the falling edge of 
the 8th clock cycle. Clearing this bit to ‘0’  enables clock stretching after the falling edge of the 9th clock 
cycle. This bit has no effect when clock stretching is disabled (I2CSTREN=0). 

3 Reserved Reserved. The user should not write to this bit. 
2 I2CMODE I2C Transfer Mode Select. This bit reflects the actual R/W bit value in current I2C transfer and is set 

by hardware. The same bit is set by hardware for corresponding slave address register following a 
successful slave address match.  

1 Reserved Reserved. The user should not write to this bit. 
0 I2CEN I2C Slave Enable. This bit enables the I2C Slave function. When set to ’1’, I2C Slave communication 

is enabled. When cleared to ‘0’, the I2C function is disabled.  
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11.2.2 – I2C Slave Status Register (I2CST_S) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name I2CBUS I2CBUSY - - - I2CSCL I2CROI I2CGCI I2CNACKI - I2CAMI I2CTOI I2CSTRI I2CRXI I2CTXI I2CSRI 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r* r* r r r r* rw rw rw* r rw rw rw* rw* rw rw 
* Set by hardware only. 
 
BIT NAME DESCRIPTION 
15 I2CBUS I2C Slave Bus Busy. This bit is set to ‘1’ when a START/repeated START condition is detected and 

cleared to '0' when the STOP condition is detected. This bit is reset to ‘0’ on all forms of reset or 
when I2CEN=0. This bit is controlled by hardware and is read only. 

14 I2CBUSY I2C Slave Busy. This bit is used to indicate the current status of the I2C module. The I2CBUSY is 
set to '1' when the I2C controller is actively participating in a transaction. This bit is controlled by 
hardware and is read only. 

13:11 Reserved Reserved. The user should not write to these bits. 
10 I2CSCL I2C Slave SCL Status. This bit reflects the logic state of SCL signal. This bit is set to '1' when SCL 

is at a logic high (1), and cleared to '0' when SCL is at a logic low (0). This bit is controlled by 
hardware and is read only. 

9 I2CROI I2C Slave Receiver Overrun Flag. This bit indicates a receive overrun when set to '1'. This bit is set 
to ‘1’ if the receiver has received two bytes since the last CPU read of I2CBUF_S. This bit can only 
be cleared to '0' by software reading the I2CBUF_S. Setting this bit to 1 by software causes an 
interrupt if enabled.  

8 I2CGCI I2C Slave General Call Interrupt Flag. This bit is set to '1' when the general call is enabled 
(I2CGCEN=1) and the general call address (00h) is received.  This bit must be cleared to '0' by 
software once set. Setting this bit to '1' by software causes an interrupt if enabled. 

7 I2CNACKI I2C Slave NACK Interrupt Flag. This bit is set by hardware to either a ‘1’ if a NACK was received 
from the host or a ‘0’ if an ACK was received from the host.  The setting of this bit to a ‘1’ causes an 
interrupt if enabled.  This bit can be cleared to ‘0’ by software once set.   

6 Reserved Reserved. The user should not write to this bit. 
5 I2CAMI I2C Slave Address Match Interrupt Flag. This bit is set to '1' when the I2C controller receives an 

address that matches the contents of the slave address register (I2CSLA_S).  This bit must be 
cleared to '0' by software once set. Setting this bit to ‘1’ by software causes an interrupt if enabled. 

4 I2CTOI I2C Slave Timeout Interrupt Flag. This bit is set to ‘1’ if SMBUS timeout is enabled and SCL is low 
longer than 30ms. This bit must be cleared to ‘0’ by software once set. Setting this to ’1’ causes an 
interrupt if enabled.  

3 I2CSTRI I2C Slave Clock Stretch Interrupt Flag. This bit indicates that the I2C slave controller is operating 
with clock stretching enabled and is currently holding the SCL clock signal low. The I2C controller 
releases SCL after this bit has been cleared to '0'. This bit must be cleared to '0' by software once 
set. This bit is set by hardware only. 

2 I2CRXI I2C Slave Receive Ready Interrupt Flag. This bit indicates that a data byte has been received in 
the I2C buffer. This bit must be cleared by software once set.  This bit is set by hardware only. 

1 I2CTXI I2C Slave Transmit Complete Interrupt Flag. This bit indicates that an address or a data byte has 
been successfully shifted out and the I2C controller has received an acknowledgment from the 
receiver (NACK or ACK). This bit must be cleared by software once set. Setting this bit to ‘1’ by 
software causes an interrupt if enabled. 

0 I2CSRI I2C Slave START Interrupt Flag. This bit is set to '1' when a START condition (or restart) is 
detected.  This bit must be cleared to '0' by software once set. Setting this bit to '1' by software 
causes an interrupt if enabled. 
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11.2.3 – I2C Slave Interrupt Enable Register (I2CIE_S) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - - I2CROIE I2CGCIE I2CNACKIE - I2CAMIE I2CTOIE I2CSTRIE I2CRXIE I2CTXIE I2CSRIE 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r r rw rw rw r rw rw rw rw rw rw 
 
 
BIT NAME DESCRIPTION 
15:10 Reserved Reserved. The user should not write to these bits. 
9 I2CROIE I2C Slave Receiver Overrun Interrupt Enable. Setting this bit to ‘1’ causes an interrupt to the 

CPU when a receiver overrun condition is detected (I2ROI=1). Clearing this bit to ‘0’ disables the 
receiver overrun detection interrupt. 

8 I2CGCIE I2C Slave General Call Interrupt Enable. Setting this bit to '1' causes an interrupt to the CPU 
when a general call is detected (I2CGCI=1).  Clearing this bit to '0' disables the general call 
interrupt. 

7 I2CNACKIE I2C Slave NACK Interrupt Enable. Setting this bit to ‘1’ causes an interrupt to the CPU when a 
NACK is detected (I2CNACKI=1). Clearing this bit to ‘0’ disables the NACK detection interrupt. 

6 Reserved Reserved. The user should not write to this bit. 
5 I2CAMIE I2C Slave Address Match Interrupt Enable. Setting this bit to ‘1’ causes an interrupt to the CPU 

when the I2C controller detects an address that matches the I2CSLA_S value (I2CAMI=1). 
Clearing this bit to ‘0’ disables the address match interrupt. 

4 I2CTOIE I2C Slave Timeout Interrupt Enable. Setting this bit to ‘1’ causes an interrupt to the CPU when 
an SMBUS timeout condition is detected (I2CTOI=1). Clearing this bit to ‘0’ disables the timeout 
interrupt. 

3 I2CSTRIE I2C Slave Clock Stretch Interrupt Enable. Setting this bit to '1' generates an interrupt to the CPU 
when the clock stretch interrupt flag is set (I2CSTRI=1). Clearing this bit disables the clock stretch 
interrupt. 

2 I2CRXIE I2C Slave Receive Ready Interrupt Enable. Setting this bit to ‘1’ causes an interrupt to the CPU 
when receive ready interrupt flag is set (I2CRXI=1). Clearing this bit to ‘0’ disables the receive 
ready interrupt. 

1 I2CTXIE I2C Slave Transmit Complete Interrupt Enable. Setting this bit to ‘1’ causes an interrupt to the 
CPU when transmit complete interrupt flag is set (I2CTXI=1). Clearing this bit to ‘0’ disables 
transmit complete interrupt. 

0 I2CSRIE I2C Slave START Interrupt Enable. Setting this bit to ‘1’ causes an interrupt to the CPU when a 
START condition is detected (I2CSRI=1). Clearing this bit to ‘0’ disables the START detection 
interrupt. 
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11.2.4 – I2C Slave Status2 Register (I2CST2_S) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - - - - - - I2CSPI SADI MADI - I2CXFRON - 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r r r r r r rw rw rw r rw r 
 
BIT NAME DESCRIPTION 
15:6 Reserved Reserved. The user should not write to these bits. 
5  I2CSPI I2C Slave STOP Interrupt Flag. This bit is set to '1' when a STOP condition is detected.  This bit 

must be cleared to '0' by software once set. Setting this bit to '1' by software causes an interrupt if 
enabled. 

4 SADI I2C START and Start of Address Cycle Flag. This bit is set to ‘1’ if the I2C controller has detected 
an I2C START and 2 cycles of SCL clock. Setting this to ’1’ causes an interrupt if enabled. This bit 
must be cleared to ‘0’ by software once set. 

3 MADI Memory Address Detected Interrupt Flag. This bit indicates that the I2C slave controller has 
detected a memory address and copied address into bit [7:0] of MPNTR register. This bit must be 
cleared to ‘0’ by software once set. Setting this bit to ‘1’ by software causes an interrupt if enabled. 

2 Reserved Reserved. The user should not write to this bit. 
1 I2CXFRON I2C Slave Transmit Complete Interrupt Flag. This bit indicates that an address or a data byte has 

been successfully shifted out and the I2C controller has received an acknowledgment from the 
receiver (NACK or ACK). This bit must be cleared by software once set.  

0 Reserved Reserved. The user should not write to this bit. 
 
11.2.5 – I2C Slave Interrupt Enable2 Register (I2CIE2_S) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - - - - - - I2CSPIE SADIE MADIE - - - 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r r r r r r rw rw rw r rw r 
 
BIT NAME DESCRIPTION 
15:6 Reserved Reserved. The user should not write to these bits. 
5  I2CSPIE I2C Slave STOP Interrupt Enable. Setting this bit to ‘1’ causes an interrupt to the CPU when a 

STOP condition is detected (I2CSPI=1). Clearing this bit to ‘0’ disables the STOP detection interrupt.  
4 SADIE I2C Slave After Start Interrupt Enable. Setting this bit to ‘1’ causes an interrupt to the CPU after 

I2C start + two master clocks.  
3 MADIE I2C Slave Memory Address Interrupt Enable. Setting this bit to ‘1’ causes an interrupt to the CPU 

when a memory address is detected on the I2C bus. The memory address cycle is detected by I2C 
controller after address match with write. The I2C controller looks for data after address match with 
write and copies into the MPNTR register. Clearing this bit to ‘0’ disables the memory address 
detection interrupt.  

2:0 Reserved Reserved. The user should not write to these bits. 
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11.2.6 – I2C Slave Address Registers (I2CSLA_S, I2CSLA2_S, I2CSLA3_S and I2CSLA4_S) 
 
I2CSLA_S 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - - - - A6 A5 A4 A3 A2 A1 A0 I2CMode 
Reset* 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 
Access r r r r r r r r rw rw rw rw rw rw rw rw 
* Default value of I2CSLA_S is 36h. 
  
I2CSLA2_S, I2CSLA3_S and I2CSLA4_S 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - - - - A6 A5 A4 A3 A2 A1 A0 I2CMode 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r r r r rw rw rw rw rw rw rw rw 
 
BIT NAME DESCRIPTION 
15:8 Reserved Reserved. The user should not write to these bits. 
7:1 A[6:0] I2C Slave Address. These address bits contain the address of the I2C slave interface. When a match to 

this address is detected, the I2C controller automatically acknowledges the host with the I2CACK bit 
value and the I2CAMI flag is set to ‘1’. An interrupt is generated if enabled. The I2CSLA_S is enabled by 
default. Other slave address registers participate in the address match event only when the 
corresponding slave address enable bit in the I2CCN_S register is set to ‘1’. 

0 I2CMode I2C Transfer Mode Select. This bit reflects the actual R/W bit value in current value in I2C transfer and 
set by hardware.  

 
11.2.7 – I2C Slave Data Buffer Register (I2CBUF_S) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
 
BIT NAME DESCRIPTION 
15:0 D[15:0] Data for I2C transfer is read from or written to this register.  The I2C transmit and receive buffers are 

different internal registers, however both are addressed at this register.  
The receive FIFO and TX pages are read and written using the I2CBUF_S register. 
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11.2.8 – Memory Map Address Register (MADDR) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - ROLLOVR - PAGE[2:0] MEM_ADDR[7:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r rw r rw rw rw rw rw rw rw rw rw rw rw 
  
BIT NAME DESCRIPTION 
15:13 Reserved Reserved. The user should not write to these bits. 
12 ROLLOVR Rollover Config: Setting this bit to ‘1’, enables boundary rollover at the memory address 256 and  

Setting this bit to ‘0’, enables boundary rollover at the memory address 128 for the s;ave address 
defined by the I2CSLA_S register. 

11 Reserved Reserved. The user should not write to this bit. 
10:8 PAGE PAGE: These bits define the page of memory map structure for I2CSLA_S slave address. 
7:0 MEM_ADDR Memory Address. These bits define the start address of memory map structure for I2CSLA_S slave 

address. 
 
11.2.9 – Memory Map Address Register (MADDR2) 
  
BIT NAME DESCRIPTION 
15:13 Reserved Reserved. The user should not write to these bits. 
12 ROLLOVR Rollover Config: Setting this bit to ‘1’, enables boundary rollover at the memory address 256 and  

Setting this bit to ‘0’, enables boundary rollover at the memory address 128 for the s;ave address 
defined by the I2CSLA2_S register. 

11 Reserved Reserved. The user should not write to this bit. 
10:8 PAGE PAGE: These bits define the page of memory map structure for I2CSLA2_S slave address. 
7:0 MEM_ADDR Memory Address. These bits define the start address of memory map structure for I2CSLA2_S slave 

address. 
 
11.2.10 – Memory Map Address Register (MADDR3) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - ROLLOVR - PAGE[2:0] MEM_ADDR[7:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r rw r rw rw rw rw rw rw rw rw rw rw rw 
  
BIT NAME DESCRIPTION 
15:13 Reserved Reserved. The user should not write to these bits. 
12 ROLLOVR Rollover Config: Setting this bit to ‘1’, enables boundary rollover at the memory address 256 and  

Setting this bit to ‘0’, enables boundary rollover at the memory address 128 for the s;ave address 
defined by the I2CSLA3_S register. 

11 Reserved Reserved. The user should not write to this bit. 
10:8 PAGE PAGE: These bits define the page of memory map structure for I2CSLA3_S slave address. 
7:0 MEM_ADDR Memory Address. These bits define the start address of memory map structure for I2CSLA3_S slave 

address. 
 
11.2.11 – Memory Map Address Register (MADDR4) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - ROLLOVR - PAGE[2:0] MEM_ADDR[7:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r rw r rw rw rw rw rw rw rw rw rw rw rw 
  
BIT NAME DESCRIPTION 
15:13 Reserved Reserved. The user should not write to these bits. 
12 ROLLOVR Rollover Config: Setting this bit to ‘1’, enables boundary rollover at the memory address 256 and  

Setting this bit to ‘0’, enables boundary rollover at the memory address 128 for the s;ave address 
defined by the I2CSLA4_S register. 

11 Reserved Reserved. The user should not write to this bit. 
10:8 PAGE PAGE: These bits define the page of memory map structure for I2CSLA_S slave address. 
7:0 MEM_ADDR Memory Address. These bits define the start address of memory map structure for I2CSLA4_S slave 

address. 
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11.2.12 – Current Slave Address Register (CUR_SLA) 
 
Bit 7 6 5 4 3 2 1 0 
Name MADDR_EN14 MADDR_EN3 MADDR_EN2 MADDR_EN1 SLA[3:0] 
Reset 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw 
  
BIT NAME DESCRIPTION 
15:8 Reserved Reserved. The user should not write to these bits. 
7 MADDR_EN4 Memory Address Detection Enable 4: Setting this bit to ‘1’, enables the memory address detection as 

described in section 11.1.6.3 for the slave address defined by the I2CSLA4_S register. 
6 MADDR_EN3 Memory Address Detection Enable 3: Setting this bit to ‘1’, enables the memory address detection as 

described in section 11.1.6.3 for the slave address defined by the I2CSLA3_S register. 
5 MADDR_EN2 Memory Address Detection Enable 2: Setting this bit to ‘1’, enables the memory address detection as 

described in section 11.1.6.3 for the slave address defined by the I2CSLA2_S register. 
4 MADDR_EN1 Memory Address Det1ction Enable 1: Setting this bit to ‘1’ enables the memory address detection as 

described in section 11.1.6.3 for the slave address defined by the for I2CSLA_S register. 
3:0 SLA[3:0] Slave Address Select. These bits indicate the current active slave address. These bits are updated 

after the slave address match event by the I2C controller. Using these bits, the TX Pages are selected 
by the I2C controller during the I2C transmits events. The I2C controller allows writing to these bits. 
However, user should write to these bits before the address match event which allows I2C controller to 
select intended TX page.  

 
11.2.13 – Memory Address Pointer Register (MPNTR) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - PAGE[2:0] MEM_PNTR[7:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r rw rw rw rw rw rw rw rw rw rw rw 
  
BIT NAME DESCRIPTION 
15:11 Reserved Reserved. The user should not write to this bit. 
10:8 PAGE PAGE: These bits define the page of memory map structure for current active slave address. 
7:0 MEM_ADDR Memory Address. These bits store current address of memory map structure of the current active 

slave address. The I2C controller automatically increments and performs boundary rollover for the 
active slave address according to ROLLOVER bit (ROLLOVR) defined in the corresponding MADDR 
register.  

 
11.2.14 – Read Memory Address Pointer Register (RPNTR) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - PAGE[2:0] MEM_PNTR[7:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r rw rw rw rw rw rw rw rw rw rw rw 
  
BIT NAME DESCRIPTION 
15:11 Reserved Reserved. The user should not write to this bit. 
10:8 PAGE PAGE: These bits define the page of memory map structure for current active slave address. 
7:0 MEM_ADDR Memory Address. These bits maintain current read address of memory map structure for the current 

active slave address and is used in word mode. 
 
Writing 0000h to RPTNR will cause this register to update with a pointer to the current SRAM location to store data 
based upon the memory location defined in the active slave address’ MADDR register and the captured memory 
location. 
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11.2.15 – I2C TX Page Interrupt Enable Register (I2CTXFIE) 
 
Bit 7 6 5 4 3 2 1 0 
Name TXPG_EN - - - - - THSH - 
Reset 0 0 0 0 0 0 0 0 
Access rw r r r r r rw r 
  
BIT NAME DESCRIPTION 
7 TXPG_EN TX PAGE ENABLE: Setting this bit to ‘1’, enables the TX PAGE for all enabled slave addresses. 
6:2 Reserved Reserved. The user should not write to these bits. 
1 THSH TX Page Threshold Reach Enable: Setting this bit to ‘1’, enables TX page threshold reach interrupt. 
0 Reserved Reserved. The user should not write to this bit. 
 
11.2.16 – I2C TX Page Status Register (I2CTXFST) 
 
Bit 7 6 5 4 3 2 1 0 
Name - - - - - - THSH - 
Reset 0 0 0 0 0 0 0 0 
Access r r r r r r rw r 
  
BIT NAME DESCRIPTION 
7:2 Reserved Reserved. The user should not write to these bits. 
1 THSH TX Page Threshold Reach Enable: The I2C controller sets this bit to ‘1’ when number of bytes 

remaining in the TX page is 4 for the current active slave.  
0 Reserved Reserved. The user should not write to this bit. 
 
11.2.17 – I2C Receive FIFO Interrupt Enable (I2CRXFIE) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - - - - FIFO_EN - - - FULL - THSH EMPTY 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r r r r rw r r r rw r rw rw 
  
BIT NAME DESCRIPTION 
15:8 Reserved Reserved. The user should not write to these bits. 
7 FIFO_EN FIFO Enable: Setting this bit to ‘1’, enables the receive FIFO. 
6:4 Reserved Reserved. The user should not write to these bits. 
3 FULL FIFO FULL: Setting this bit to ‘1’, generates an interrupt when FIFO receives 8 bytes (FIFO FULL). 
2 Reserved Reserved. The user should not write to these bits. 
1 THSH FIFO THSH: Setting this bit to ‘1’, generates an interrupt when FIFO receives 4 bytes. 
0 EMPTY FIFO EMPTY: Setting this bit to ‘1’, generates an interrupt when receive FIFO is empty 

 
11.2.18 – I2C Receive FIFO Interrupt Enable (I2CRXFST) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - - - - - - - - FULL - THSH EMPTY 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r r r r r r r r rw r rw rw 
  
BIT NAME DESCRIPTION 
15:4 Reserved Reserved. The user should not write to these bits. 
3 FULL FIFO FULL: This bit indicates that the receive FIFO has received 8 bytes. This bit must be cleared 

to ‘0’ by software once set. Setting this bit to ‘1’ by software causes an interrupt if enabled. 
2 Reserved Reserved. The user should not write to these bits. 
1 THSH FIFO EMPTY: This bit indicates that the receive FIFO has received 4 bytes. This bit must be 

cleared to ‘0’ by software once set. Setting this bit to ‘1’ by software causes an interrupt if enabled. 
0 EMPTY FIFO EMPTY: This bit indicates that the receive FIFO is empty. This bit must be cleared to ‘0’ by 

software once set. Setting this bit to ‘1’ by software causes an interrupt if enabled. 
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SECTION 12 – SERIAL PERIPHERAL INTERFACE (SPI) 
The DS4830A provides two independent Serial Peripheral Interfaces (SPI) – one defined as SPI Master and SPI 
Slave. Each SPI module of the DS4830A microcontroller provides an independent serial communication channel to 
communicate synchronously with peripheral devices in a multiple master or multiple slave system. Each interface 
allows independent access to a four-wire full-duplex serial bus that can be operated in either master mode or slave 
mode. The SPI functionality must be enabled by setting the SPI Enable (SPIEN) bit of the SPI Control register to ‘1’. 
The maximum data rate of the SPI interface is 1/2 the system clock frequency for master mode operation and 1/4 the 
system clock frequency for slave mode operation.  
Note: Even though SPI Master and SPI Slave interfaces are defined, each interface can operate as SPI Master or 
SPI Slave or both. 
 
The four external interface signals used by the SPI module are MOSI (Master Out Slave In), MISO (Master In Slave 
Out), SPI Clock (SPICK), and Slave Select (SSEL). 
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Figure 12-1: SPI Master and Slave Block Diagram 
 
12.1 – Serial Peripheral Interface (SPI) Detailed Description 

The block diagram Figure 12-1 shows the SPI external interface signals, control unit, read buffer, and single shift 
register common to the transmit and receive data path for both the master and slave blocks. SPI can be viewed as a 
synchronous serial I/O port that shifts data stream of variable length (8 or 16 bits) between peripheral devices. Data 
is shifted out of the SPI through the programmable shift register which is formed by serially connecting the master’s 
shift register and a slave shift register.  

Each time that an SPI transfer completes, the received character is transferred to the read buffer, giving double 
buffering on the receive side. The CPU has read/write access to the control unit and the SPI data buffer (SPIB). 
Writes to SPIB are always directed to the shift register while reads always come from the receive data buffer. During 
an SPI transfer, data is simultaneously transmitted and received. The serial clock signal (SPICK) synchronizes 
shifting and sampling of the bit stream on the two serial data pins.  

For both the master and the slave, data is shifted out of the shift register on one edge of SPICK and latched into the 
shift register on the opposite SPICK clock edge. The master can initiate data transfer at any time since it controls the 
serial clock. The slave select signal (SSEL) allows individual selection of slave SPI device in the network. 

12.1.1 – SPI Transfer Formats 
During an SPI transfer, data is simultaneously transmitted and received over two serial data lines with respect to a 
single serial shift clock. The polarity and phase of the serial shift clock are the primary components in defining the 
SPI data transfer format. The polarity of the serial clock corresponds to the idle logic state of the clock line and 
therefore also defines which clock edge is the active edge. To define a serial shift clock signal that idles in a logic low 
state (active clock edge = rising), the Clock Polarity Select (CKPOL; SPICF.0) bit should be configured to a 0, while 
setting CKPOL = 1 causes the shift clock to idle in a logic high state (active clock edge = falling). The phase of the 
serial clock selects which edge is used to sample the serial shift data. The Clock Phase Select (CKPHA; SPICF.1) bit 
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controls whether the active or inactive clock edge is used to latch the data. When CKPHA is set to 1, data is sampled 
on the inactive clock edge (clock returning to the idle state). When CKPHA is set to 0, data is sampled on the active 
clock edge (clock transition to the active state). Together, the CKPOL and CKPHA bits allow four possible SPI data 
transfer formats illustrated in Figure 12-2 and Figure 12-3. The Slave Select signal can remain asserted between 
successive transfers. Table 12-1 illustrates the SPI modes. 
 
Table 12-1: SPI Modes 

CKPOL CKPHA MODE SAMPLE POINT 
0 0 Mode 0 Rising edge 
0 1 Mode 1 Falling edge 
1 0 Mode 2 Falling edge 
1 1 Mode 3 Rising edge 

C K PO L =0
C K PH A =1

C K PO L =1
C K PH A =1
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S S E L
SA S=1
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Figure 12-2: SPI Transfer Formats (CKPHA=1) 
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Figure 12-3: SPI Transfer Formats (CKPHA=0) 
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12.1.2 – SPI Character Lengths 
To flexibly accommodate different SPI transfer data lengths, the character length for any transfer is user configurable 
via the Character Length Bit (CHR) in the SPI Configuration Register. These are independently configurable for the 
master and slave SPI. The CHR bit allows selection of either 8-bit or 16-bit transfers. When CHR is 0, the character 
length is 8-bits; when CHR is set to 1, the character length is 16 bits. 
 
When loading 8-bit characters into the SPIB data buffer, the byte for transmission should be right-justified or placed 
in the least significant byte of the word. When a byte transfer completes, the received byte is right-justified and can 
be read from the least significant byte of the SPIB word. The most significant byte of the SPIB data buffer is not used 
when transmitting and receiving 8-bit characters. 
 
12.2 – SPI System Errors 
Three types of SPI system errors can be detected by the SPI module. A mode fault error arises in a multiple master 
system when more than one SPI device simultaneously tries to be a master. A receive overrun error occurs when an 
SPI transfer completes before the previous character has been read from the receive data buffer. The third kind of 
error, write collision, indicates that an attempted write to SPIB was detected while a transfer was in progress 
(STBY=1). 
 
12.2.1 – Mode Fault 
When a SPI device is configured as a master and its Mode Fault Enable bit (SPICN.2: MODFE) is also set, the Slave 
Select pin is configured as input for mode fault detection.  The mode fault error occurs if Slave Select signal is 
asserted by an external device. This error can occur in multi master system when a second SPI device attempts to 
function as a master in the system. This causes the possibility of contention, which may damage the CMOS push 
pull drivers. The active state of Slave Select is defined by Slave Active Select bit (SPICF.6: SAS). If SAS is cleared 
to 0 and a low SSEL input signal is detected while MODFE is set, a mode fault error has occurred. If SAS is set to 1, 
a high SSEL signal indicates that a mode fault error has occurred. The mode fault error detection is to provide 
protection from such damage by disabling the bus drivers. When a mode fault is detected, the following actions are 
taken immediately by hardware: 
 
1. The MSTM bit is forced to 0 to reconfigure the SPI device as a slave. 
2. The SPIEN bit is forced to 0 to disable the SPI module. 
3. The Mode Fault (SPICN.3: MODF) status flag is set. Setting the MODF bit can generate an interrupt if it is 

enabled. 
 

The application software must correct the system conflict before resuming its normal operation. The MODF flag is set 
automatically by hardware but must be cleared by software or a reset once set. Setting the MODF bit to 1 by 
software causes an interrupt if enabled. 
 
Mode fault detection is optional and can be disabled by clearing the MODFE bit to 0. Disabling the mode fault 
detection will disable the function of the Slave Select signal during the master mode operation, allowing the 
associated port pin to be used as a general-purpose I/O. 
 
Note that the mode fault mechanism does not provide full protection from bus contention in multiple master, multiple 
slave systems. For example, if two devices are configured as master at the same time, the mode fault-detect circuitry 
offers protection only when one of them selects the other as slave by asserting its Slave Select signal. Also, if a 
master accidentally activates more than one slave and those devices try to simultaneously drive their output pins, 
bus contention can occur without a mode fault error being generated. 
 
12.2.2 – Receive Overrun 
Since the receive direction of SPI is double buffered, there is no overrun condition as long as the received character 
in the read buffer is read before the next character in the shift register is ready to be transferred to the read buffer. 
However, if previous data in the read buffer has not been read out when a transfer cycle is completed and the new 
character is loaded into the read buffer, a receive overrun occurs and the Receive Overrun flag (SPICN.5: ROVR) 
will be set. Setting the ROVR flag indicates that the newer received character has been overwritten and is lost. 
Setting the ROVR bit to 1 will cause an interrupt if enabled. Once set, the ROVR bit is cleared only by software or a 
reset. 
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12.2.3 – Write Collision While Busy 
A write collision occurs if an attempt to write the SPIB data buffer is made during a transfer cycle (STBY=1). Since 
the shift register is single buffered in the transmit direction, writes to SPIB are made directly into the shift register. 
Allowing the write to SPIB while another transfer is in progress could easily corrupt the transmit/receive data. When 
such a write attempt is made, the current transfer continues undisturbed, the attempted write data is not transferred 
to the shift register, and the control unit sets the Write Collision flag (SPICN.4: WCOL). Setting the WCOL bit to 1 
causes an interrupt if SPI interrupt sources are enabled. Once set, the WCOL bit is cleared only by software or a 
reset. Normally, write collisions are associated solely with slave devices since they do not control initiation of 
transfers and do not have access to as much information about the SPICK clock as the master. As a master, write 
collisions are completely avoidable, however, the control unit detects write collisions for both master and slave 
modes. 
 
12.3 – SPI Interrupts 
Four flags in the SPICN SFR can generate an SPI interrupt when enabled.  

• Mode Fault (MODF) – This is applicable in Master mode only. 
• Write Collision (WCOL) 
• Receive overrun 
• SPI Transfer Complete 

These four bits serve as interrupts flags that allow the system programmer to specify the source of interrupts which 
may cause an interrupt request to the CPU. These bits default to 0 on reset and must be cleared by software when 
set. Once the SPI Interrupt is enabled by setting the ESPII bit to ‘1’, any of the four SPI interrupt sources can cause 
an interrupt.  
 
12.4 – SPI Master 
The DS4830A has the following SPI interface signals. 
 

FUNCTIONAL NAME EXTERNAL PIN NAME 
MSPIDI: Input to serial shift register (MISO) MDI 
MSPIDO: Output from serial shift register (MOSI) MDIO 
MSPICK: Serial shift clock sourced to slave device(s) (SPICK) MCL 
MSPICS: (Optional) Mode fault detection input if enabled (MODFE=1) (SSEL) MCS 
 
12.4.1 – SPI Transfer Baud Rates 
When operating in the master mode, the SPI serial clock is sourced to the external slave device(s). The serial clock 
baud rate is determined by the clock divide ratio specified in the SPI Clock Divider Ratio (SPICK) register. The SPI 
module supports 256 different clock divide ratio selections for serial clock generation. The SPI Baud rate is 
determined by the following formula: 
 
 
 
12.4.2 – SPI Master Operation 
The SPI module is placed in master mode by setting the Master Mode Enable (MSTM) bit in the SPI Control register 
to 1. Only an SPI master device can initiate a data transfer. The master is responsible for manually 
selecting/deselecting slave(s) via the MSPICS signal or any GPIO pin. Writing a data character to the SPI shift 
register (SPIB) while in master mode starts a data transfer. The SPI master immediately shifts out the data serially 
on the MSPIDO pin, most significant bit first, while providing the serial clock on MSPICK output. New data is 
simultaneously received on the MSPIDI pin into the least significant bit of the shift register. The data transfer format 
(clock polarity and phase), character length, and baud rate are all configurable as described earlier in the section. 
During the transfer, the SPI Transfer Busy (SPICN.7:STBY) flag will be set to indicate that a transfer is in process. At 
the end of the transfer, the data contained in the shift register is moved into the receive data buffer, the STBY bit is 
cleared by hardware, and the SPI Transfer Complete flag (SPICN.6: SPIC) is set. Setting of the SPIC bit will 
generate an interrupt request if SPI interrupt sources are enabled (ESPII=1). 
 
The SPI master can be configured to transfer either 8 or 16 bits in an operation to accommodate network with 
different word length requirements. The data transfer rate for the network is determined by the divider ratio in the 

SPI Baud Rate  =   
          Core  Clock 
2 * Clock Divide Ratio 

where Clock Divider Ratio = (SPICK.7:0) + 1 
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master’s SPI Clock SFR. The SPI transfer format is selected by the master device using two bits SPI Clock Polarity 
(CKPOL) and Clock Phase in the SPI Configuration Register.  

Figure 12-4: SPI Master Pin Configurations with Mode Fault Enable and Disable 
 
In master mode, the MSPICS pin of the master defaults to general-purpose I/O pin. However, as shown in Figure 12-
4 the MSPICS can be used for mode fault detection input if the Mode Fault Enable bit (MODFE) is set. When the SPI 
is configured as a master and the MSPICS pin is used as mode fault detection input, a mode fault condition occurs if 
an active signal is detected on MSPICS. This indicates that some other device on the network is attempting to be a 
master. The active signal is defined by the Slave Active Select (SAS) bit. When MODFE is set to 1 and SAS is 
cleared to 0, an active low signal on MSPICS will trigger a mode fault. If MODFE is set to 1 and SAS is set to 1, an 
active high signal on MSPICS will indicate a mode fault condition. Either way, the master device will sense the error 
and immediately disables the SPI device to avoid potentially damaging bus contentions. 
 
To avoid unintentional mode fault error, prior to enabling the SPI peripheral as master with mode fault enabled, 
software should check the status of MSPICS. MSPICS should be held inactive for at least 2 system clocks before 
enabling the SPI master. Otherwise, mode fault will occur and the SPI MSTM bit will be cleared to 0 and the SPI 
disabled. 
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CS 
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SPI Master

CS 
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CS: External Slave Chip Select 
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12.4.3 – SPI Master Register Descriptions 
SPI Master Module has four SFR registers. These are SPICN_M, SPICF_M, SPICK_M and SPIB_M. The SPI 
control register SPICN_M and SPI configuration register SPICF_M controls and configures the Serial Peripheral 
Interface, respectively. The SPI Clock Register SPICK_M configures SPI Baud rate in Master mode. The SPI Buffer 
SPIB_M is used in SPI data transfer. SPI Master SFRs are located in Module 5.  
 
12.4.3.1 – SPI Control Register (SPICN_M) 
 
Bit 7 6 5 4 3 2 1 0 
Name STBY SPIC ROVR WCOL MODF MODFE MSTM SPIEN 
Reset 0 0 0 0 0 0 0 0 
Access r rw rw rw rw rw rw rw 

 
BIT NAME DESCRIPTION 
7 STBY Write Transfer Busy Flag. This bit indicates the current status of the SPI module. 

STBY is set to ‘1’ when SPI transfer cycle is started and is cleared to ‘0’ when the 
transfer cycle is completed. This bit is controlled by hardware and is read only for user 
software.  

6 SPIC SPI Transfer Complete Flag. This bit indicates the completion of a transfer cycle 
when set to ‘1’. This bit must be cleared to ‘0’ by software once set. Setting this bit to 
logic ‘1’ by software will cause an interrupt if enabled. 

5 ROVR Receive Overrun Flag. This bit indicates a receive overrun when set to ‘1’. This is 
caused if two or more characters are received since the last read by the processor. The 
newer data is lost. This bit must be cleared to ‘0’ by software once set. Setting this bit 
to logic ‘1’ by software will cause an interrupt if enabled.  

4 WCOL Write Collision Flag. This bit indicates a write collision when set to ‘1’. This is caused 
by attempting to write to the SPIB while a transfer cycle is in progress. . This bit must 
be cleared to ‘0’ by software once set. Setting this bit to logic ‘1’ by software will cause 
an interrupt if enabled.  

3 MODF Mode Fault. This bit is the mode fault flag when the SPI is operating as a master If the 
MODFE bit is set, the active signal that causes a mode fault error is defined in the SAS 
bit. If the SAS bit is cleared to 0, a low MSPICS signal will trigger a mode fault error. If 
the SAS bit is set to 1, a high MSPICS signal will indicate that the mode fault error has 
occurred. This bit must be cleared to ‘0’ by software once set. Setting this bit to logic ‘1’ 
by software will cause an interrupt if enabled. This flag has no meaning in slave mode.  

2 MODFE Mode Fault Enable. When set to ‘1’, MSPICS will be utilized for mode fault detection 
during SPI master mode operation. When cleared to ‘0’, the MSPICS input has no 
function and its pin can be used for other purposes. 

1 MSTM Master Mode Enable. When set to ‘1’, the SPI module will operate in Master mode 
when the SPI module is enabled (SPIEN = 1). When set to ‘0’, SPI module will operate 
in Slave mode when the SPI module enabled (SPIEN = 1). 

0 SPIEN SPI Enable. Setting this bit to ‘1’, enables the SPI Module. Setting this bit to ‘0’, 
disables the SPI module.  
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12.4.3.2 – SPI Configuration Register (SPICF_M) 
 
Bit 7 6 5 4 3 2 1 0 
Name ESPII SAS - - - CHR CKPHA CKPOL 
Reset 0 0 0 0 0 0 0 0 
Access rw rw r r r rw rw rw 

  
BIT NAME DESCRIPTION 
7 ESPII SPI Interrupt Enable. Setting this bit to ‘1’ enables the SPI interrupt when MODF, 

WCOL, ROVR or SPIC flags are set. Clearing this bit to ‘0’ disables the SPI interrupt. 

6 SAS Slave Active Select.  
In Master mode, this is used only when mode fault is enabled. 
If SAS = 0, then mode fault is detected when active low is detected on MSPICS pin. 
If SAS = 1, then mode fault is detected when active high is detected on MSPICS pin. 

5:3 Reserved Reserved, Read Returns 0. 
2 CHR Character Length Bit. The CHR bit determines the character length for an SPI 

transfer cycle. A character can consist of 8 or 16 bits in length. When CHR bit is ‘0’, the 
character is 8 bits; when CHR is set to ‘1’, the character is 16 bits. 

1 CKPHA SPI Clock Phase Select. This bit is used with the CKPOL bit to determine the SPI 
transfer format. When the CKPHA is set to ‘1’, the SPI will sample input data at an 
inactive edge. When the CKPOL is cleared to 0, the SPI will sample input at an active 
edge. 

0 CKPOL SPI Clock Polarity Select. This bit is used with the CKPHA bit to determine the SPI 
transfer format. When the CKPOL is  set  to  ‘1’,  the  SPI  uses  the  clock  falling  edge  
as  an  active  edge. When the CKPOL is cleared to 0, the SPI selects the clock rising 
edge as an active edge. 

 
12.4.3.3 – SPI Clock Register (SPICK_M) 
 
Bit 7 6 5 4 3 2 1 0 
Name SPICK_M[7:0] 
Reset 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw 
 
BIT NAME DESCRIPTION 
7:0 SPICK_M[7:0] Clock Divide Ratio Bits. These bits select one of the 256 divide ratios (0 to 255) used for 

the baud rate generator, with bit 7 as the most significant. The frequency of SPI baud rate 
is calculated using the following equation: 
 
SPI Baud Rate = ½ x Core Clock / (SPICK[7:0] + 1) 

 
12.4.3.4 – SPI Data Buffer Register (SPIB_M) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name SPIB_M[15:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access* rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
*Unrestricted read, write is allowed outside of a transfer cycle; when the STBY bit is set, write is blocked and will 
cause write collision error. 
 
BIT NAME DESCRIPTION 
15:0 SPIB_M[15:0] SPI Data Buffer Bits. Data for SPI is read from or written to this location. The serial 

transmit and receive buffers are separate but both are addressed at this location.  
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12.5 – SPI Slave 
The DS4830A has the following SPI interface signals. 
 

FUNCTIONAL NAME EXTERNAL PIN NAME 
SSPIDO: Output from serial shift register (MISO) GP6 
SSPIDI: Input to serial shift register (MOSI) SDA 
SSPICK: Serial shift clock from SPI master (SPICK) SCL 
SSPICS: Slave select input (CS) GP7 
 
12.5.1 – SPI Slave Select 
The SPI Slave Select SSPICS can be configured to accept either an active low or active high signal via the Slave 
Active Select Bit (SAS) in the SPI Configuration Register. The SAS bit allows the selection of SSPICS active state. 
When SAS is cleared to 0, SSPICS is configured to be active low. When SAS is set to 1, SSPICS is configured to be 
active high. 
 
12.5.2 – SPI Transfer Baud Rates 
When operating as a slave device, the SPI serial clock is driven by an external master. For proper slave operation, 
the serial clock provided by the external master should not exceed the system clock frequency divided by 4. 
 
12.5.3 – SPI Slave Operation 
The SPI module operates in the slave mode when the MSTM bit is cleared to 0. In Slave mode, the SPI is dependent 
on the SSPICK sourced from the master to control the data transfer.  
 
The Slave Select SSPICS input must be externally asserted by a master before data exchange can take place. 
SSPICS must be asserted before data transaction begin and must remain asserted for the duration of the 
transaction. If data is to be transmitted by the slave device, it must be written to its shift register before the beginning 
of a transfer cycle, otherwise the character already in the shift register will be transferred. The slave device considers 
a transfer to begin with the first clock edge or the active SSPICS edge, dependent on the data transfer format. When 
SAS is cleared to 0, the active SSPICS edge is the falling edge of SSPICS while if SAS is set to 1, the active 
SSPCIS edge is the rising edge of SSPICS. 
 
The SPI slave receives data from the external master SSPIDI pin, most significant bit first, while simultaneously 
transferring the contents of its shift register to the master on the SSPIDO pin, also most significant bit first. Data 
received from the external master replaces data in the internal shift register until the transfer completes. Just like in 
the master mode of operation, received data is loaded into the read buffer and the SPI Transfer Complete flag is set 
at the end of transfer. The setting of the Transfer Complete flag will generate an interrupt request if enabled. Note 
also that when CKPHA=0, the most significant bit of the SPI data buffer will be shifted out on the 8th shift clock edge. 
 
When SSPICS is not asserted, the slave device ignores the SSPICK clock and the shift register is disabled. Under 
this condition, the device is basically idle, no data is shifted out from the shift register and no data is sampled from 
the SSPIDI pin. The SSPIDO pin is placed in an input mode and is weakly pulled high to allow other devices on the 
bus to drive the bus. De-assertion of the SSPICS signal by the master during a transfer (before a full character, as 
defined by CHR, is received) aborts the current transfer. When the transfer is aborted, no data is loaded into the read 
buffer, the SPIC flag is not set, and the slave logic and the bit counter are reset. 
 
In slave mode, the Clock Divider Ratio bits (CKR7:0) have no function since the serial clock is supplied by an 
external master. The transfer format (CKPOL, CKPHA settings) and the character length selection (CHR) for the 
slave device, however, should match the master for a proper communication. 
 
Slave mode is used when the SPI is controlled by another peripheral device. The SPI is in slave mode when the 
MSTM bit is cleared to logic 0. 
 
Each SPI (named as SPI master or SPI slave in this section) can be used as either SPI master or Slave. 
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12.5.4 – SPI Slave Register Descriptions 
SPI Slave Module has four SFR registers.  These are SPICN_S, SPICF_S, SPICK_S, and SPIB_S. The SPI control 
register SPICN_S and SPI configuration register SPICF_S controls and configures the Serial Peripheral Interface 
respectively. The SPI Clock Register SPICK_S is not used in SPI Slave mode as SPI clock is driven by SPI Master. 
The SPI Buffer SPIB_S is used in SPI data transfer. SPI Slave SFRs are located in Module 1.  
 
12.5.4.1 – SPI Control Register (SPICN_S) 
 
Bit 7 6 5 4 3 2 1 0 
Name STBY SPIC ROVR WCOL MODF MODFE MSTM SPIEN 
Reset 0 0 0 0 0 0 0 0 
Access r rw rw rw rw rw rw rw 

  
BIT NAME DESCRIPTION 
7 STBY Write Transfer Busy Flag. This bit indicates the current status of the SPI module. 

STBY is set to ‘1’ when SPI transfer cycle is started and is cleared to ‘0’ when the 
transfer cycle is completed. This bit is controlled by hardware and is read only for user 
software.  

6 SPIC SPI Transfer Complete Flag. This bit indicates the completion of a transfer cycle 
when set to ‘1’. This bit must be cleared to ‘0’ by software once set. Setting this bit to 
logic ‘1’ by software will cause an interrupt if enabled. 

5 ROVR Receive Overrun Flag. This bit indicates a receive overrun when set to ‘1’. This is 
caused if two or more characters are received since the last read by the processor. The 
newer data is lost. This bit must be cleared to ‘0’ by software once set. Setting this bit 
to logic ‘1’ by software will cause an interrupt if enabled.  

4 WCOL Write Collision Flag. This bit indicates a write collision when set to ‘1’. This is caused 
by attempting to write to the SPIB while a transfer cycle is in progress. . This bit must 
be cleared to ‘0’ by software once set. Setting this bit to logic ‘1’ by software will cause 
an interrupt if enabled.  

3 MODF Mode Fault.  
This flag has no meaning in slave mode. 

2 MODFE Mode Fault Enable 
This flag has no meaning in slave mode. In slave mode, the SSPICS pin always 
functions as a slave select input signal to the SPI module, independent of the MODFE 
bit. 

1 MSTM Master Mode Enable. When set to ‘1’, SPI module will operate as Master mode when 
SPI module is enabled (SPIEN = 1). When set to ‘0’, SPI module will operate as Slave 
mode when SPI module enabled (SPIEN = 1). 

0 SPIEN SPI Enable. Setting this bit to ‘1’, enables SPI Module. Setting this bit to ‘0’, disables 
the SPI module.  

 



DS4830A User’s Guide 
  

  120 

 
12.5.4.2 – SPI Configuration Register (SPICF_S) 
 
Bit 7 6 5 4 3 2 1 0 
Name ESPII SAS - - - CHR CKPHA CKPOL 
Reset 0 0 0 0 0 0 0 0 
Access rw rw r r r rw rw rw 

  
BIT NAME DESCRIPTION 
7 ESPII SPI Interrupt Enable. Setting this bit to ‘1’ enables the SPI interrupt when MODF, 

WCOL, ROVR or SPIC flags are set. Clearing this bit to ‘0’ disables the SPI interrupt. 

6 SAS Slave Active Select.  
In Slave Mode, this bit is used to determine the SSPICS active state. When the SAS is 
cleared to ‘0’, the SSPICS is active low and will respond to an external low signal. 
When the SAS is set to ‘1’, the SSPICS is active high.  

5:3 Reserved Reserved, Read Returns 0. 
2 CHR Character Length Bit. The CHR bit determines the character length for an SPI 

transfer cycle. A character can consist of 8 or 16 bits in length. When CHR bit is ‘0’, the 
character is 8 bits; when CHR is set to ‘1’, the character is 16 bits. 

1 CKPHA SPI Clock Phase Select. This bit is used with the CKPOL bit to determine the SPI 
transfer format. When the CKPHA is set to ‘1’, the SPI will sample input data at an 
inactive edge. When the CKPOL is cleared to 0, the SPI will sample input at an active 
edge. 

0 CKPOL SPI Clock Polarity Select. This bit is used with the CKPHA bit to determine the SPI 
transfer format. When the CKPOL is  set  to  ‘1’,  the  SPI  uses  the  clock  falling  edge  
as  an  active  edge. When the CKPOL is cleared to 0, the SPI selects the clock rising 
edge as an active edge. 

 
12.5.4.3 – SPI Clock Register (SPICK_S) 
 
Bit 7 6 5 4 3 2 1 0 
Name SPICK_S[7:0] 
Reset 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw 
 
BIT NAME DESCRIPTION 
7:0 SPICK_S[7:0] The register has no function when operation in slave mode and clock generation circuitry is 

disabled.  

 
12.5.4.4 – SPI Data Buffer Register (SPIB_S) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name SPIB_S[15:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access* rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
*Unrestricted read, write is allowed outside of a transfer cycle; when the STBY bit is set, write is blocked and will 
cause write collision error. 
 
BIT NAME DESCRIPTION 
15:0 SPIB_S[15:0] SPI Data Buffer Bits. Data for SPI is read from or written to this location. The serial 

transmit and receive buffers are separate but both are addressed at this location.  
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SECTION 13 – 3-WIRE  
The DS4830A has proprietary 3-Wire master interface for communication with MAXIM 3-wire laser drivers (which 
supports MSB first 3-wire protocol). The 3-wire communication mode operates similar to SPI mode. However, in the 
3-wire mode, there is one bi-directional I/O instead of separate data in and data out signals. The 3-wire interface 
consists of the MCS, MDIO and MCL. The 3-Wire Master interface reads data on the falling edge of MCL. During 3-
Wire write operation the 3-Wire master outputs the data on the falling edge of MCL.  
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Figure 13-1: 3-Wire Write and Read Operation 
 

13.1 – Detailed Description 
The DS4830A has a proprietary 3-Wire digital serial interface and it is designed to interface with Maxim 3-wire slave 
devices (Laser drivers). The DS4830A acts as the 3-Wire master. It is a 3-pin interface consisting of MDIO a 
bidirectional data line, MCL clock signal and MCS chip select output. Chip select is active high. The 3-Wire master 
initiates communication by generating clock.  
 
By default, 3-Wire Chip select is enabled and it is automatically controlled by 3-Wire interface during the 
communication. The DS4830A 3-Wire interface supports byte mode data transfer. The 3-Wire Control Register 
(TWR) is used to control and configure the 3-Wire interface. The 3-Wire interface provides 8 user selectable MCL 
clock frequencies. The 3-Wire communication is enabled by setting the TWEN bit to ‘1’ in the TWR register and MCS 
goes to low. Data transfer is initiated on next core clock after writing to the Data and Address Register (DADDR). 
 
13.1.1 – Operation 
The DS4830A 3-wire master supports 8 user configurable communication clock frequencies. These are selected by 
writing to the TWCP [2:0] bits in the TWR register. Each 3-Wire packet consists of 16-bits (15-bit address/data, 1-bit 
RWN). See Table 13-1 for 3-Wire Data Packet. 
 
Table 13-1: 3-Wire Data Packet 

BIT NUMBER NAME DESCRIPTION 
15 to 9 ADDR (Address) 7-bit Internal Register Address (3-Wire Slave) 

8 RWN 0 - Write 
1 – Read 

7 to 0 DATA 8-bit Read or Write Data 
 
The 3-Wire interface is enabled when the TWEN bit in the TWR register is set to ‘1’. Using the DADDR register 3-
Wire write (RWN = 0) and read (RWN = 1) operations are performed. The 3-Wire master supports 7-bit read or write 
address and 8-bit data. Write to the DADDR register automatically starts the data transfer and the 3-Wire interface 
sets BUSY flag to ‘1’. The BUSY flag is reset to ‘0’ when the data transfer is completed.  
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13.1.1.1 – Write Mode (RWN=0) 
The 3-Wire master generates 16 clock cycles on MCL pin. It outputs 16-bits (MSB first DADDR data) to the MDIO 
line at the falling edge of the MCL. After completion of 16 clocks, the 3-Wire BUSY flag is cleared and the data 
transfer complete flag TWI is set to ‘1’ which generates interrupt if enabled. The master closes the transmission by 
setting the MCS to ‘0’. 
 
13.1.1.2 – Read Mode (RWN=1) 
The 3-Wire master generates 16 clock cycles at MCL. It outputs 8-bits of ADDR + RWN (MSB first) to the MDIO line 
at the falling edge of the clocks. The MDIO line is released after the RWN bit is transmitted. The slave outputs 8-bits 
of data (MSB first) at rising edge of the clock. The master reads the data bits at the falling edge of the clocks. After 
the completion of 16 clocks, the 3-Wire BUSY flag is cleared and the data transfer complete flag TWI is set to ‘1’ 
which generates interrupt if enabled. Read data is available in the DADDR [7:0] bits and the DADDR[8:15] bits set to 
0.The master closes the transmission by setting the MCS to ‘0’.  
 
13.1.1.3 – Chip Select Disable Mode (TWCDIS = 1) 
The DS4830A 3-Wire master provides facility to disable MCS chip select. In this mode, any GPIO can be configured 
to function as chip select and the 3-Wire interface does not control MCS during the communication. In chip select 
disabled mode, the application program should control chip select during the 3-Wire communication.  Using this 
feature, multiple 3-Wire slaves can be interfaced with the 3-Wire master. 
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13.2 – 3-Wire Register Descriptions 
The 3-Wire interface is controlled by two SFR registers.  These are the 3-Wire Control Register TWR and Data and 
Address Register DADDR. The TWR register configures and controls 3-Wire interface. The DADDR is used in 3-Wire 
read and write operation. These registers are located at Module 2. 
 
13.2.1 – 3-Wire Control Register (TWR)  
 
Bit 7 6 5 4 3 2 1 0 
Name TWEN TWCP[2:0] TWIE TWCSDIS TWI BUSY 
Reset 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw r 
 
BIT NAME DESCRIPTION 
7 TWEN 3-Wire Enable. This bit enables the 3-Wire interface. When this bit is set to ‘1’, the 

3-Wire interface is enabled. When this bit is cleared, the 3-Wire function is disabled.  
6:4 TWCP[2:0] 3-Wire Clock Period. These bits are used for setting the 3-Wire MCL clock period.  

TWCP[2:0] MCL Clock Frequency (Period) 
000 1 MHz (1000nSec) 
001 714 KHz (1400nSec) 
010 555 KHz (1800nSec) 
011 454 KHz (2200nSec) 
100 384 KHz (2600nSec) 
101 333 KHz (3000nSec) 
110 294 KHz (3400nSec) 
111 263 KHz (3800nSec) 

 

3 TWIE 3-Wire Interrupt Enable. Setting this bit to ‘1’ will enable an interrupt when the 3-
Wire data transfer is completed. Clearing this bit will disable the 3-Wire data transfer 
complete interrupt. 

2 TWCDIS 3-Wire Chip Select disable.  Setting this bit to ‘1’, will disable the chip select and 
the 3-Wire Master interface will not control the chip select MCS during the 
communication. In chip select disable mode, application program should control the 
3-Wire chip select by any GPIO. Clearing this bit will enable MCS as active chip 
select and it is set to HIGH (See Figure 13-1) at start of 3-Wire data communication 
and set to LOW once the 3-Wire data communication is completed. 

1 TWI 3-Wire Interrupt. This bit is set to ‘1’ when data transfer is completed. This bit can 
generate interrupt if TWIE bit is enabled. Once set, it should be cleared by software. 

0 BUSY 3-Wire Busy. This bit is set to ‘1’ when data is written to the DADDR register and it 
indicates that the data transfer is in progress. This bit is reset to ‘0’ once the data 
transfer is completed. This is also reset to zero when 3-Wire operation is disabled 
(the TWEN bit is ‘0’). This is read only bit. 

 
13.2.2 – Data and Address Register (DADDR) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name ADDR[15:9] RWN DATA[7:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
 
BIT NAME DESCRIPTION 
15:9 ADDR[6:0] 3-Wire Address. These bits specify Slave device internal register address. 
8 RWN Read or Write Select. When this bit is set to ‘1’, the 3-Wire ‘Read’ operation is 

performed. When this bit is ‘0’, the 3-Wire ‘Write’ operation is performed. 
7:0 DATA[7:0] 3-Wire Data. During 3-Wire ‘Read’ operation (RWN = 1), the master writes the read 

data from the 3-Wire bus at these bits. During 3-Wire ‘Write’ operation (RWN = 0), 
the master sends data written at these bits on the 3-Wire bus. 

Important Note: The entire DADDR register should be written at once instead of writing individual bits or 
fields. 
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SECTION 14 – PWM  
The DS4830A provides 10 independent PWM output pins that can be used to create DC-DC power supply 
controllers or a Thermoelectric Cooler Controller (TECC)  
 
Refer to Application Note 5424: Thermoelectric Cooler Control Using the DS4830 Optical Microcontroller. 
 
14.1 – Detailed Description  
The DS4830A provides 10 independently configurable PWM outputs. The DS4830A PWM controller has 3 SFRs 
PWMCN, PWMDATA and PWMSYNC for configuration and control of the 10 PWM outputs. Using PWMCN and 
PWMDATA, individual PWM channels can be programmed for unique duty cycles (DCYCn), configurations (PWMCFGn), 
and delays (PWMDLYn), where n represents the PWM channel number. The DS4830A provides three types of driving 
strength PWM outputs. Refer to the DS4830A IC data sheet for more information. 
 
The PWM block has three SFRs that are accessed in module 5 (PWMCN, PWMDATA and PWMSYNC). All aspects 
of the PWM block can be programmed using these 3 SFRs.  
 
14.1.1 – PWMCN and PWMDATA SFRs 
The PWM Control SFR (PWMCN) along with the PWM Data SFR (PWMDATA) is used to configure and control 
individual PWM channels. All the channels can be independently configured. Figure 14-1 illustrates how this is 
accomplished.  
 
The PWMCN SFR has 4 bits (PWM_SEL) that select a particular PWM channel to be configured (See PWM Register 
Descriptions for details). 2 bits (REG_SEL) within the PWMCN SFR allows for programming of 3 local registers for 
each PWM Channel:  
 

• Duty Cycle (Register DCYCn),  
• Configuration (Register PWMCFGn)  
• Delay (Register PWMDLYn).  

 
The PWMDATA SFR writes data to the particular local register pointed to by the PWM_SEL and REG_SEL bits as 
illustrated in Figure 14-1. PWM_SEL auto increments after each read or write operation to PWMDATA register 
allowing quick configuration.  
 
The PWMCN SFR additionally allows enabling or disabling individual PWM Channels independently as well as 
update of the Duty Cycle programmed in the DCYCn local register. Table 14-1 explains how the different Local 
Registers are selected, and is discussed further in the Individual PWM detailed description section.  
 
Table 14-1: Selecting the Local Registers  

REG_SEL LOCAL REGISTER SELECTED 
00b Duty Cycle Register (DCYCn) 
01b PWM Configuration Register (PWMCFGn) 
1xb Delay Setting Register (PWMDLYn) 

http://www.maximintegrated.com/AN5424
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PWMCN.REG_SEL = 00b

PWMCN.PWM_SEL =n 

PWMCN.REG_SEL = 01b

PWMCN.PWM_SEL =n 

PWMCN.REG_SEL = 1xb

PWMCN.PWM_SEL =n 

DCYC0 (Ch0)

DCYC9 (Ch9)

DUTY CYCLE REGISTER 

PWMCFG0 (Ch0)

PWMCFG9 (Ch9)

PWM CONFIGURATION

PWMDLY0 (Ch0)

PWMDLY9 (Ch9)

DELAY REGISTER 

PWMDATA REGISTERNote: n = 0 to 9

READ OR WRITE TO PWMDATA 

 
Figure 14-1: Illustration of PWMDATA and PWMCFG SFRs 
 
14.1.2 – PWMSYNC SFR 
Different channels can be synchronized using the PWMSYNC register. Doing so effectively brings the channels in phase 
by restarting the channels that are to be synchronized, without affecting the PWM operation. The PWM channels to be 
synchronized must have the same configurations (Resolution, Pulse Spreading option, Clock source etc.). The 
PWMSYNC register auto clears itself on the next core clock. Figure 14-2 shows an illustration of the PWMSYNC SFR 
operation. See PWM Delay section for more details. 

PWM Clock

PWM0

PWM1

Out of
Phase

In Phase
Both PWMs Rstarted

PWMSYNC = 00h PWMSYNC = 03h PWMSYNC = 00h

 
Figure 14-2: PWM Output Synchronization When the Same Delay is Programmed 
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14.2 – Individual PWM Channel Operation 

Note1: PWM Compare value and PWM Internal Counter are DS4830A 
internal registers and not accessible to the user.
Note2: Number of Slots depends on resolution and it varies between 1 to 
512 in the multiple of 2. Refer to table 14-3 for details

       Configuration for PWMn

PWM Clock Selection

M
U

X

Core Clock

Peripheral Clock

External Clock

PWM Clock

Master Enable

Local Enable

Duty Cycle

Resolution

PWM Delay

PWM Internal 
Counter

11 0

0000h

PWM Compare Value

PS[1:0]

PWn

PS1 PS0 Number of Slots

0 0 Resolution / 210

0 1 Resolution / 29

1 0 Resolution / 28

1 1 Resolution / 27

 
Figure 14-3: Block Diagram of One PWM Channel 
 
The DS4830A has 10 PWMs which can provide up to 16 bits of resolution on each channel. Each channel can be 
independently enabled or disabled. Each PWM is configured using 3 Local Registers (for a total of 30 Local 
Registers for programming the 10 PWMs). 
 
The source clock to PWM can be selected from Core clock, Peripheral Clock or External Clock. The external clock 
range is 20MHz to 133MHz. The PWM frame frequency is calculated from the below formula, 
  

N

FrequencyClockPWMFrequencyFramePWM
2

= , Where N is resolution 

 
As explained above the PWMCN SFR points to a particular PWM channel. The local registers are then programmed 
by writing data to the PWMDATA SFR. The Local Register is selected based on the REG_SEL bits in the PWMCN 
SFR (See Table 14-1). 
 
Details for programming of the Local Registers are in the “PWM Register Descriptions” section.  
 
14.2.1 – Duty Cycle Register (DCYCn) 
This register controls the Duty cycle of the PWM Channel. The number of bits used to program the Duty Cycle 
depends on the resolution programmed in the PWMCFG register. For 12 bits of resolution, the Duty cycle is the 
lower 12 bits of the PWMDATA register. However if only 7 bits of resolution is selected, only the lower 7 bits are 
used to control the Duty Cycle of the corresponding PWM Channel.  
 
To achieve a particular duty cycle, the PWM output level is set to high and the internal counter starts counting from 
0000h. The PWM output remains high untill the PWM count is equal to the value in the DCYC register. The PWM 
controller sets the PWM output to low for the remaining clock counts for the selected resolution. One such cycle 
represents one PWM frame and repeats until the PWM is disabled. 
 
For example, when 9 bits of resolution is selected and the DCYC register is written to 128, the PWM controller sets 
the output high for the first 128 counts of PWM clock and sets output low for the remaining 384 PWM clock counts 
(29 =512, = 512 – 128 = 384). The PWM frame in this case is 512 clock cycles. The PWM output frequency depends 
upon the selected clock source in the PWMCFG register. Figure 14-4 illustrates this example. 
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PWM Output 
High Time

128 Cycles

PWM Output 
Low Time

384 Cycles

PWM Frame = 512 Cycles

9-bit PWM Operation in Normal Mode

DCYCn = 128

 
Figure 14-4: PWM Duty Cycle Set to 128 with 9-Bit Resolution  
 
14.2.2 – PWM Configuration Register (PWMCFGn) 
This register allows independent configuration of a PWM Channel. Each PWM Channel can be independently 
disabled or enabled. Each output can have from 7 to 16 bits of resolution and can be inverted.  
 
The PWM channels 0 – 7 are multiplexed with the DAC outputs. The  PWMCFGn register allows configuring the 
outputs to be present at an alternate location instead of the original location.  
 
The PWMs can be clocked using the core clock, the peripheral clock or an external clock as defined by the 
PWMCFGn register.  
 
14.2.2.1 – Pulse Spreading 
The DS4830A PWMs have the ability to perform pulse spreading on the output stream. Pulse spreading divides the 
PWM frame into equal slots. The DS4830A PWM controller supports nine pulse spreading options with slots varying 
from 1 to 512 in the multiple of 2. For each resolution selection, up to four pulse spreading options are available. 
Pulse spreading options can be selected from 2 bits in the PWMCFGn register (PS[1:0]).  The PWM controller 
distributes the duty cycle over the selected number of slots equally. If resolution bits are 12 and Pulse spreading 
option is 3 then the PWM controller distributes the PWM Frame over 32 equal slots. By doing this, the PWM output 
frequency becomes 32 times the PWM Frame frequency. In 12-bit resolution, the PWM clock period is 4096 counts 
long. If Pulse spreading option is set to 3, the PWM frame is divided into 32 slots with each slot taking 128 PWM 
counts. The duty cycle is equally distributed in each slot using dithering. Each slot frequency can be calculated from 
the below equation and see Table 14-2 for number of slots for each resolution.  
 

N

SlotsofNumberFrequencyFramePWMFrequencySlotPWM
2

×
= , where N is resolution. 
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Table 14-2: Number of Slots for Each Resolution 

RES_SEL[3:0] Resolution PS[1:0]= 00 PS[1:0]= 01 PS[1:0]= 10 PS[1:0]= 11 
Number of Slots 

0000b 7 1 1 1 1 
0001b 8 1 1 1 2 
0010b 9 1 1 2 4 
0011b 10 1 2 4 8 
0100b 11 2 4 8 16 
0101b 12 4 8 16 32 
0110b 13 8 16 32 64 
0111b 14 16 32 64 128 
1000b 15 32 64 128 256 
1001b 16 64 128 256 512 

>1001b 16 64 128 256 512 
 
Pulse Spreading Method 
The DS4830A PWM controller uses a delta sigma algorithm to distribute the duty cycle uniformly among the slots. 
For example, a 10-bit PWM output with a DCYCn value of 128 with 8-slot pulse spreading enabled (PS[1:0] = b’11) 
produces a PWM output as shown in the Figure 14-5. The duty cycle of 128 in 1024 cycles (10-bit resolution) has 
been divided over 8 equal slots of 16 PWM clock cycles. As duty cycle increases by a count each time the pulse 
spread is implemented uniformly and the corresponding duty cycle is distributed among slots. Table 14-3 and Figure 
14-5 explain this example. Example considers PWM operation in the positive polarity. 
 
Table 14-3: Duty Cycle Distribution with 8-Slot Pulse Spreading for 10-Bit Resolution PWM Operation 

Resolution Duty 
Cycle Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 

10 

128 16 16 16 16 16 16 16 16 
129 16 16 16 16 16 16 16 17 
130 16 16 16 17 16 16 16 17 
131 16 16 17 16 16 17 16 17 
132 16 17 16 17 16 17 16 17 
133 16 17 16 17 17 16 17 17 
134 16 17 17 17 17 16 17 17 
135 16 17 17 17 17 17 17 17 
136 17 17 17 17 17 17 17 17 
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111
Cycles

17 Cycles

1-Slot = 128 Cycles

112
Cycles

111
Cycles

17 Cycles

16 Cycles

PWM Output
Low Time

PWM Frame = 1024 Cycles

10-bit resolution PWM Operation with 8-Slot pulse spreading mode

DCYCn = 128

Slot 1 Slot 2 Slot 3 Slot 4

PWM Output
High Time

DCYCn = 129

DCYCn = 130

DCYCn = 131

DCYCn = 132

DCYCn = 133

DCYCn = 134

DCYCn = 135

DCYCn = 136

Slot 5 Slot 6 Slot 7 Slot 8 Next Cycle
Slot 1

Figure 14-5: Duty Cycle Distribution with 8-Slot Pulse Spreading (PS[1:0] = 11b) for 10-Bit PWM Operation 
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See Tables 14-4a, 14-4b, and 14-4c for slot frequencies at various resolutions and pulse-spreading options with the 
different PWM source clock frequencies. 
 
Table 14-4a: Slot Frequencies for Various Resolution and Pulse Spreading with Core Clock = 10MHz 

Source = Core Clock (10MHz) 

Resolution Frame Frequency 
(Hz) 

Pulse Spreading (PS[1:0]) 

00 01 10 11 

Slot Frequency (Hz) 

7 78125 78125 78125 78125 78125 

8 39062.5 39062.5 39062.5 39062.5 78125 

9 19531.25 19531.25 19531.25 39062.5 78125 

10 9765.625 9765.625 19531.25 39062.5 78125 

11 4882.813 9765.625 19531.25 39062.5 78125 

12 2441.406 9765.625 19531.25 39062.5 78125 

13 1220.703 9765.625 19531.25 39062.5 78125 

14 610.352 9765.625 19531.25 39062.5 78125 

15 305.176 9765.625 19531.25 39062.5 78125 

16 152.588 9765.625 19531.25 39062.5 78125 
 
 
Table 14-4b: Slot Frequencies for Various Resolution and Pulse Spreading with Peripheral Clock = 20MHz 

Source = Peripheral Clock (20MHz) 

Resolution Frame Frequency 
(Hz) 

Pulse Spreading (PS[1:0]) 

00 01 10 11 

Slot Frequency (Hz) 

7 156250 156250 156250 156250 156250 

8 78125 78125 78125 78125 156250 

9 39062.5 39062.5 39062.5 78125 156250 

10 19531.25 19531.25 39062.5 78125 156250 

11 9765.625 19531.25 39062.5 78125 156250 

12 4882.813 19531.25 39062.5 78125 156250 

13 2441.406 19531.25 39062.5 78125 156250 

14 1220.703 19531.25 39062.5 78125 156250 

15 610.352 19531.25 39062.5 78125 156250 

16 305.176 19531.25 39062.5 78125 156250 
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Table 14-4c: Slot Frequencies for Various Resolution and Pulse Spreading with External Clock = 128MHz 

Source = External Clock (128MHz) 

Resolution Frame 
Frequency (Hz) 

Pulse Spreading (PS[1:0]) 

00 01 10 11 

Slot Frequency (Hz) 

7 1000000 1000000 1000000 1000000 1000000 

8 500000 500000 500000 500000 1000000 

9 250000 250000 250000 500000 1000000 

10 125000 125000 250000 500000 1000000 

11 62500 125000 250000 500000 1000000 

12 31250 125000 250000 500000 1000000 

13 15625 125000 250000 500000 1000000 

14 7812.5 125000 250000 500000 1000000 

15 3906.25 125000 250000 500000 1000000 

16 1953.125 125000 250000 500000 1000000 
 
 
14.2.2.2 – Alternate PWM Output 
Table 14-5 shows the mapping of each PWM Output. The PWM outputs PW0 to PW7 are also multiplexed with the 
DAC output pins. The DS4830A provides the option to select these alternate locations for PW0 to PW7 outputs if 
PWM functionality is required along with DAC outputs. When the ALT_LOC is set to ‘1’ during PWM configuration for 
a PWM output, the PWM output will be available on this alternate pin. See Table 14-3 for details. 
 
Table 14-5: Alternate PWM Output 

PWM OUTPUT PIN DS4830A PIN NUMBER 
WHEN ALT_LOC = 0 GPIO PIN DS4830A PIN NUMBER 

WHEN ALT_LOC = 1 GPIO PIN 

PW0 32 P0.4 4 P2.0 
PW1 33 P0.5 6 P2.1 
PW2 34 P6.5 12 P2.2 
PW3 35 P1.5 13 P2.3 
PW4 36 P1.6 24 P1.0 
PW5 37 P1.7 25 P1.3 
PW6 38 P6.6 26 P1.1 
PW7 40 P2.7 27 P1.2 
PW8 30 P0.6 30 P0.6 
PW9 29 P0.7 29 P0.7 

 
14.2.3 – PWM DELAY Register (PWMDLYn) 
The Delay Register is used to provide a delay when starting the PWM output. By controlling the starting time for each 
individual PWM channel, multiphase operation can be achieved.  
 
The number of bits used to program the Delay depends on the resolution programmed in the PWMCFG SFR. For 12 
bits of resolution, the Delay is the lower 12 bits of the PWMDATA register. However if only 7 bits of resolution is 
selected, only the lower 7 bits are used to control the Delay of the corresponding PWM Channel. For example if 8-bit 
resolution is selected, the maximum delay programmed is limited to 255 (only lower 8 bits are considered).  
 
The Delay resolution also depends on the selected Pulse spreading for the corresponding channel. The maximum 
delay is scaled correspondingly. With 10 bits of resolution and 4-slot pulse spreading (PS[1:0] = 2), the maximum 
delay programmed is limited to 1024/4 = 256.  
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Programmed Delay. Max 8 Bits (256 clock cycles),
for 10 bits of Resolution & 4-slot pulse spreading

Source Clock
 

Figure 14-6: PWM Delay Operation without Pulse Spreading 
 
14.2.3.1 – PWM DELAY with PWMSYNC SFR 
The PWM channels to be synchronized must have the same configurations (Resolution, Pulse Spreading option, Clock 
source etc.). The delays on the two channels can be different. After the synchronization, the programmed delay is 
maintained as shown in Figure 14-7.  
 

PWMSYNC = 00h PWMSYNC = 03h PWMSYNC = 00h

PWM1

PWM0

Core Clock

 
Figure 14-7: PWM Output Synchronization with 4 Clocks Delay  
 
14.3 – PWM Output Register Descriptions  
The DS4830A PWM controller has three SFRs. These are PWM Control Register PWMCN, PWM Data Register 
PWMDATA and PWM Synchronization Register PWMSYNC. The PWMCN configures and controls the various PWM 
operations. The PWMDATA register configures various PWM configurations and the PWMSYNC is used in PWM 
synchronization operation.  The PWMCN, PWMDATA and PWMSYNC registers are cleared on POR only. 
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14.3.1 – PWM Control Register (PWMCN) 
The PWMCN register is used to setup and start the PWM Output.  To avoid undesired operation, the user should not 
modify the “Reserved” bits in the PWMCN registers.  
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - M_EN - - - UPDATE PWM_SEL[3:0] - - REG_SEL[1:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r rw r r r rw rw rw rw rw r r rw rw 
 
BIT NAME DESCRIPTION 
15:13 - Reserved. The user should not write to these bits. 
12 M_EN Master Enable. This is the master enable bit for all PWM channels. All the PWM channels 

will be enabled only after this bit is set to ‘1’. This bit should be set to ‘1’, after configuring 
all local registers of all the required PWM channels.  

11:9 - Reserved. The user should not write to these bits. 
8 UPDATE Update. When this bit is set to ‘1’, the duty cycle of all PWM channels are updated 

simultaneously. Writing a new value in the Duty Cycle register will not reflect in the PWM 
output until UPDATE is set to ‘1’.  Once set, this bit will automatically clear after one core 
clock. 

7:4 PWM_SEL[3:0] PWM Channel Select. These bits select one of the 10 PWM channels for read or write to 
its local registers. These bits are used with REG_SEL[1:0] and provide access to 30 PWM 
local registers (3 local registers per channel). PWM_SEL auto increments after each read 
or write operation to PWMDATA register.  
 
DCYC = Duty Cycle Register 
PWMCFG = PWM Configuration Register 
PWMDLY = Delay Setting Register 
 

PWM_SEL 
REG_SEL 

00b 01b 1xb 
0000b DCYC0 PWMCFG0 PWMDLY0 

0001b DCYC1 PWMCFG1 PWMDLY1 

0010b DCYC2 PWMCFG2 PWMDLY2 

0011b DCYC3 PWMCFG3 PWMDLY3 

0100b DCYC4 PWMCFG4 PWMDLY4 

0101b DCYC5 PWMCFG5 PWMDLY5 

0110b DCYC6 PWMCFG6 PWMDLY6 

0111b DCYC7 PWMCFG7 PWMDLY7 

1000b DCYC8 PWMCFG8 PWMDLY8 

1001b DCYC9 PWMCFG9 PWMDLY9 

>1001b RESERVED RESERVED RESERVED 
 
 

3:2 - Reserved. The user should not write to these bits. 
1:0 REG_SEL[1:0] Register Select. These bits are used to select one of three local registers of the selected 

PWM channel (selected by PWM_SEL[3:0] bits). 
 

REG_SEL Local Register Selected 
00b Duty Cycle Register (DCYCn) 
01b PWM Configuration Register (PWMCFGn) 
1xb Delay Setting Register (PWMDLYn) 
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14.3.2 – PWM Data Register (PWMDATA) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name PWMDATA[15:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
 
BIT NAME DESCRIPTION 
15:0 PWMDATA[15:0] PWM Data. The PWM Data Register is used for configurations for various PWM 

channels. It is used to read or write various PWM local registers which are pointed by 
combinations of REG_SEL[1:0] and PWM_SEL[3:0] bits in the PWMCN register. 

 
The PWMDATA Register is used to configure the local registers for each PWM channel. PWM channel is selected by 
PWM_SEL[3:0] bits in the PWMCN register. Individual local registers for a channel are selected by REG_SEL[1:0] 
bits in the PWMCN register. See below for the local register configurations. 
 
14.3.2.1 – Local Register DCYCn 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name PWMDATA[15:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
 

PWMCN REG_SEL = 00b 
PWMDATA[15:0]  DCYCn[15:0] 

BIT NAME DESCRIPTION 
   
15:0 DCYCn[15:0] Duty Cycle Register. When REG_SEL[1:0] in the PWMCN SFR is set to 00b, the 

PWMDATA register points to the Duty Cycle Register of the PWM channel selected by 
PWM_SEL[3:0] bits in the PWMCN register.  
 
The number of bits used to program the Duty Cycle depends on the resolution 
programmed in the PWMCFG register. For 16 bits of resolution, the Duty cycle the 
complete 16 bits of the PWMDATA register. However if only 7 bits of resolution is 
selected, only the lower 7 bits are used. 
 
Example: If PWM_SEL[3:0] = 0101b and REG_SEL[1:0] = 00b, then the PWMDATA 
register points to the Duty Cycle Register of the PWM Channel 5. A read or write to/from 
PWMDATA register will read or write from the Duty Cycle Register of PWM Channel 5. If 
the resolution of channel 5 is set to 9 bits, only DCYCn[8:0] will be used for programming 
the Duty Cycle.  
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14.3.2.2 – Local Register PWMCFGn (through PWMDATA [15:0] 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name INV - ALT_ 

LOC 
PWMEN - CLK_SEL - PS1 PS0 RES[3:0] 

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 

 
PWMCN REG_SEL = 01b 

PWMDATA[15:0]  PWMCFGn[15:0] 
BIT NAME DESCRIPTION 
15 INV Invert PWM Output. When this bit is set to ‘1’, PWM output is inverted for the selected 

PWM channel (determined by the PWM_SEL[3:0] bits). 
14 - Reserved. The user should not write to this bit. 
13 ALT_LOC Alternate Location: PWM outputs at channels 0 to 7 are multiplexed with the DAC 

outputs. By default, the PWM outputs appear at the DAC outputs. When ALT_LOC bit is 
set to ‘1’, the PWM outputs will appear at the alternate location (See Table 14-3 for 
details). 

12 PWMEN Local Enable: Setting this bit to ‘1’ will enable the individual PWM channel. PWM 
operation will be enabled only when both local enable and the Master Enable M_EN in 
PWMCN are enabled. Setting this bit to ‘0’ will disable the individual PWM channel.  

11:10 - Reserved. The user should not write to these bits. 
9:8 CLK_SEL[1:0] Clock Select. These bits select the PWM clock for the selected PWM channel (which is 

selected by PWM_SEL[3:0] bits). 
 

CLK_SEL PWM Clock Source 
00b Core Clock 
01b Peripheral Clock 
1xb External Clock 

The external clock range is 20MHz to 133MHz.  
7:6 - Reserved. The user should not write to these bits. 
5:4 PS[1:0] Pulse Spreading: These bits enable pulse spreading. The number of slots in a PWM 

frame is defined by these bits along with resolution.  
 

PS[1:0] Pulse spreading 
00b Resolution / 210 
01b Resolution / 29 
10b Resolution / 28 
11b Resolution / 27 

 

3:0 RES[3:0] Resolution Select. These bits are used to configure PWM resolution (in bits) for selected 
PWM channel (which is selected by PWM_SEL[3:0] bits). The PWM Frame frequency is 
determined by the clock Frequency programmed and the resolution selected. 

N
FrequencyClockPWMFrequencyFramePWM

2
=  

Where N is the selected resolution.  
RES [3:0] PWM Resolution bits 

0000b 7 
0001b 8 
0010b 9 
0011b 10 
0100b 11 
0101b 12 
0110b 13 
0111b 14 
1000b 15 

>=1001b 16 
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14.3.2.3 – Local Register PWMDLYn 
PWMCN REG_SEL = 1xb 

PWMDATA[15:0]  PWMDLY[15:0] 
BIT NAME DESCRIPTION 
15:0 PWMDLYn[15:0] Delay Setting Register. When REG_SEL[1:0] is set to 1xb, the PWMDATA register 

points to the Delay Setting Register of PWM channel selected by PWM_SEL[3:0] bits in 
the PWMCN register. The Delay Setting Register is a 16-bit register, which is used for 
providing starting delay. Using this Delay Setting Register multiphase operation can be 
configured.  
 
If PWM_SEL[3:0] = 0101b and REG_SEL[1:0] = 1xb, then the PWMDATA register 
points to the Delay Register of the PWM Channel 5. A read or write to/from the 
PWMDATA register will read or write from the Duty Setting Register of PWM Channel 5. 
 
The Delay Setting Register is 16-bit register but number of bits is used by the PWM 
controller depends upon the selected resolution for given PWM channel. For Example, 
if resolution is 9- bits then only lower 9 bits PWMDLYn[8:0] are used in PWM operation 
and upper bits 10-15 bits will be ignored..     

 
14.3.3 – PWM Synchronization Register (PWMSYNC) 
 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - - PWMSYNC[9:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r r rw rw rw rw rw rw rw rw rw rw 
 
BIT NAME DESCRIPTION 
15:10 - Reserved. The user should not write to these bits.  

These bits are ignored by the PWM controller. 
9:0 PWMSYNC[9:0] PWM Synchronization. This register is used to provide synchronization among 

different PWM channels. Each bit of this register corresponds to a PWM channel. 
Setting any bit of this register will restart corresponding PWM channel. After a write to 
this register, it is cleared to 0x0000 on the next core cycle. 
 
For Example:  When 0x0005 is written on the PWMSYNC register, PWM channel 0 
and 2 will restart after current PWM counter (internal register) is over. This feature is 
used to bring different PWM channels in phase if they have the same PWM 
configurations (Resolution, Clock source, and Pulse spreading configuration, etc.). The 
Delay Register settings can be different for the PWM channels to be synchronized, 
and the settings are retained after the synchronization. See Figures 14.2 and 14.7 for 
details.  
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14.4 – PWM Output Code Examples 
 
14.4.1 – 9-Bit PWM Output and Pulse Spreading (PS[1:0]= 11, 1-Slot) with Core Clock 
Creating a 25% duty cycle with ~20kHz frequency PWM output at Channel 0 (default location): 
 
//PWM Configuration for PW0  
 
PWMCN = 0x0000;                //Channel 0, Duty cycle 
PWMDATA = 0x007F;           //25% Duty cycle for 9-bit resolution  
 
PWMCN = 0x0001;                //Channel 0, Config register 
PWMDATA = 0x1002;            //Default location, 9-bit resolution with core clock with 1-slot pulse spreading, PWMEN 
 
PWMCN = 0x0003;                //Channel 0, Delay Configuration 
PWMDATA = 0x0000;            //No delay 
 
PWMCN_bit.UPDATE = 1;    //Update PWM duty cycle 
PWMCN_bit.M_EN = 1;         //Master Enable 
 
14.4.2 – 9-Bit PWM Output and Pulse Spreading (PS[1:0]= 11, 4-Slots) with Core Clock 
Creating a 40% duty cycle with 78.125kHz frequency PWM output at Channel 1 (default location): 
 
//PWM Configuration for PW1 
 
PWMCN = 0x0010;             //Channel1 Duty cycle 
PWMDATA = 0x00CD;       //40% Duty cycle for 9-bit resolution with core clock  
 
PWMCN = 0x0011;             //Channel 1Config register 
PWMDATA = 0x1032;         //Default location, 9-bit resolution with core clock with 4-slot pulse spreading, PWMEN 
 
PWMCN = 0x0013;             //Channel 1 Delay Configuration 
PWMDATA = 0x0000;         //No delay 
 
PWMCN_bit.UPDATE = 1; //Update PWM duty cycle 
PWMCN_bit.M_EN = 1;      //Master Enable 
 
 
14.4.3 – 12-Bit PWM Output and Pulse Spreading (PS[1:0]= 01, 8-Slots) with Alternate Location and 
Peripheral Clock 
Creating a 25% duty cycle with 156.25kHz frequency PWM output at Channel 1 (alternate location) with Peripheral 
Clock: 
 
//PWM Configuration for PW1  
 
PWMCN = 0x0010;              //Channel 1 Duty cycle 
PWMDATA = 0x03FF;         //25% Duty cycle for 12-bit resolution   
 
PWMCN = 0x0011;              //Channel 1 Config register 
PWMDATA = 0x3215;         //Alternate location (PW1, Port 2.1), 12-bit resolution with peripheral clock with 8-slot pulse spreading, PWMEN 
 
PWMCN = 0x0013;              //Channel 1 Delay Configuration 
PWMDATA = 0x0000;          //No delay 
 
PWMCN_bit.UPDATE = 1;   //Update PWM duty cycle 
PWMCN_bit.M_EN = 1;        //Master Enable 
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SECTION 15 – GENERAL-PURPOSE INPUT/OUTPUT (GPIO) PINS 
 

15.1 – Overview 
The DS4830A provides general-purpose input/output (GPIO) functionality on 31 pins. In addition to the GPIO 
functionality, each of these pins is multiplexed with at least one other function, which is classified as “Special 
Function.”  
 
Special functions override the GPIO register settings of the port pin when they are enabled. Once the special 
function takes control, normal control of the port pin is lost until the special function is disabled.  
 
Table 15-1 details all of the GPIO pins as well as what other functions are multiplexed with each pin.  With the 
exception of a few pins which are described further in detail later, the GPIO pins operate as shown in the GPIO Pin 
Block Diagram, Figure 15-1.  Some of the features of these GPIO pins are: 

• CMOS output drivers 
• Schmitt trigger inputs 
• Optional weak pullup to VDD when operating in input mode  

 

VDD

VDD
M

U
X

I/O PAD

PDp.n

SF DIRECTION

SF ENABLE

POp.n

WEAK

M
U

X

SF OUTPUT

DETECT 
CIRCUIT

*

*

DS4830A Pin

SF = SPECIAL FUNCTION

THE FORMAT FOR GPIO CONTROL BITS SHOWN IS PDp.n
‘p’ designates the port (p=0,1,2,6) 
‘n’ is the port pin (n=0 to 7).

PIp.n, or SF INPUT

INTERRUPTS ON ALL PORTS

EIFp.n EIEp.n
EIESp.n

Figure 15-1: GPIO Pin Block Diagram 
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Table 15-1: GPIO Pins and Multiplexed Functions 
Port 

Index 
Pin Name Pin No. Default 

Function 
Special 

Function-1 
Special function-1 

enable 
Special 

Function-2 
Special function-2 

enable 
Special 

Function-3 
Special function-3 

enable 
Special 

function-4 
Special function-4 

enable 

P0.0 GP12 19 GPIO ADC-S12 PINSEL.12 = 1 & 
ADDATA.DIFF = 0 ADC-SHP1 SHCN.SMP_HLD1 = 1 ADC-D6P PINSEL.12 = 1 & 

ADDATA.DIFF =1 - - 

P0.1 GP13 20 GPIO ADC-S13 
PINSEL.13 = 1 & 

ADDATA.DIFF = 0 ADC-SHN1 SHCN.SMP_HLD1 = 1 ADC-D6N PINSEL.13 = 1 & 
ADDATA.DIFF =1 - - 

P0.2 GP14 21 GPIO ADC-S14 
PINSEL.14 = 1 & 

ADDATA.DIFF = 0 ADC-D7P PINSEL.14 = 1 & 
ADDATA.DIFF =1 SHEN1 SENR.INT_TRIG_EN1 = 

0 - - 

P0.3 GP15 22 GPIO ADC-S15 
PINSEL.15 = 1 & 

ADDATA.DIFF = 0 ADC-D7N PINSEL.15 = 1 & 
ADDATA.DIFF =1 - - - - 

P0.4 DACPW0 32 GPIO DAC0 DACCFG.CFG0 = 01b or 
10b  PW0 PWMCFG.PWMEN = 1 

& PWMCN.M_EN = 1 - - - - 

P0.5 DACPW1 33 GPIO DAC1 DACCFG.CFG1 = 01b or 
10b  PW1 PWMCFG.PWMEN = 1 

& PWMCN.M_EN = 1 - - - - 

P0.6 PW8 30 GPIO PW8 PWMCFG.PWMEN = 1 & 
PWMCN.M_EN = 1 - - - - - - 

P0.7 PW9 29 GPIO PW9 PWMCFG.PWMEN = 1 & 
PWMCN.M_EN = 1 - - - - - - 

P1.0 MSDIO 24 GPIO 3W Data TWR.TWEN = 1 I2CM-SDA I2CCN_M.I2CEN=1 SPIM-DO SPICN_M.SPIEN=1 PW4 
PWMCFG.PWMEN = 1  
& PWMCN.M_EN = 1 

& PWMCFG.ALT_LOC = 1 

P1.1 MSCL 26 GPIO 3W Clock TWR.TWEN = 1 I2CM-CLK I2CCN_M.I2CEN=1 SPIM-CL SPICN_M.SPIEN=1 PW6 
PWMCFG.PWMEN = 1  
& PWMCN.M_EN = 1 

& PWMCFG.ALT_LOC = 1 

P1.2 MCS 27 GPIO 3W CS TWR.TWEN = 1 - - SPIM-CS SPICN_M.SPIEN=1 PW7 
PWMCFG.PWMEN = 1  
& PWMCN.M_EN = 1 

& PWMCFG.ALT_LOC = 1 

P1.3 MSDI 25 GPIO - - - - SPIM-DI SPICN_M.SPIEN=1 PW5 
PWMCFG.PWMEN = 1  
& PWMCN.M_EN = 1 

& PWMCFG.ALT_LOC = 1 

P1.4 REFINB 39 GPIO ADC-REFB DACCFG.CFG4-7* = 01b 
(any one or more DACs) 

- - - - - - 

P1.5 DACPW3 35 GPIO DAC3 DACCFG.CFG3 = 01b or 
10b  PW3 PWMCFG.PWMEN = 1 

& PWMCN.M_EN = 1 - - - - 

P1.6 DACPW4 36 GPIO DAC4 DACCFG.CFG4 = 01b or 
10b  PW4 PWMCFG.PWMEN = 1 

& PWMCN.M_EN = 1 
I2CM-SDA-

ALT i2CCN_M.I2CM_ALT = 1 - - 

P1.7 DACPW5 37 GPIO DAC5 DACCFG.CFG5 = 01b or 
10b  PW5 PWMCFG.PWMEN = 1 

& PWMCN.M_EN = 1 
I2CM-SCL-

ALT i2CCN_M.I2CM_ALT = 1 - - 

P2.0 GP0 4 GPIO ADC-S0 

PINSEL.0 = 1 & 
ADDATA.DIFF = 0 ADC-D0P PINSEL.0 = 1 & 

ADDATA.DIFF =1 PW0 

PWMCFG.PWMEN = 1  
& PWMCN.M_EN = 1 

& PWMCFG.ALT_LOC = 
1 

- - 

P2.1 GP1 6 GPIO ADC-S1 

PINSEL.1 = 1 & 
ADDATA.DIFF = 0 ADC-D0N PINSEL.1 = 1 & 

ADDATA.DIFF =1 PW1 

PWMCFG.PWMEN = 1  
& PWMCN.M_EN = 1 

& PWMCFG.ALT_LOC = 
1 

REFOUT - 

P2.2 GP6 12 GPIO ADC-S6 

PINSEL.6 = 1 & 
ADDATA.DIFF = 0 ADC-D3P PINSEL.6 = 1 & 

ADDATA.DIFF =1 PW2 

PWMCFG.PWMEN = 1  
& PWMCN.M_EN = 1 

& PWMCFG.ALT_LOC = 
1 

SDO SPICN_S.SPIEN=1 

P2.3 GP7 13 GPIO ADC-S7 

PINSEL.7 = 1 & 
ADDATA.DIFF = 0 ADC-D3N PINSEL.7= 1 & 

ADDATA.DIFF =1 PW3 

PWMCFG.PWMEN = 1  
& PWMCN.M_EN = 1 

& PWMCFG.ALT_LOC = 
1 

SCS SPICN_S.SPIEN=1 

P2.4 GP8 14 GPIO ADC-S8 
PINSEL.8 = 1 & 

ADDATA.DIFF = 0 ADC-D4P PINSEL.8 = 1 & 
ADDATA.DIFF =1 - - - - 

P2.5 GP9 15 GPIO ADC-S9 
PINSEL.9 = 1 & 

ADDATA.DIFF = 0 ADC-D4N PINSEL.9 = 1 & 
ADDATA.DIFF =1 - - - - 

P2.6 REFINA 31 GPIO ADC-REFA DACCFG.CFG0-3* = 01b 
(any one or more DACs) 

- - - - - - 

P2.7 DACPW7 40 GPIO DAC7 DACCFG.CFG7 = 01b or 
10b  PW7 PWMCFG.PWMEN = 1 

& PWMCN.M_EN = 1 - -   

P6.0 GP4 10 TCK ADC-S4 
PINSEL.4 = 1 & 

ADDATA.DIFF = 0 ADC-D2P PINSEL.4 = 1 & 
ADDATA.DIFF =1 - - - - 

P6.1 GP5 11 TDI ADC-S5 
PINSEL.5 = 1 & 

ADDATA.DIFF = 0 ADC-D2N PINSEL.5 = 1 & 
ADDATA.DIFF =1 - - - - 

P6.2 GP10 17 TMS ADC-S10 
PINSEL.10 = 1 & 

ADDATA.DIFF = 0 ADC-D5P PINSEL.10 = 1 & 
ADDATA.DIFF =1 - - - - 

P6.3 GP11 18 TDO ADC-S11 
PINSEL.11 = 1 & 

ADDATA.DIFF = 0 ADC-D5N PINSEL.11 = 1 & 
ADDATA.DIFF =1 - - - - 

P6.4 SHEN0 23 GPIO SHEN0 SENR.INT_TRIG_EN0 = 
1 - - - - - - 

P6.5 DACPW2 34 GPIO DAC2 DACCFG.CFG2 = 01b or 
10b  PW2 PWMCFG.PWMEN = 1 

& PWMCN.M_EN = 1 CLKIN + - - 

P6.6 DACPW6 38 GPIO DAC6 DACCFG.CFG6 = 01b or 
10b  PW6 PWMCFG.PWMEN = 1 

& PWMCN.M_EN = 1 - - - - 

 

Notes: 
• TCK: Test Access Port (TAP) Clock 
• TDI: Test Access Port (TAP) Data Input 
• TMS: Test Access Port (TAP) Mode Select 
• TDO: Test Access Port (TAP) Data Output 
• * One or more DACs should be enabled. 
• +External Clock is enabled when the external clock source is selected by one or more peripherals among 

timers, PWM and Sample and Hold.  
 
From a software perspective, each of the GPIO ports (Port0, Port1, Port2, and Port6) has six Special Function 
Registers (POp, PIp, PDp, EIFp, EIEp and EIESp where p=0, 1, 2, or 6). Each GPIO port is designed to provide 
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programming flexibility for any application. The associated registers and their module addresses are listed in Table 
15-2.  The user should not write to any reserved bits as this may cause undesired behavior. 
 
Table 15-2: GPIO Registers 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REGISTER FUNCTION PORT 0 PORT 1 PORT 2 PORT 6 
POp Port Output Register  M0[02h] M0[01h] M0[00h] M1[03h] 
PIp Port  Input Register  M0[0Ah] M0[09h] M0[08h] M1[08h] 
PDp Port Direction Register  M0[12h] M0[11h] M0[10h] M1[11h] 
EIFp Port External Interrupt Flag Register  M0[05h] M0[04h] M0[03h] M1[06h] 

EIEp Port  External Interrupt Enable 
Register  M0[0Fh] M0[0Eh] M0[0Dh] M1[07h] 

EIESp Port  External Interrupt Edge Select 
Register M0[15h] M0[14h] M0[13h] M1[10h] 
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15.2 – GPIO Port Register Descriptions 
The DS4830A has 4 ports P0, P1, P2 and P6. Each port has 8 pins (exception is P6 which has 7 pin only). The 
GPIO operation is to control/monitor through PDp, POp and PIp (p = 0, 1, 2 and 6). These ports are multiplexed with 
various functions like ADC, DAC, Sample and Hold, PWM, I2C, 3-Wire, SPI etc. Additionally, these ports also provide 
GPIO interrupts on all of the pins.  A GPIO interrupt can be generated when the pin is being operated as a GPIO, or 
a special.  Three additional registers, EIFp, EIEp, and EIESp are used to control the GPIO interrupts. 
 
On device reset, the TAP port is active, allowing for in-circuit debugging and programming. The JTAG is active by 
default on Port6[3:0] and it is disabled when SC.TAP bit is set to ‘0’. Enabled special functions operate on the JTAG 
ports only if SC.TAP bit is set to ‘0’. Port 6 also provides GPIO interrupts on all of the pins. The GPIO works only 
when SC.TAP = 0. A GPIO interrupt can be generated when the pin is being operated as a GPIO, or a special or 
alternate function.  Three additional registers, EIF6, EIE6, and EIES6 are used to control the GPIO interrupts. 
Port6.7 is not present in the Port6. 
 
15.2.1 – GPIO Direction Register Port (PD0, PD1, PD2, and PD6) 
Bit # 7 6 5 4 3 2 1 0 
Name PDp_7 PDp_6 PDp_5 PDp_4 PDp_3 PDp_2 PDp_1 PDp_0 
Reset 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw 

 
PDp is an 8-bit register used to determine the direction of the pins when they are used as GPIO pins. Each pin is 
independently controlled by its direction bit. When PDp.n (p = 0 to 7, n = 0 to 7) is set to ‘1’, the pin is an output; data 
in the POp.n bit will be driven on the pin. When PDp.n is cleared to ‘0’, the pin is an input and allows an external 
signal to drive the pin. Note that each port pin has a weak pullup circuit when functioning as an input.  The P channel 
pullup transistor is controlled by the POp.n bit. If POp.n is set to ‘1’, the corresponding weak pullup is turned on, if the 
POp.n bit is cleared to ‘0’, the weak pullup is turned off and the pin’s input is high-impedance.  
 
15.2.2 – GPIO Output Register Port (PO0, PO1, PO2, and PO6) 
Bit # 7 6 5 4 3 2 1 0 
Name POp_7 POp_6 POp_5 POp_4 POp_3 POp_2 POp_1 POp_0 
Reset* 1 1 1 1 1 1 1 1 
Access rw rw rw rw rw rw rw rw 

*GPIO which are shared with DAC ports has POp.n = 0 on reset. 
 
POp is an 8-bit register that controls the output data of a GPIO pin.  If the pin is setup to be an output (PDp.n = 1), 
the data in POp.n will be output on the pin.  If the pin is set as an input (PDp.n = 0), setting POp.n to a ‘1’ enables a 
p-channel weak pullup, otherwise the pin’s input is high impedance.   
When the Port pins are operating as PWM pins, the data in POp will not affect PWM operation.  Changing the 
direction of the pin does not change the data content of POp.n.   
 
15.2.3 – GPIO Input Register for Port (PI0, PI1, PI2, and PI6) 
Bit # 7 6 5 4 3 2 1 0  
Name PIp_7 PIp_6 PIp_5 PIp_4 PIp_3 PIp_2 PIp_1 PIp_0 
Reset s s s s s s s s 
Access r r r r r r r r 
 
PIp is an 8-bit register which contains the data that is applied to the GPIO pins.  The PIp input register contains valid 
input data even when the pin is not operating as a GPIO.  The reset value for this register is dependent on the logical 
states applied to the pins. Note that each pin has a weak pullup circuit when functioning as an input and the P 
channel pullup transistor is controlled by the POp.n bit.  
 
15.2.4 – GPIO Port External Interrupt Edge Select Register (EIES0, EIES1, EIES2, and EIES6) 
Bit # 7 6 5 4 3 2 1 0 
Name IESPp_7 IESPp_6 IESPp_5 IESPp_4 IESPp_3 IESPp_2 IESPp_1 IESPp_0 
Reset 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw 
 
The EIESp register sets the interrupt edge select to trigger an interrupt on either a rising or falling edge.  Setting the 
IESPp_n bits to 0 will trigger the corresponding interrupt on a positive edge.  When these bits are set to a 1, the 
interrupt will be on a negative edge.  
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15.2.5 – GPIO Port External Interrupt Flag Register (EIF0, EIF1, EIF2, and EIF6) 
Bit # 7 6 5 4 3 2 1 0 
Name IFPp_7 IFPp_6 IFPp_5 IFPp_4 IFPp_3 IFPp_2 IFPp_1 IFPp_0 
Reset 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw 

 
These bits are set when a negative edge (IESPp.n = 1) or a positive edge (IESPp.n = 0) is detected on the Pp.n pin. 
Setting any of the bits to 1 will generate an interrupt to the CPU if the corresponding interrupt is enabled. These bits 
will remain set until cleared by software or a reset. These bits must be cleared by software before exiting the 
interrupt service routine or another interrupt will be generated as long as the bit remains set. 
 
15.2.6 – GPIO Port External Interrupt Enable Register (EIE0, EIE1, EIE2, and EIE6) 
Bit # 7 6 5 4 3 2 1 0  
Name IEPp_7 IEPp_6 IEPp_5 IEPp_4 IEPp_3 IEPp_2 IEPp_1 IEPp_0 
Reset 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw 

 
Setting any of these bits to 1 will enable the corresponding external interrupt. Clearing any of the bits to 0 will disable 
the corresponding interrupt function. 
  
15.3 – GPIO Code Example 
15.3.1 – GPIO Pin as Output 
//set pin 6.4 as a high output 
PD6 |= 0x10;  //set direction PD6.4 to 1 for an output 
PO6 |= 0x10;                  //set the output PO6.4 high  
 
15.3.2 – GPIO High-Impedance Input   
//set pin 6.4 as a high-impedance input 
PD6 &= ~0x10;  //set direction PD6.4 to 0 for input 
PO6 &= ~0x10;  //set PO6.4 low to disable weak pullup 
  
15.3.3 – GPIO Weak Pullup Input  
//enable the pin 6.4 weak pullup 
PD6 &= ~0x10;  //set direction PD6.4 to 0 for input 
PO6 |= 0x10;  //set PO6.4 high to enable weak pullup 
 
15.3.4 – GPIO Open-Drain Output 
//configure pin6.4 as port ‘Open Drain’ 
PO6 &= ~0x10;  // set the PO6.4 to the logic ‘0’ 
PD6 |= 0x10;  // this will configure P6.4 as output and drive logic ‘0’ 
PD6 &= ~0x10;  // this will configure P6.4 as input with high impedance. 
In summary, the GPIO output can be set to the ‘Open Drain’ by doing the following method 

1. Set the POp.n to the logic ‘0’. 
2. Toggle the direction register PDp.n between the input and output. 

This causes the pin to alternate between logic ‘0’ (PDp.n = 1) and ‘high impedance’ (PDp.n = 0).  
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SECTION 16 – GENERAL-PURPOSE TIMERS 
The DS4830A has two identical 16-bit general-purpose timers. Each timer has the following, 
 

• Two modes - Free synchronous and Compare 
• Three Clock source selection options - Core clock, Peripheral clock and External clock 
• 6 prescalers  
• Interrupt feature in both modes. 

Core Clock
00b or 01b

External Clock
11b

Clock Selection

MUX

Peripheral Clock
10b

Clock 
Prescaler
GTPS[2:0]

GTV

15 0
0000h

15
GTC

0

RELOAD

Timer CLK

COMPARE

GTR

GTIF

GTIE

Next Timer Clock

Timer 
Interrupt

Notes:

1. Free synchronous mode is a special compare mode in which the GTV is compared with 0xFFFF. 

2. The GTV register is reset to 0x0000 when the GTR bit is set to ‘0’ (Timer off). 

Compare Mode Block Diagram

Figure 16-1: Timer Functional Diagram 
 
16.1 – Detailed Description 
The DS4830A has two 16-bit programmable timer modules. Each timer module supports input clock selection 
between Core, Peripheral and External clock sources. Each timer has two modes of operation i.e. free synchronous 
timer and compare mode. The timer is controlled by the General Timer Reset (GTR) bit in the General Timer Control 
Register (GTCN). When this bit is set to ‘1’, it enables the timer and starts counting up. When this bit is set to ‘0’, the 
timer is stopped. Each timer has six prescalers selection feature. Using various prescaler and input clock options, 
various timing loops can be generated. 
 
16.1.1 – Timer Modes 
Each timer has two modes of operation i.e. free synchronous timer and compare mode. The MODE bit in the GTCN 
register selects the timer mode. The 16-bit free synchronous mode is configured by setting the MODE bit to 0. When 
the Mode bit is set to ‘1’, compare mode is configured.  
 
In free synchronous mode, the timer module begins counting up from 0x0000. When the General Timer Value 
Register (GTV) value reaches to 0xFFFF, the GTIF interrupt flag is set to ‘1’ which generates an interrupt if enabled, 
and the timer reloads the GTV register with 0x0000 at the next timer clock. The GTV register is a read only register 
and it resets to 0x0000 when the timer is stopped. (GTR = 0).  
 
 
In compare mode, the timer module begins counting from 0x0000 and when the value in the GTV register matches 
the value in the General Timer Compare Register (GTC), the GTIF interrupt flag is set to ‘1 ‘ which generates an 
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interrupt if enabled. When the match occurs, the timer reloads the GTV register with 0x0000 at the next timer clock. 
In compare mode, the GTC register should be written first before setting the GTR bit. 
 
16.1.2 – Clock Selection 
There are three timer clock sources available in each timer module, core clock, peripheral clock and external clock. 
The peripheral clock is twice the core clock. The external clock can be between 20MHz to 133MHz. The timer clock 
source can be selected using CLK_SEL [1:0] bits in the GTCN register.  
 
16.1.3 – Timer Clock Prescaler 
Each timer has 6 different prescalers. The prescaler is selected by appropriately setting the GTPS [2:0] bits in the 
GTCN register. The prescaler divides the selected input clock by a value from 1 to 1024.  
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16.2 – Timer Register Descriptions 
Each General Timer module has three independent SFR registers.  These are GTCN, GTV and GTC. The General 
Timer Control Register GTCN controls the timer operation. The General Timer Value Register GTV is the Timer 
Value register and is incremented every timer clock when enabled. The General Timer Compare Register GTCx is 
used in the timer compare mode only. Timer 1 and 2 SFRs are located in module 0 and 3 respectively.  
 
16.2.1 –  General Timer Control Register (GTCN) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - GTR MODE CLK_SEL[1:0] GTIE - - - GTIF - GTPS[2:0] 
Reset* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r rw rw rw rw rw r r r rw r rw rw rw 
*These are default power on reset value. 
 
BIT NAME DESCRIPTION 
15:13 Reserved Reserved. The user should write 0 to these bits. 
12 GTR Timer Run Control. Setting this bit to ‘1’ will enable the timer. Clearing this bit to ‘0’ will 

stop the timer and clear the GTV register.  
11 MODE Timer Mode Select. This bit selects the timer mode. When this bit is ‘0’, free 

synchronous mode is selected. In this mode, the GTV register starts counting from 
0x0000. When the GTV register reaches 0xFFFF, GTIF is set to ‘1’ and the GTV register 
reloads to 0x0000 at the next timer clock.  When the MODE bit is set to ‘1’, compare 
mode is selected. In this mode, the GTV register starts counting from 0x0000. When the 
GTV register matches the value in the GTC register, GTIF is set to ‘1’ and the GTV 
register reloads to 0x0000 at the next timer clock. 
Note: In the compare mode, the GTC register value should be set prior to write to the 
‘MODE’ bit. 

10:9 CLK_SEL[1:0] Timer Clock Select. These bits select the timer clock source. 
CLK_SEL Clock Source 
0X Core Clock 
10 Peripheral Clock 
11 External Clock* 

*The external clock range is 20MHz to 133MHz. 
8 GTIE Timer Interrupt Enable. Setting the GTIE bit to ‘1’ causes an interrupt to be generated 

to the CPU when GTIF=1. Clearing this bit to ‘0’ will not cause an interrupt when 
GTIF=1. 

7:5 Reserved Reserved. The user should write 0 to these bits. 
4 GTIF Timer Matched Interrupt Flag. This bit is set to ‘1’ when  

1. In free synchronous mode, the GTV register value reaches 0xFFFF. 
2. In compare mode, the GTV register value matches the value in the GTC register. 
This flag generates an interrupt if the GTIE bit is enabled. This bit is cleared in software 
by writing ‘0’. 

3 Reserved Reserved. The user should write 0 to these bits. 
2:0 GTPS[2:0] Timer Prescaler Select. These bits configure the prescaler from the timer clock input to 

the timer.  
Prescaler bits Timer input clock 
000 Timer Clock 
001 Timer Clock/4 
010 Timer Clock/16 
011 Timer Clock/64 
100 Timer Clock/256 
101 Timer Clock/1024 
11X Timer Clock 

 

 



DS4830A User’s Guide 
  

  146 

16.2.2 –  General Timer Value Register (GTV1 and GTV2) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name GTV(1,2) 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r r r r r r r r r r r r 
 
16.2.3 –  General Timer Compare Register (GTC1 and GTC2) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name GTC(1,2) 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
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SECTION 17 – SUPPLY VOLTAGE MONITOR (SVM) 
The DS4830A provides feature to allow monitoring its power supply. The Supply Voltage Monitor (SVM) monitors the 
VDD power supply and can alert the processor through an interrupt if VDD falls below a programmable threshold.  
 
The DS4830A provides the following power monitoring features: 

• SVM compares VDD against a programmable threshold from approximately 2.3V to 3.5V. 
• Optional SVM interrupt can be triggered when VDD drops below the programmed threshold. 

 
The Supply Voltage Monitor is controlled by the peripheral register SVM.  This register is located in Module 1, Index 
9. 
 
Supply Voltage Monitor Register (SVM) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - SVTH[3:0] - - - - SVMI SVMIE SVMRDY SVMEN 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r rw* rw* rw* rw* r r r rw rw rw r rw 
*SVTH[3:0] bits can only be written when the SVM is not running (SVMEN=0) 
 
BIT NAME DESCRIPTION 
15:12 Reserved Reserved. The user should write 0 to these bits. 
11:8 SVTH[3:0] Supply Voltage Threshold Bits [3:0]: These bits are used to select a user defined supply voltage 

threshold.  If VDD is below this threshold, the SVMI bit will be set and an interrupt can be generated if 
enabled.  The threshold level can be adjusted from 2.3V to 3.5V in 0.1V increments. The default 
value is 00h (2.3V). 
 
Supply Voltage Monitor Threshold = 2.3V + SVTH[3:0] * 0.1V 
 
Note that the SVTH[3:0] bits can only be modified when SVMEN = 0.  Writing to these bits is ignored 
if SVMEN = 1. The SVM thresholds 00h to 05h have no actual µs because these are lower than the 
DS4830A operating VDDMIN range (which is 2.85V). In the upper side, setting 0Ch to 0Fh corresponds 
to 3.5V VDD. 

7:4 Reserved Reserved. The user should write 0 to these bits. 
3 SVMI Supply Voltage Monitor Interrupt: This bit is set to '1' when the VDD supply voltage falls below the 

threshold defined by SVTH[3:0].  If SVMIE = 1, setting this bit to 1 by either hardware or software 
triggers an interrupt. This bit must be cleared by software, but if VDD is still below the threshold, the bit 
is immediately set again by hardware. 

2 SVMIE Supply Voltage Monitor Interrupt Enable: Setting this bit to 1 allows an interrupt to be generated (if 
not otherwise masked) when SVMI is set to 1. Clearing this bit to 0 disables the SVM interrupt. 

1 SVMRDY Supply Voltage Monitor Ready: This read-only status bit indicates whether the SVM is ready for 
use.  
0 = The SVM is disabled (SVMEN = 0), or the SVM is in the process of powering up.  
1 = The SVM is enabled and ready for use. 

0 SVMEN Supply Voltage Monitor Enable: Setting this bit to 1 enables the SVM and begins monitoring VDD 
against the programmed (SVTH[3:0]) threshold.  After SVMEN is set, SVMRDY will be set in 
approximately 20 us.  Clearing this bit to 0 disables the SVM. 
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SECTION 18 – HARDWARE MULTIPLIER MODULE 
The hardware multiplier module can be used by the DS4830A to support high-speed multiplications. The hardware 
multiplier module is equipped with two 16-bit operand registers, a 32-bit read-only result register, and an accumulator 
of 48-bit width. The multiplier can complete a 16-bit x 16-bit multiply-and-accumulate/subtract operation in a single 
cycle. The hardware multiplier module supports the following operations without interfering with the normal core 
functions: 
 

o Signed or unsigned Multiply (16 bit x 16 bit) 
o Signed or unsigned Multiply-Accumulate (16 bit x 16 bit) 
o Signed or unsigned Multiply-Subtract (16 bit x 16 bit) 
o Signed Multiply and Negate (16 bit x 16 bit) 

 
 
18.1 – Hardware Multiplier Organization 
  

The hardware multiplier consists of two 16-bit, parallel-load operand registers (MA, MB); a read-only result register 
formed by two parallel 16-bit registers (MC1R and MC0R); an accumulator, which is formed by three 16-bit parallel 
registers (MC2, MC1, and MC0); and a status/control register (MCNT). Figure 18-1 shows a block diagram of the 
hardware multiplier. 
 

 
Figure 18-1: Multiplier Organization  
 
18.2 – Hardware Multiplier Controls 
The selection of operation to be performed by the multiplier is determined by four control bits in the MCNT register: 
SUS, MSUB, MMAC, and SQU. The number of operands that must be loaded to trigger the specified operation is 
dictated by the OPCS bit setting, except when the square function is enabled (SQU = 1). Enabling the square 
function implicitly defines that only a single operand (either MA or MB) needs to be loaded to trigger the square 
operation, independent of the OPCS bit setting. The MCNT register bits must be configured to select the desired 
operation and operand count prior to loading the operand(s) to trigger the multiplier operation. Any write to MCNT 
automatically resets the operand load counter of the multiplier, but does not affect the operand registers, unless such 
action is requested using the Clear Data Registers (CLD) control bit. Once the desired operation has been specified 
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via the MCNT register bits, loading the prescribed number of operands triggers the respective multiply, multiply-
accumulate/subtract or multiply-negate operation. 
 
18.3 – Register Output Selection 
The Hardware Multiplier implements the MC Register Write Select (MCW) control bit so that writing of the result to 
the MC2:MC0 registers can be blocked to preserve the MC registers (accumulator). When the MCW bit is configured 
to logic 1, the result for the given operation is not written to the MC registers. When the MCW bit is configured to 
logic 0, the MC registers are updated with the result of the operation. The MC1R, MC0R read-only register pair are 
updated independent of the MCW bit setting. This register pair always reflects the output that would normally be 
placed in MC1:MC0, given that MCW = 1 or MMAC = 0. When MCW = 0 and MMAC = 1, the MC1R:MC0R content 
may not match the MC1:MC0 register content, but it will be predictable and may be useful in certain situations. See 
Table 18-1 for details. 
 
18.3.1 – Signed-Unsigned Operand Selection 
The operands can be either signed or unsigned numbers, but the data type must be defined by the user software via 
the Signed-Unsigned (SUS) bit prior to triggering the operation. For an unsigned operation, the Signed-Unsigned bit 
(SUS) in the MCNT register must be set to 1; for a signed operation, the SUS bit must be cleared to 0. The multiplier 
treats unsigned numbers as absolute magnitude. For a 16-bit positional binary number, this represents a value in the 
range 0 to 216 - 1 (FFFFh). The signed number representation is a two's-complement value, where the most 
significant bit is defined as a sign bit. The range of a 16-bit two's-complement number is -2(16-1) (8000h) to +2(16-1) - 1 
(7FFFh). The product of any signed operation will be sign extended before being stored or accumulated/subtracted 
into the MC registers. The SUS bit should always be configured to logic 0 (i.e., signed operands) for the multiply-
negate operation. Attempting an unsigned multiply-negate operation results in incorrect results and setting of the OF 
bit. Modifying the operand data type selection via the SUS bit does not alter the contents of the MC registers. The 
MC registers are read/write accessible and can be modified by user code when necessary. 
 
18.3.2 – Operand Count Selection 
The OPCS bit allows selection of single operand or two operands operation for the multiply and multiply-
accumulate/subtract operations. When the OPCS bit is cleared to 0, the multiply or multiply-accumulate/subtract 
operation established by the SUS, MSUB, and MMAC bits, is triggered once two operands are loaded-(MA and MB 
registers). When OPCS is set to 1, the operation commences once data is loaded to either MA or MB. The OPCS bit 
is ignored when the square operation is enabled (SQU), since loading of data to the MA or MB register actually 
writes to both registers. 
 
18.4 – Hardware Multiplier Operations 
The control bits, which specify data type (SUS), operand count (OPCS or SQU), and destination control (MCW), 
have already been described. However, there are two additional MCNT register bits that serve to define the 
Hardware Multiplier operation. The multiply-accumulate/subtract and multiply-negate operations are enabled by the 
Multiply-Accumulate Enable (MMAC) and Multiply Negate (MSUB) bits in the MCNT register. When the MMAC bit is 
set to 1, the multiplier performs a multiply-accumulate (if MSUB = 0) or a multiply-subtract (if MSUB = 1). If MMAC is 
configured to 0, the multiplier result is not accumulated or subtracted, but can be stored directly (if MSUB = 0) or 
negated (if MSUB = 1) before storage. The multiply-negate operation (MMAC = 0, MSUB = 1) is only allowable for 
signed data operands (SUS = 0). For unsigned multiply-accumulate/subtract operations, the OF bit is set when a 
carry-out/borrow-in from the most significant bit of the MC register occurs. For a signed two’s-complement multiply-
accumulate/subtract operations, the OF bit is set when the carry-out/borrow-in from the most significant magnitude 
position of the MC register is different from the carryout/ borrow-in of the sign position of the MC register. Since there 
is no overflow condition for multiply and multiply-negate operations, the OF bit is always cleared for these operations 
with one exception. The OF bit will be set to logic 1 if an unsigned multiply-negate (invalid operation) is requested. 
Table 18-1 shows the operations supported by the multiplier and associated MCNT control bit settings. 
18.4.1 – Accessing the Multiplier 
There are no restrictions on how quickly data is entered into the operand registers or the order of data entry. The 
only requirement to do a calculation is to perform the loading of MA and/or MB registers having specified data type 
and operation in the MCNT register. The multiplier keeps track of the writes to the MA and MB registers, and starts 
calculation immediately after the prescribed number of operands is loaded. If two operands are specified for the 
operation, the multiplier waits for the second operand to be loaded into the other operand register before starting the 
actual calculation. If for any reason software needs to reload the first operand, it should either reload that same 
operand register or use the CLD bit in the MCNT register to reinitialize the multiplier; otherwise, loading data to 
another operand register triggers the calculation. The CLD bit is a self-clearing bit that can be used for multiplier 
initialization. When it is set, it clears all data registers and the OF bit to zero and resets the multiplier operand write 
counter.  
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The specified hardware multiplier operation begins when the final operand(s) is loaded and will complete in a single 
cycle. The read-only MC1R, MC0R result registers can be accessed in the very next cycle unless 
accumulation/subtraction with MC2:0 is requested (MCW = 0 and MMAC = 1), in which case, one cycle is required 
so that stable data can be read. When MCW = 0, the MC2:0 registers always require one wait cycle before the 
operation result is accessible. The single wait cycle needed for updating the MC2:0 registers with a calculated result 
does not prevent initiating another calculation. Back-to-back operations can be triggered (independent of data type 
and operand count) without the need of wait state between the loadings of operands. 
 
Table 18-1 Hardware Multiplier Operations 
MCW:MSUB:MMAC OPERATION MC2 MC1 MC0 MC1R:MC0R OF STATUS 

000 Multiply MA*MB MA*MB No 
001 Multiply-Accumulate MC+(MA*MB) 32lsbits of (MC+2*(MA*MB)) Yes 
010 Multiply-Negate (SUS = 0 only) -(MA*MB) -(MA*MB) No 
011 Multiply-Subtract MC-(MA*MB) 32lsbits of (MC-2*(MA*MB)) Yes 
100 Multiply MC2 MC1 MC0 MA*MB No 
101 Multiply-Accumulate MC2 MC1 MC0 32lsbits of (MC+(MA*MB)) No 
110 Multiply-Negate (SUS = 0 only) MC2 MC1 MC0 -(MA*MB) No 
111 Multiply-Subtract MC2 MC1 MC0 32lsbits of (MC-(MA*MB)) No 

 
The DS4830A has two sets of internal MAC registers to allow interruptible MAC operation. The MACRSEL bit in the 
MACSEL register selects one of the MAC registers.   
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Figure 18-2: Dual MAC Registers Organization  
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18.5 – Hardware Multiplier Peripheral Registers 
The hardware multiplier registers are detailed below. Addresses of registers are given as “Mx[yy]” where x is the 
module number (from 0 to 5 decimal) and yy is the register index (from 00h to 1Fh hexadecimal).  
 
Table 18-2: Hardware Multiplier Registers 
REGISTER ADDRESS FUNCTION 

MCNT M3[00h] 
Multiplier Control Register. Selects operation, data type, operand count, hardware square 
function, and write option on the MC register.  Also contains the overflow flag and the clear 
control for operand registers and accumulator.  

MA M3[01h] Multiplier Operand A Register. Used by the user software to load one of the 16-bit values for a 
hardware multiplier operation. 

MB M3[02h] Multiplier Operand B Register. Used by the user software to load one of the 16-bit values for a 
hardware multiplier operation. 

MC2 M3[03h] 
Multiplier Accumulate Register 2. Contains the two most significant bytes of the accumulator 
register. The 48-bit accumulator is formed by MC2, MC1 and MC0. The most significant bit of 
this register is the signed bit for signed operations. 

MC1 M3[04h] Multiplier Accumulate Register 1. Contains bytes 3 and 2 of the accumulator register. The 48-
bit accumulator is formed by MC2, MC1 and MC0.  

MC0 M3[05h] Multiplier Accumulate Register 0. Contains the two least significant bytes of the accumulator 
register. The 48-bit accumulator is formed by MC2, MC1 and MC0. 

MC1R M3[08h] 
Multiplier Read Register 1. Contains bytes 1 and 0 result from the last operation when MCW bit 
is 1 or the last operation is either multiply-only or multiply-negate. The contents of this register 
will remain until an SFR related to the multiplier has been changed. 

MC0R M3[09h] 
Multiplier Read Register 0. Contains bytes 3 and 2 result from the last operation when MCW bit 
is 1 or the last operation is either multiply-only or multiply-negate. The contents of this register 
will remain unchanged until an SFR related to the multiplier has been changed. 

SHFT M3[07h] 
Right and Left Shift Register: The shift operations are implemented to help with fixed point 
math.  These operations only work on the 48-bit accumulator, MC [2:0] registers.  The MCR 
[1:0] registers are not affected by a shift operation.   

MACSEL M3[0Eh] MAC Select Register. The device has internally two sets of MAC registers. Using this register 
one of two MAC registers is selected which allows uninterruptible MAC operation. 
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18.5.1 – Multiplier Control Register (MCNT) 
Bit 7 6 5 4 3 2 1 0 
Name OF MCW CLD SQU OPCS MSUB MMAC SUS 
Reset 0 0 0 0 0 0 0 0 
Access r rw rw rw rw rw rw rw 
 
 
BIT NAME DESCRIPTION 
7 OF Overflow Flag. This bit is set to logic 1 when an overflow occurred for the last operation. This bit can be set 

for accumulation/subtraction operations or unsigned multiply-negate attempts. This bit is automatically cleared 
to 0 following a reset, starting a multiplier operation, or setting of the CLD bit to 0. 

6 MCW MC Register Write Select. The state of the MCW bit determines if an operation result will be placed into the 
accumulator registers (MC). 

0 = The result will be written to the MC registers. 
      1 = The result is not written to the MC registers (MC register content is unchanged). 

5 CLD Clear Data register. This bit initializes the operand registers and the accumulator of the multiplier. When it is 
set to 1, the contents of all data registers and the OF bit are cleared to 0 and the operand load counter is reset 
immediately. This bit is cleared by hardware automatically. Writing a 0 to this bit has no effect. 

4 SQU Square Function Enable. This bit supports the hardware square function. When this bit is set to logic 1, a 
square operation is initiated after an operand is written to either the MA or the MB register. Writing data to 
either of the operand registers writes to both registers and triggers the specified square or square-
accumulate/subtract operation. Setting this bit to 1 also overrides the OPCS bit setting. When SQU is cleared 
to logic 0, the hardware square function is disabled. 

0 = Square function disabled 
1 = Square function enabled 

3 OPCS Operand Count Select. This bit defines how many operands must be loaded to trigger a multiply or multiply-
accumulate/subtract operation (except when SQU = 1 since this implicitly specifies a single operand). When 
this bit is cleared to logic 0, both operands (MA and MB) must be written to trigger the operation. When this bit 
is set to 1, the specified operation is triggered once either operand is written. 

0 = Both operands (MA and MB) must be written to trigger the multiplier operation. 
1 = Loading one operand (MA or MB) triggers the multiplier operation. 

2 MSUB Multiply-Accumulate Negate. Configuring this bit to logic 1 enables negation of the product for signed 
multiply operations and subtraction of the product from the accumulator (MC[2:0]) when MMAC = 1. When 
MSUB is configured to logic 0, the product of multiply operations will not be negated and accumulation is 
selected when MMAC = 1.  

1 MMAC Multiply-Accumulate Enable. This bit enables the accumulate or subtract operation (as per MSUB) for the 
hardware multiplier. When this bit is cleared to logic 0, the multiplier will perform only multiply operations. 
When this bit is set to logic 1, the multiplier will perform a multiply-accumulate or multiply-subtract operation 
based upon the MSUB bit. 
     0 = Accumulate/subtract operation disabled 
     1 = Accumulate/subtract operation enabled 

0 SUS Signed-Unsigned. This bit determines the data type of the operands. When this bit is cleared to logic 0, the 
operands will be treated as two’s complement values and the multiplier will perform a signed operation.  When 
this bit is set to logic 1, the operands will be treated as absolute magnitudes and the multiplier will perform an 
unsigned operation. 
     0 = Signed Operands 
     1 = Unsigned Operands 
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18.5.2 – Multiplier Operand A Register (MA) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name MA[15:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
Multiplier Operand A: This operand A register is used by the application code to load 16-bit values for multiplier operations. 
 
18.5.3 – Multiplier Operand B Register (MB) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name MB[15:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
Multiplier Operand B:  This operand B register is used by the application code to load 16-bit values for multiplier operations. 
 
18.5.4 – Multiplier Accumulator 2 Register (MC2) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name MC2[15:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
Multiplier Accumulator 2 Register:  The MC2 register represents the two most significant bytes of the accumulator register. The 
48-bit accumulator is formed by MC2, MC1 and MC0. For a signed operation, the most significant bit of this register is the sign bit. 
 
18.5.5 – Multiplier Accumulator 1 Register (MC1) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name MC1[15:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
Multiplier Accumulator 1 Register: The MC1 register represents bytes 3 and 2 of the accumulator register. The 48-bit 
accumulator is formed by MC2, MC1, and MC0. 
 
18.5.6 – Multiplier Accumulator 0 Register (MC0) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name MC0[15:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
Multiplier Accumulator 0 Register:  The MC0 register represents the two least significant bytes of the accumulator register. The 
48-bit accumulator is formed by MC2, MC1, and MC0. 
 
18.5.7 – Multiplier Read Register 1 (MC1R) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name MC1R[15:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
 
Multiplier Read Register 1:  The MC1R register represents bytes 3 and 2 from the result of the last operation when MCW = 1 or 
the last operation was a multiply or multiply-negate. When MCW = 0 and the last operation was a multiply-accumulate/subtract, 
the contents of this register may or may not agree with the contents of MC1 due to the combinatorial nature of the adder. The 
content of this register may change if MCNT, MA, MB, or MC[2:0] is changed. 
 
18.5.8 – Multiplier Read Register 0 (MC0R) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name MC0R[15:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
 
Multiplier Read Register 0:  The MC1R register represents bytes 1 and 0 from the result of the last operation when MCW = 1 or 
the last operation was a multiply or multiply-negate. When MCW = 0 and the last operation was a multiply-accumulate/subtract, 
the contents of this register may or may not agree with the contents of MC0 due to the combinatorial nature of the adder. The 
content of this register may change if MCNT, MA, MB or MC[2:0] is changed. 
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18.5.9 – MAC Select Register (MACSEL) 
Bit 7 6 5 4 3 2 1 0 
Name - - - - - - - MACRSEL 
Reset 0 0 0 0 0 0 0 0 
Access r r r  r r r r rw 
 
BIT NAME DESCRIPTION 
7:1 - Reserved 
0 MACRSEL MAC Registers Select Register. The device has internally two sets of MAC registers. Using this bit one of 

two MAC registers is selected which allows uninterruptible MAC operation. 
 
18.5.10 – MAC Shift Register (SHIFT) 
Bit 7 6 5 4 3 2 1 0 
Name SHC - - - - - SR SL 
Reset 0 0 0 0 0 0 0 0 
Access rw r r r r r rw rw 
 
BIT NAME DESCRIPTION 
7 SHC Shift Carry: This bit represents the carry out from last shift operation. For a left shift operation this bit will get 

MC2[15] (MSB of MC2 register). For a right shift operation this bit will get MC0[0] (LSB of MC0 register). This 
bit can be cleared by writing a 0 to it. 

6:2 - Reserved 
1 SR Shift Right: a 1 to this bit will cause one bit right shift operation on MC2-M0 register. This bit auto clears itself, 

so a read on SHFT register will always return 0 for this bit position. 
0 SL Shift Left: a 1 to this bit will cause one bit left shift operation on MC2-M0 register. This bit auto clears itself, so 

a read on SHFT register will always return 0 for this bit position. 
 
The shift (right/left) operations are implemented for faster fixed point math operations.  These operations only work 
on the 48-bit accumulator, MC [2:0] registers.  The MCR [1:0] registers are not affected by a shift operation.   
 
Right Shift Operation: 
On doing a right shift the MC2-MC0 contents will be  
MC2[15:0] =  MC2[15],MC2[15:1]     (MSB bit, sign bit, is preserved) 
MC1[15:0]  = MC2[0],MC1[15:1] 
MC0[15:0]  = MC1[0],MC0[15:1] 
SHC = MC0[0] 
 
Left Shift Operation: 
On doing a left shift the MC2-MC0 contents will be  
SHC = MC2[15]  (shifted sign bit) 
MC2[15:0] =  MC2[14:0],MC1[15]  
MC1[15:0]  = MC1[14:0],MC0[15] 
MC0[15:0]  = MC0[14:0], 0 
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18.6 – Hardware Multiplier Examples 
The following are code examples of multiplier operations. 
 
;Unsigned Multiply 16-bit x 16-bit 
move   MCNT, #21h  ; CLD=1, SUS=1 (unsigned) 
move   MA, #0FFFh  ; MC2:0=0000_0000_0000h 
move   MB, #1001h  ; MC1R:MC0R= 00FF_FFFFh 

; MC2:0=0000_00FF_FFFFh 
 
;Signed Multiply 16-bit x 16-bit 
move   MCNT, #20h  ; CLD=1, SUS=0 (signed) 
move   MA, #F001h  ; MC2:0=0000_0000_0000h 
move   MB, #1001h  ; MC1R:MC0R= FF00_0001h 

; MC2:0=FFFF_FF00_0001h 
 
;Unsigned Multiply-Accumulate 16-bit x 16-bit 

; MC2:0=0000_0100_0001h 
move   MCNT, #03h  ; MMAC=1, SUS=1 (unsigned) 
move   MA, #0FFFh  ; 
move   MB, #1001h  ; 

; MC1R:MC0R=02FF_FFFFh 
; MC2:0=0000_0200_0000h 

 
;Signed Multiply-Accumulate 16-bit x 16-bit 

; MC2:0=0000_0100_0001h 
move   MCNT, #02h  ; SUS=0 (signed) 
move   MA, #F001h  ; 
move   MB, #1001h  ; 

; MC1R:MC0R= FF00_0003h 
; MC2:0=0000_0000_0002h 

 
;Unsigned Multiply-Subtract 16-bit x 16-bit 

; MC2:0=0000_0100_0001h 
move   MCNT, #07h  ; MMAC=1, MSUB=1, SUS=1 (unsigned) 
move   MA, #0FFFh  ; 
move   MB, #1001h  ; 

; MC1R:MC0R=FF00_0003h 
; MC2:0=0000_0000_0002h 

 
;Signed Multiply-Subtract 16-bit x 16-bit 

; MC2:0=0000_0100_0001h 
move   MCNT, #06h  ; MMAC=1, MSUB=1, SUS=0 (signed) 
move   MA, #F001h  ; 
move   MB, #1001h  ; 

; MC1R:MC0R= 02FF_FFFFh 
; MC2:0=0000_0200_0000h 

 
;Signed Multiply Negate 16-bit x 16-bit 
move   MCNT, #24h  ; CLD=1, MSUB=1, SUS=0 (signed) 
move   MA, #F001h  ; MC2:0=0000_0000_0000h 
move   MB, #1001h  ; MC1R:MC0R =00FF_FFFFh 

; MC2:0=0000_00FF_FFFFh 
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SECTION 19 – WATCHDOG TIMER 
19.1 - Overview 
The Watchdog Timer is a user programmable clock counter that can serve as a time-base generator, an event timer, 
or a system supervisor. As can be seen in Figure 19-1, the timer is driven by the main system clock and is supplied 
to a series of dividers. If the watchdog interrupt and the watchdog reset are disabled (WDCN.EWDI = 0 and 
WDCN.EWT = 0), the watchdog timer and its input clock are disabled. Whenever the watchdog timer is disabled, the 
watchdog interval timer (per WDCN.WD[1:0] bits) and 512 clock reset counter will be reset if either the interrupt or 
reset function is enabled. When the watchdog timer is initially enabled, there will be a 1-clock to 3-clock cycle delay 
before it starts. The divider output is selectable, and determines the interval between timeouts. When the timeout is 
reached, an interrupt flag will be set, and if enabled, an interrupt occurs. A watchdog-reset function is also provided 
in addition to the watchdog interrupt. The reset and interrupt are completely discrete functions that may be 
acknowledged or ignored, together or separately for various applications.  
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Figure 19-1: Watchdog Timer Block Diagram  
 
19.2 – Watchdog Timer Description 
When the watchdog timer is enabled, it begins counting system clock cycles.  The watchdog count will be reset 
anytime RWT is set to 1.  If the watchdog count reaches the time interval set by WD1:0], a watchdog timeout occurs, 
setting the Watchdog Interrupt Flag (WDCN.WDIF).  A watchdog timeout will also generate an interrupt and/or reset 
the DS4830A. Table 19-1 describes the possible states of the watchdog timer.   
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Table 19-1: Watchdog Operating States 

EWT EWDI WDIF ACTIONS 
x X 0 No interrupt has occurred. 
0 0 x Watchdog disable, clock is gated off. 
0 1 1 Watchdog interrupt has occurred. 

1 0 1 No interrupt has been generated. Watchdog reset will occur in 512 system 
clock cycles if RWT is not set or WDIF not cleared. 

1 1 1 Watchdog interrupt has occurred. Watchdog reset will occur in 512 system 
clock cycles if RWT is not set or WDIF not cleared. 

 
19.2.1 – Watchdog Timer Interrupt Operation 
The watchdog interrupt is enabled using the Enable Watchdog Timer Interrupt (WDCN.EWDI) bit. When the timeout 
occurs, the watchdog timer will set the Watchdog Interrupt Flag bit (WDCN.WDIF), and an interrupt will occur if the 
interrupt global enable (IC.IGE) and system interrupt mask (IMR.IMS) are set and an interrupt is not currently being 
serviced (IC.INS = 0).  The Watchdog Interrupt Flag must be cleared by software. 
 
19.2.2 – Watchdog Timer Reset Operation 
In order to reset the DS4830A, the watchdog timer reset function must be enabled by setting the Enable Watchdog 
Timer Reset (WDCN.EWT) bit.  When a watchdog timeout occurs, the WDIF flag will be set and an interrupt will be 
generated if enabled.  Following the timeout, the watchdog will count an additional 512 system clock cycles.  To 
avoid a reset, software must either set the RWT bit or clear the EWT bit.  This can occur at any time during the 
watchdog timer interval or the additional 512 system clock cycles after WDIF is set.  At the end of the 512 system 
clock cycles the DS4830A will be reset.  When the reset occurs, the Watchdog Timer Reset Flag (WDCN.WTRF) will 
automatically be set to indicate the cause of the reset.  Software must clear this bit manually. 
 
19.2.3 – Watchdog Timer Applications 
Using the watchdog interrupt during software development can allow the user to select ideal watchdog reset 
locations. Code is first developed without enabling the watchdog interrupt or reset functions. Once the program is 
complete, the watchdog interrupt function is enabled to identify the required locations in code to set the RWT bit. 
Incrementally adding instructions to reset the watchdog timer prior to each address location (identified by the 
watchdog interrupt) will allow the code to eventually run without receiving a watchdog interrupt. At this point the 
watchdog timer reset can be enabled without the potential of generating unwanted resets. At the same time the 
watchdog interrupt may also be disabled. Proper use of the watchdog interrupt with the watchdog reset allows 
interrupt software to survey the system for errant conditions. 
 
When using the watchdog timer as a system monitor, the watchdog reset function should be used. If the interrupt 
function were used, the purpose of the watchdog would be defeated. For example, assume the system is executing 
errant code prior to the watchdog interrupt. The interrupt would temporarily force the system back into control by 
vectoring the CPU to the interrupt service routine. Restarting the watchdog and exiting by an RETI or RET, would 
return the processor to the errant code.  By using the watchdog reset function, the processor is restarted from the 
beginning of the program, and therefore placed into a known state. 
 
The watchdog timer is controlled by the Watchdog Timer Control Register, WDCN. The WDCN register is one of the 
system register and is located in Module 8, Register 19.  The bit names and description of WDCN are listed in Table 
19-2.  
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Table 19-2: Watchdog Timer Control Register Bits (WDCN) 
Bit 7 6 5 4 3 2 1 0 
Name POR EWDI WD1 WD0 WDIF WTRF EWT RWT 
Reset s* s* 0 0 0 s* s* 0 
Access rw rw rw rw rw rw rw rw 
*Bits 5, 4, 3 and 0 are cleared to 0 on all forms of reset; for others, see individual bit descriptions. 
 
BIT NAME DESCRIPTION 
7 POR Power-On Reset Flag:  This bit is set to 1 whenever a power-on/brownout reset occurs. It is 

unaffected by other forms of reset. This bit can be checked by software following a reset to 
determine if a power-on/brownout reset occurred. It should always be cleared by software 
following a reset to ensure that the sources of following resets can be determined correctly. 

6 EWDI Enable Watchdog Timer Interrupt: If this bit is set to 1, an interrupt request can be 
generated when the WDIF bit is set to 1 by any means. If this bit is cleared to 0, no 
interrupt will occur when WDIF is set to 1, however, it does not stop the watchdog timer or 
prevent watchdog resets from occurring if EWT = 1. If EWT = 0 and EWDI = 0, the 
watchdog timer will be stopped. If the watchdog timer is stopped (EWT = 0 and EWDI = 0), 
setting the EWDI bit will reset the watchdog interval and reset counter, and enable the 
watchdog timer. This bit is cleared to 0 by power-on reset and is unaffected by other forms 
of reset. 

5:4 WD[1:0] Watchdog Timer Interval Control Bits: These bits determine the watchdog timeout interval.  
The timeout interval is set in terms of system clocks. Modifying the watchdog interval will 
automatically reset the watchdog timer unless the 512 system clock reset counter is 
already in progress, in which case, changing the WD[1:0] bits will not affect the watchdog 
timer or reset counter. 
 

WD1 WD0 CLOCKS UNTIL 
INTERRUPT 

CLOCKS UNTIL RESET 

0 0 212 212 + 512 
0 1 215 215 + 512 
1 0 218 218 + 512 
1 1 221 221 + 512 

 

3 WDIF Watchdog Interrupt Flag: This bit will be set to 1 when the watchdog timer interval has 
elapsed or can be set to 1 by user software. When WDIF = 1, an interrupt request will 
occur if the watchdog interrupt has been enabled (EWDI = 1) and not otherwise masked or 
prevented by an interrupt already in service (i.e., IGE = 1, IMS = 1, and INS = 0 must be 
true for the interrupt to occur). This bit should be cleared by software before exiting the 
interrupt service routine to avoid repeated interrupts. Furthermore, if the watchdog reset 
has been enabled (EWT = 1), a reset is scheduled to occur 512 system clock cycles 
following setting of the WDIF bit. 

2 WTRF Watchdog Timer Reset Flag: This bit is set to 1 when the watchdog resets the processor. 
Software can check this bit following a reset to determine if the watchdog was the source of 
the reset. Setting this bit to 1 in software will not cause a watchdog reset.  This bit is 
cleared by power-on reset only and is unaffected by other forms of reset. It should also be 
cleared by software following any reset so that the source of the next reset can be correctly 
determined by software. This bit is only set to 1 when a watchdog reset actually occurs.  If 
EWT is cleared to 0 when the watchdog timer elapses, this bit will not be set. 

1 EWT Enable Watchdog Timer Reset: If this bit is set to 1 when the watchdog timer elapses, the 
watchdog resets the DS4830A 512 system clock cycles later unless action is taken to 
disable the reset event. Clearing this bit to 0 prevents a watchdog reset from occurring but 
does not stop the watchdog timer or prevent watchdog interrupts from occurring if EWDI = 
1. If EWT = 0 and EWDI = 0, the watchdog timer will be stopped. If the watchdog timer is 
stopped (EWT = 0 and EWDI = 0), setting the EWT bit will reset the watchdog interval and 
reset counter, and enable the watchdog timer. This bit is cleared on power-on reset and is 
unaffected by other forms of reset. 

0 RWT Reset Watchdog Timer: Setting this bit to 1 resets the watchdog timer count. If watchdog 
interrupt and/or reset modes are enabled, the software must set this bit to 1 before the 
watchdog timer elapses to prevent an interrupt or reset from occurring.  This bit always 
returns 0 when read. 
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SECTION 20 – TEST ACCESS PORT (TAP) 
The DS4830A incorporates a Test Access Port (TAP) and TAP controller for communication with a host device 
across a 4-wire synchronous serial interface. The TAP may be used by the DS4830A to support in-system 
programming and/or in-circuit debug. The TAP is compatible with the JTAG IEEE standard 1149 and is formed by 
four interface signals described in Table 20-1. For detailed information on the TAP and TAP controller, refer to IEEE 
STD 1149.1 “IEEE Standard Test Access Port and Boundary-Scan Architecture.” 
 
Table 20-1: Test Access Port Pins 

EXTERNAL PIN SIGNAL FUNCTION 

TDO 
(Test Data Output) 

Serial-Data Output. This signal is used to serially transfer internal data to the external 
host. Data is transferred least significant bit first. Data is driven out only on the falling 
edge of TCK, only during TAP Shift-IR or Shift-DR states and is otherwise inactive. 

TDI 
(Test Data Input) 

Serial-Data Input. This signal is used to receive data serially transferred by the host. 
Data is received least significant bit first and is sampled on the rising edge of TCK. 
TDI is weakly pulled high internally when TAP=1. 

TCK 
(Test Clock Input) 

Serial Shift Clock Provided by Host.  When this signal is stopped at 0, storage 
elements in the TAP logic must retain their data indefinitely. TCK is weakly pulled 
high internally when TAP=1. 

TMS 
(Test Mode Select Input) 

Mode Select Input. This signal is sampled at the rising edge of TCK and controls 
movement between TAP states. TMS is weakly pulled high internally when TAP=1. 

 
These pins default to the TAP/JTAG function on reset, which means that the part is always ready for in-circuit 
debugging or in-circuit programming operations following any reset.  Once an application has been loaded and starts 
running, the TAP/JTAG port can still be used for in-circuit debugging operations. If in-circuit debugging functionality 
is not needed, the associated port pins can be reclaimed for application use by setting the TAP bit (SC.7) bit to 0. 
This disables the TAP/JTAG interface and allows the four pins to operate as normal port pins. 
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Figure 20-1: TAP and TAP Controller  
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20.1 – TAP Controller 
The TAP controller is a synchronous state machine that responds to changes at the TMS and TCK signals. Based on 
its state transition, the controller provides the clock and control sequence for TAP operation. The performance of the 
TAP is dependent on the TCK clock frequency. The maximum TCK clock frequency should be limited to 1/8 the 
system clock frequency. This section provides a brief description of the state machine and its state transitions. The 
state diagram in Figure 20-1 summarizes the transitions caused by the TMS signal sampling on the rising edge at 
TCK. The TMS signal value is presented adjacent to each state transition in the figure. 
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Figure 20-2: TAP Controller State Diagram 
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20.2 – TAP State Control 
The TAP provides an independent serial channel to communicate synchronously with the host system. The TAP 
state control is achieved through host manipulation of the Test Mode Select (TMS) and Test Clock (TCK) signals. 
The TMS signal is sampled at the rising edge of TCK and decoded by the TAP controller to control movement 
between the TAP states. The TDI input and TDO output are meaningful once the TAP is in a serial shift state (i.e. 
Shift-IR or Shift-DR).  
 
20.2.1 – Test-Logic-Reset 
On a power-on reset, the TAP controller is initialized to the Test-Logic-Reset state and the instruction register (IR2:0) 
is initialized to the By-Pass instruction so that it will not affect normal system operation. No matter what the state of 
the controller, it will enter Test-Logic-Reset when TMS is held high for at least five rising edges of TCK. The 
controller remains in the Test-Logic-Reset state if TMS remains high. An erroneous low signal on the TMS may 
cause the controller to move into the Run-Test-Idle state but no disturbance is caused to system operation if the 
TMS signal is returned and kept at the intended logic high for three rising edges of TCK since this returns the 
controller to the Test-Logic-Reset state. 
 
20.2.2 – Run-Test-Idle 
As illustrated in Figure 20-2, the Run-Test-Idle state is simply an intermediate state for getting to one of the two state 
sequences in which the controller performs meaningful operations: 

• Controller state sequence (IR-Scan), or 
• Data register state sequence (DR-Scan) 

 
20.2.3 – IR-Scan Sequence 
The controller state sequence allows instructions (e.g. ‘Debug’ and ‘System Programming’) to be shifted into the 
instruction register starting from the Select-IR-Scan state. In the TAP, the instruction register is connected between 
the TDI input and the TDO output. Inside the IR-Scan Sequence, the Capture-IR state loads a fixed binary pattern 
(001b) into the 3-bit shift register and the Shift-IR state causes shifting of TDI data into the shift register and serial 
output to TDO, least significant bit first. Once the desired instruction is in the shift register, the instruction can be 
latched into the parallel instruction register (IR2:0) on the falling edge of TCK in the Update-IR state. The contents of 
the 3-bit instruction shift register and parallel instruction register (IR2:0) are summarized with respect to the TAP 
controller states in Table 20-2. 
 
Table 20-2: Instruction Register Content vs. TAP Controller State 

TAP 
CONTROLLER STATE INSTRUCTION SHIFT REGISTER PARALLEL (3-BIT) 

INSTRUCTION REGISTER (IR2:0) 
Test-Logic-Reset Undefined Set to By-pass (011b) Instruction 

Capture-IR Load 001b at the rising edge of TCK Retain last state 

Shift-IR Input data via TDI and Shift towards 
TDO at the rising edge of TCK Retain last state 

Exit1-IR 
Exit2-IR 

Pause-IR 
Retain last state Retain last state 

Update-IR Retain last state Load from shift register at the falling edge of TCK 
All other states Undefined Retain last state 

 
When the parallel instruction register (IR2:0) is updated, the TAP controller decodes the instruction and performs any 
necessary operations, including activation of the data shift register to be used for the particular instruction during 
data register shift sequences (DR-Scan). The length of the activated shift register depends upon the value loaded to 
the instruction register (IR2:0). The supported instruction register encodings and associated data register selections 
are shown in Table 20-3. 
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Table 20-3: Instruction Register (IR2:0) Encodings 

IR2:0 INSTRUCTION FUNCTION SERIAL DATA SHIFT REGISTER SELECTION 
000 Extest No operation Unchanged. Retain previous selection 
001 Sample/Preload No operation Unchanged. Retain previous selection 
010 Debug In-circuit debug mode 10-bit shift register 
011 By-pass No operation (default) 1-bit shift register 

100 System 
Programming Bootstrap function 3-bit shift register 

101 By-pass No operation (default) 1-bit shift register 
110 Reserved 
111 By-pass No operation (default) 1-bit shift register 

 
The Extest (IR2:0 = 000b) and Sample/Preload (IR2:0 = 001b) instructions are mandated by the JTAG standard, 
however, the DS4830A does not intend to make practical use of these instructions. Hence, these instructions are 
treated as no operations but may be entered into the instruction register without affecting the on-chip system logic or 
pins and does not change the existing serial data register selection between TDI and TDO.  
  
The By-pass (IR2:0 = 011b, 101b, or 111b) instruction is also mandated by the JTAG standard. The By-pass 
instruction is fully implemented by the DS4830A to provide a minimum length serial data path between the TDI and 
the TDO pins. This is accomplished by providing a single cell bypass shift register. When the instruction register is 
updated with the By-pass instruction, a single bypass register bit is connected serially between TDI and TDO in the 
Shift-DR state. The instruction register automatically defaults to the By-pass instruction when the TAP is in the Test-
Logic-Reset state. The By-pass instruction has no effect on the operation of the on-chip system logic. 
 
The Debug (IR2:0 = 010b) and System Programming (IR2:0 = 100b) instructions are private instructions which are 
intended solely for in-circuit debug and in-system programming operations respectively. If the instruction register is 
updated with the Debug instruction, a 10-bit serial shift register is formed between the TDI and TDO pins in the Shift-
DR state. If the System Programming instruction is entered into the instruction register (IR2:0), a 3-bit serial data 
shift register is formed between the TDI and TDO pins in the Shift-DR state. 
 
Instruction register (IR2:0) settings other than those listed and described above are reserved for internal use. As can 
be seen in Figure 20-2, the instruction register serves to select the length of the serial data register between TDI and 
TDO during the Shift-DR state. 
  
20.2.4 – DR-Scan Sequence 
Once the instruction register has been configured to a desired state (mode), transactions are performed via a data 
buffer register associated with that mode. These data transactions are executed serially in a manner analogous to 
the process used to load the instruction register and are grouped in the TAP Controller state sequence starting from 
the Select-DR-Scan state. In the TAP controller state sequence, the Shift-DR state allows internal data to be shifted 
out through the TDO pin while the external data is shifted in simultaneously via the TDI pin. Once a complete data 
pattern is shifted in, input data can be latched into the parallel buffer of the selected register on the falling edge of 
TCK in the Update-DR state. On the same TCK falling edge, in the Update-DR state, the internal parallel buffer is 
loaded to the data shift register for output. This Shift-DR/Update-DR process serves as the basis for passing 
information between the external host and the DS4830A. These data register transactions occur in the data register 
portion of the TAP controller state sequence diagram and have no effect on the instruction register. 
 
20.3 – Communication via TAP 
The TAP controller is in Test-Logic-Reset state after a power-on-reset. During this initial state, the instruction register 
contains By-pass instruction and the serial path defined between the TDI and TDO pins for the Shift-DR state is the 
1-bit bypass register. All TAP signals (TCK, TMS, TDI, and TDO) default to being weakly pulled high internally on 
any reset. The TAP controller will remain in the Test-Logic-Reset state as long as TMS is held high. The TCK and 
TMS signals may be manipulated by the host to transition to other TAP states. The TAP controller will remain in a 
given state whenever TCK is held low.  
 
For the host to establish a specific data communication link, a private instruction must be loaded into the IR2:0 
register. Once the instruction is latched in the instruction parallel buffer at the Update-IR state, it is recognized by the 
TAP controller and the communication channel is established. In-Circuit Debug or In-System Programming 
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commands and data can be exchanged between the host and the DS4830A by operating in the data register portion 
of the state sequence (i.e. DR-Scan). The TAP retains the private instruction which was loaded into IR2:0 until a new 
instruction is shifted in or until the TAP controller returns to the Test-Logic-Reset state. 
 
20.3.1 – TAP Communication Examples – IR-Scan and DR-Scan  
Figures 20-3 and 20-4 illustrate examples of communication between the host JTAG controller and the Test Access 
Port (TAP) of the DS4830A. The host controls the TCK and TMS signals to move through the desired TAP states 
while accessing the selected shift register through the TDI input and TDO output pair.  
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Figure 20-3: TAP Controller Debug Mode IR-Scan Example 
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Figure 20-4: TAP Controller Debug Mode DR-Scan Example 
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SECTION 21 – IN-CIRCUIT DEBUG MODE 
The DS4830A is equipped with embedded debug hardware and embedded ROM firmware developed for the 
purpose of providing in-circuit debugging capability to the user application. The in-circuit debug mode uses the 
JTAG-compatible Test Access Port (TAP) as its means of communication between the host and the DS4830A. 
Figure 21-1 shows a block diagram of the in-circuit debugger. The in-circuit debug hardware and software features 
include:  

• a debug engine, 
• a set of registers providing the ability to set breakpoints on register, code, or data, 
• a set of debug service routines stored in a ROM. 

 
Collectively, these hardware and software features allow two basic modes of in-circuit debugging: 

• Background mode allows the host to configure and set up the in-circuit debugger while the CPU 
continues to execute the normal program. Debug mode can be invoked from Background mode.  

• Debug mode allows the debug engine to take control of the CPU, providing read write access to internal 
registers and memory, and single step trace operation. 
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COMPARATOR CODE ADDR

DATA ADDR

REG DATA

IP

IR DATA
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     TAP

CONTROLLER

COMPARATOR

COMPARATOR

Figure 21-1: In-Circuit Debugger 
 
The embedded hardware debug engine is implemented as a stand-alone hardware block in the DS4830A. The 
debug engine can be enabled for monitoring internal activities and interacting with selected internal registers while 
the CPU is executing user code. This capability allows the user to employ the embedded debug engine to debug the 
actual system, in place of the in-circuit emulator that uses external hardware to duplicate operation of the 
microcontroller outside of the real application environment. 
 
To enable a communication link between the host and the microcontroller debug engine, the Debug instruction 
(010b) must be loaded into the TAP instruction register using the IR-Scan sequence. Once the instruction is latched 
in the instruction parallel buffer (IR2:0) and is recognized by the TAP controller in the Update-IR state, the 10-bit data 
shift register is activated as the communication channel for DR-Scan sequences. The TAP instruction register retains 
the Debug instruction until a new instruction is shifted via an IR-Scan or the TAP controller returns to the Test-Logic-
Reset state. 
 
The host now can transmit and receive serial data through the 10-bit data shift register that exists between the TDI 
input and TDO output during DR-Scan sequences. All background and debug mode communication (commands, 
data input/output, and status) occurs via this serial channel. Each 10-bit exchange of data between the host and the 
DS4830A internal hardware is composed of two status bits and a single byte of command or data. The 10-bit word is 
always transmitted least significant bit first with the format shown in Figure 21-2.   The details of the two status bits 
are shown in Table 21-1. 
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Figure 21-2: 10-Bit Word Format 
 
Table 21-1: Status Bits 

s1:s0 STATUS/CONDITION 
00 Non-Debug. Default condition, Background mode, or debug engine inactive. 
01 Debug Idle. Debug engine is ready to receive data from the host (command, data). 
10 Debug Busy. Debug engine is busy without valid data (i.e. ROM code execution, trace operations). 
11 Debug Valid. Debug engine is busy with valid data 

 
The data byte portion of the 10-bit shift register is interfaced directly to the ICDB parallel register. The ICDB register 
functions as the holding data register for both transmit and receive operations. On the falling edge of TCK in the 
Update-DR state, the outgoing data is loaded from the ICDB parallel register to the debug shift register and the 
incoming shift register data is latched in the ICDB parallel register. 
 
21.1 – Background Mode Operation 
When the instruction register is loaded with the Debug instruction (IR2:0 = 010b), the host can communicate with the 
DS4830A in a background mode using TAP DR-Scan sequences without disturbing CPU operation. Note, however, 
that JTAG in-system programming also requires use of the 10-bit debug shift register and, if enabled (JTAG_SPE=1, 
PSS1:0= 0), takes precedence over background mode communication. When operating in background mode, the 
status bits are always cleared to 00b (non-debug), which indicates that the DS4830A is ready to receive background 
mode commands. 
 
The host can perform the following operations from background mode: 

• read/write internal breakpoint registers (BP0–BP5) 
• read/write internal in-circuit debug registers (ICDC, ICDF, ICDA, ICDD) 
• monitor to determine when a breakpoint match has occurred 
• directly invoke debug mode 

 
Table 21-2 shows the background mode commands supported by the DS4830A. Encodings not listed in this table 
are not supported in background mode and are treated as no operations. 
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Table 21-2: Background Mode Commands 
OPCODE COMMAND OPERATION 
0000-0000 No Operation No operation. (Default state for Debug Shift register). 

0000-0001 Read ICDC 
Read control data from the ICDC. The contents of the ICDC register will be loaded into the Debug 
Shift Register via the ICDB register for host read. This command requires one follow-on transfer 
cycle. 

0000-0010 Read ICDF 
Read flags from the ICDF. The contents of the ICDF register (one byte) will be loaded into the 
Debug Shift Register via the ICDB register for host read. This command requires one follow-on 
transfer cycle. 

0000-0011 Read ICDA 
Read data from the ICDA. The contents of the ICDA register will be loaded into the Debug Shift 
Register via the ICDB register for host read. This command requires two follow-on transfer cycles 
with the least significant byte first. 

0000-0100 Read ICDD 
Read data from the ICDD. The contents of the ICDD register will be loaded into the Debug Shift 
Register via the ICDB register for host read. This command requires two follow-on transfer cycles 
with the least significant byte first. 

0000-0101 Read BP0 
Read data from the BP0. The contents of the BP0 register will be loaded into the Debug Shift 
Register via the ICDB register for host read. This command requires two follow-on transfer cycles 
with the least significant byte first. 

0000-0110 Read BP1 
Read data from the BP1. The contents of the BP1 register will be loaded into the Debug Shift 
Register via the ICDB register for host read. This command requires two follow-on transfer cycles 
with the least significant byte first. 

0000-0111 Read BP2 
Read data from the BP2. The contents of the BP2 register will be loaded into the Debug Shift 
Register via the ICDB register for host read. This command requires two follow-on transfer cycles 
with the least significant byte first. 

0000-1000 Read BP3 
Read data from the BP3. The contents of the BP3 register will be loaded into the Debug Shift 
Register via the ICDB register for host read. This command requires two follow-on transfer cycles 
with the least significant byte first. 

0000-1001 Read BP4 
Read data from the BP4. The contents of the BP4 register will be loaded into the Debug Shift 
Register via the ICDB register for host read. This command requires two follow-on transfer cycles 
with the least significant byte first. 

0000-1010 Read BP5 
Read data from the BP5. The contents of the BP5 register will be loaded into the Debug Shift 
Register via the ICDB register for host read. This command requires two follow-on transfer cycles 
with the least significant byte first. 

0001-0001 Write ICDC Write control data to the ICDC. The contents of ICDB will be loaded into the ICDC register by the 
debug engine at the end of the data transfer cycle. 

0001-0011 Write ICDA Write data to the ICDA. The contents of ICDB will be loaded into the ICDA register by the debug 
engine at the end of the data transfer cycles. Data is transferred with the least significant byte first. 

0001-0100 Write ICDD Write data to the ICDD. The contents of ICDB will be loaded into the ICDD register by the debug 
engine at the end of data transfer cycles. Data is transferred with the least significant byte first. 

0001-0101 Write BP0 Write data to the BP0. The contents of ICDB will be loaded into the BP0 register by the debug 
engine at the end of data transfer cycles. Data is transferred with the least significant byte first. 

0001-0110 Write BP1 Write data to the BP1. The contents of ICDB will be loaded into the BP1 register by the debug 
engine at the end of data transfer cycles. Data is transferred with the least significant byte first. 

0001-0111 Write BP2 Write data to the BP2. The contents of ICDB will be loaded into the BP2 register by the debug 
engine at the end of data transfer cycles. Data is transferred with the least significant byte first. 

0001-1000 Write BP3 Write data to the BP3. The contents of ICDB will be loaded into the BP3 register by the debug 
engine at the end of data transfer cycles. Data is transferred with the least significant byte first. 

0001-1001 Write BP4 Write data to the BP4. The contents of ICDB will be loaded into the BP4 register by the debug 
engine at the end of data transfer cycles. Data is transferred with the least significant byte first. 

0001-1010 Write BP5 Write data to the BP5. The contents of ICDB will be loaded into the BP5 register by the debug 
engine at the end of data transfer cycles. Data is transferred with the least significant byte first. 

0001-1111 Debug 
Debug command. This command forces the debug engine into debug mode and halts the CPU 
operation at the completion of the current instruction after the debug command is recognized by the 
debug engine. 

 
21.1.1 – Breakpoint Registers 
The DS4830A incorporates six breakpoint registers (BP0–BP5) that are configurable by the host for establishing 
different types of breakpoint mechanisms. The first four breakpoint registers (BP0–BP3) are 16-bit registers that are 
configurable as program memory address breakpoints. When enabled, the debug engine will force a break when a 
match between the breakpoint register and the program memory execution address occurs. The final two 16-bit 
breakpoint registers (BP4, BP5) are configurable in one of two possible capacities. They may be configured as data 
memory address breakpoints or may be configured to support register access breakpoints. In either case, if 
breakpoints are enabled and the defined breakpoint match occurs, the debug engine will generate a break condition. 
The six breakpoint registers are documented below. 
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21.1.1.1 – Breakpoint 0 Register (BP0) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name BP0[15:0] 
Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Access s s s s s s s s s s s s s s s s 
s = special 
 
The Breakpoint 0 register is accessible only via background mode read/write commands. Breakpoint registers BP0, 
BP1, BP2, and BP3 serve as program memory address breakpoints. When DME bit is set in background mode, the 
debug engine monitors the program-address bus activity while the CPU is executing the user program. If an address 
match is detected, a break occurs, allowing the debug engine to take control of the CPU and enter debug mode.  
 
21.1.1.2 – Breakpoint 1 Register (BP1) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name BP1[15:0] 
Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Access s s s s s s s s s s s s s s s s 
s = special 
 
The Breakpoint 1 register is accessible only via background mode read/write commands. Breakpoint registers BP0, 
BP1, BP2, and BP3 serve as program memory address breakpoints. When DME bit is set in background mode, the 
debug engine monitors the program-address bus activity while the CPU is executing the user program. If an address 
match is detected, a break occurs, allowing the debug engine to take control of the CPU and enter debug mode. 
 
21.1.1.3 – Breakpoint 2 Register (BP2) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name BP2[15:0] 
Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Access s s s s s s s s s s s s s s s s 
s = special 
The Breakpoint 2 register is accessible only via background mode read/write commands. Breakpoint registers BP0, 
BP1, BP2, and BP3 serve as program memory address breakpoints. When DME bit is set in background mode, the 
debug engine monitors the program-address bus activity while the CPU is executing the user program. If an address 
match is detected, a break occurs, allowing the debug engine to take control of the CPU and enter debug mode. 
 
21.1.1.4 – Breakpoint 3 Register (BP3) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name BP3[15:0] 
Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Access s s s s s s s s s s s s s s s s 
s = special 
 
The Breakpoint 3 register is accessible only via background mode read/write commands. Breakpoint registers BP0, 
BP1, BP2, and BP3 serve as program memory address breakpoints. When DME bit is set in background mode, the 
debug engine monitors the program-address bus activity while the CPU is executing the user program. If an address 
match is detected, a break occurs, allowing the debug engine to take control of the CPU and enter debug mode. 
 
21.1.1.5 – Breakpoint 4 Register (BP4) 
The Breakpoint 4 register is accessible only via background mode read/write commands.  
When REGE = 0: This register serves as one of the two data memory address breakpoints. When DME is set in 
background mode, the debug engine will monitor the data memory address bus activity while the CPU is executing 
the user program. If an address match is detected, a break occurs, allowing the debug engine to take over control of 
the CPU and enter debug mode. 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name BP4[15:0] 
Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Access s s s s s s s s s s s s s s s s 
s = special 
 
When REGE = 1: This register serves as one of the two register breakpoints. A break occurs when the destination 
register address for the executed instruction matches with the specified module and index.  The destination module 
is indicated by the M[3:0] bits and the register within that module is defined by the r[4:0] bits. 
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Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - - - r.4 r.3 r.2 r.1 r.0 M.3 M.2 M.1 M.0 
Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Access s s s s s s s s s s s s s s s s 
s = special 
 
21.1.1.6 – Breakpoint 5 Register (BP5) 
The Breakpoint 5 register is accessible only via background mode read/write commands. 
When REGE = 0: This register serves as one of the two data memory address breakpoints. When DME is set in 
background mode, the debug engine will monitor the data memory address bus activity while the CPU is executing 
the user program. If an address match is detected, a break occurs, allowing the debug engine to take over control of 
the CPU and enter debug mode. 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name BP5[15:0] 
Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Access s s s s s s s s* s* s* s* s* s** s** s** s** 
s = special 
 
When REGE = 1: This register serves as one of the two register breakpoints.  The destination module is indicated by 
the M[3:0] bits and the register within that module is defined by the r[4:0] bits.  A break occurs when two following 
conditions are met: 

• The destination register address for the executed instruction matches with the specified module and index. 
• The bit pattern written to the destination register matches those bits specified for comparison by the ICDD 

data register and ICDA mask register. Only those ICDD data bits with their corresponding ICDA mask bits 
will be compared. When all bits in the ICDA register are cleared, Condition 2 becomes a don’t care. 

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name - - - - - - - r.4 r.3 r.2 r.1 r.0 M.3 M.2 M.1 M.0 
Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Access s s s s s s s s s s s s s s s s 
s = special 
 
21.1.2 – Using Breakpoints 
All breakpoint registers (BP0-BP5) default to the FFFFh state on power-on reset or when the Test-Logic-Reset TAP 
state is entered. The breakpoint registers are accessible only with Background mode read/write commands issued 
over the TAP communication link. The breakpoint registers are not read/write accessible to the CPU. 
 
Setting the Debug Mode Enable (DME) bit in the ICDC register to logic 1 enables all six breakpoint registers for 
breakpoint match comparison. The state of the Break-On Register Enable (REGE) bit in the ICDC register 
determines whether the BP4 and BP5 breakpoints should be used as data memory address breakpoints (REGE = 0) 
or as register breakpoints (REGE = 1). 
 
When using the register matching breakpoints, it is important to realize that Debug mode operations (e.g., read data 
memory, write data memory, etc.) require use of ICDA and ICDD for passing of information between the host and 
DS4830A ROM routines. It is advised that these registers be saved and restored or be reconfigured before returning 
to the background mode if register breakpoints are to remain enabled.  
 
When a breakpoint match occurs, the debug engine forces a break and the DS4830A enters Debug Mode. If a 
breakpoint match occurs on an instruction that activates the PFX register, the break is held off until the prefixed 
operation completes. The host can assess whether Debug mode has been entered by monitoring the status bits of 
the 10-bit word shifted out of the TDO pin. The status bits will change from the Non-debug (00b) state associated 
with background mode to the Debug-Idle (01b) state when Debug Mode is entered. Debug mode can also be 
manually invoked by host issuance of the 'Debug' background command. 
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21.2 – Debug Mode 
There are two ways to enter the Debug Mode from Background Mode: 
 

1. Issuance of the Debug command directly by the host via the TAP communication port, or 
2. Breakpoint matching mechanism. 

 
The host can issue the Debug background command to the debug engine. This direct Debug Mode entry is 
nondeterministic. The response time varies dependent on system conditions when the command is issued. The 
breakpoint mechanism provides a more controllable response, but requires that the breakpoints be initially 
configured in Background mode. No matter the method of entry, the debug engine takes control of the CPU in the 
same manner. Debug mode entry is similar to the state machine flow of an interrupt except that the target execution 
address is x8010h which resides in the Utility ROM instead of the address specified by the IV register that is used for 
interrupts. On debug mode entry, the following actions occur: 
 

1. block the next instruction fetch from program memory 
2. push the return address onto the stack 
3. set the contents of IP to x8010h 
4. clear the IGE bit to 0 to disable interrupt handler if it is not already clear. 
5. halt CPU operation 

 
Once in Debug mode, further breakpoint matches or host issuance of the Debug command are treated as no 
operations and will not disturb debug engine operation. Entering debug mode also stops the clocks to all timers, 
including the Watchdog Timer. Temporarily disabling these functions allows debug mode operations without 
disrupting the relationship between the original user program code and hardware timed functions. No interrupt 
request can be granted since the interrupt handler is also halted as a result of IGE = 0. 
 
 
21.2.1 – Debug Mode Commands 
The debug engine sets the data shift register status bits to 01b (debug-idle) to indicate that it is ready to accept 
debug commands from the host. 
 
The host can perform the following operations from debug mode: 

• read register map 
• read program stack 
• read/write register 
• read/write data memory 
• single step of CPU (trace) 
• return to background mode 
• unlock password 

 
The only operations directly controlled by the debug engine are single step and return. All other operations are 
assisted by debug service routines contained in the Utility ROM. These operations require that multiple bytes be 
transmitted and/or received by the host, however each operation always begins with host transmission of a 
command byte. This command byte is decoded by the debug engine in order to determine the quantity, sequence, 
and destination for follow-on bytes received from the host. Even though there is no timing window specified for 
receiving the complete command and follow-on data, the debug engine must receive the correct number of bytes for 
a particular command before executing that command. If command and follow-on data are transmitted out of byte 
order or proper sequence, the only way to resolve this situation is to disable the debug engine by changing the 
instruction register (IR2:0) and reloading the Debug instruction. Once the debug engine has received the proper 
number of command and follow-on bytes for a given ROM assisted operation, it will respond with the following 
actions: 
 

• update the Command bits (CMD3:0) in the ICDC register to reflect the host request, 
• enable the ROM if it is not been enabled, 
• force a jump to ROM address x8010h, and 
• set the data shift register status bits to 10b (debug-busy) 

 
The ROM code performs a read to the ICDC register CMD3:0 bits to determine its course of action. Some 
commands can be processed by the ROM without receiving data from the host beyond the initially supplied follow-on 
bytes, while others (e.g., Unlock Password) require additional data from the host. Some commands need only to 



DS4830A User’s Guide 
  

  171 

provide an indication of completion to the host, while others (e.g., Read Register Map) need to supply multiple bytes 
of output data. To accomplish data flow control between the host and ROM, the status bits should be used by the 
host to assess when the ROM is ready for additional data and/or when the ROM is providing valid data output. 
Internally, the ROM can ascertain when new data is available or when it may output the next data byte via the TXC 
flag. The TXC flag is an important indicator between the debug engine and the Utility ROM debug routines. The 
Utility ROM firmware sets the TXC flag to 1 to indicate that valid data has been loaded to the ICDB register. The 
debug engine clears the TXC flag to 0 to indicate completion of a data shift cycle, thus allowing the ROM to continue 
execution of a requested task that is still in progress. The Utility ROM signals that it has completed a requested task 
by setting the ROM Operation Done (ROD) bit of the SC register to logic 1. The ROD bit is reset by the debug engine 
when it recognizes the done condition.  
 
Table 21-3 shows the debug mode commands supported by the DS4830A. Note that background mode commands 
are supported inside debug mode, however, the documentation of these commands can be found in the Background 
mode section of the document. Encodings not listed in this table are not supported in debug mode and are treated as 
no operations. 
 
Table 21-3: Debug Mode Commands 

OPCODE COMMAND OPERATION 
0010-0000 No Operation No Operation. 

0010-0001 Read register Map 

Read data from internal registers. This command forces the debug engine to update 
the CMD3:0 bits in the ICDC to 0001b and perform a jump to ROM code at x8010h. 
The ROM debug service routine will load register data to ICDB for host capture/read, 
starting at the lowest register location in module 0, one byte at a time in a successive 
order until all internal registers are read and output to the host.  

0010-0010 Read data memory 

Read data from data memory. This command requires four follow-on transfer cycles, 
two for the starting address and two for the word read count, starting with the LSB 
address and ending with the MSB read count. The input address must be based 
memory map when executing from utility ROM, as shown in Figure 2-4. The address is 
moved to the ICDA register and the word read count is moved to the ICDD register by 
the debug engine. This information is directly accessible by the ROM code. At the 
completion of this command period, the debug engine updates the CMD3:0 bits to 
0010b and performs a jump to ROM code at x8010h. The ROM debug service routine 
will load ICDB from data memory according to address and count information provided 
by the host. 

0010-0011 Read program stack 

Read data from program stack. This command requires four follow-on transfer 
cycles, two for the starting address and two for the read count, starting with the LSB 
address and ending with the MSB read count. The address is moved to the ICDA 
register and the read count is moved to the ICDD register by the debug engine. This 
information is directly accessible by the ROM code. At the completion of this command 
period, the debug engine updates the CMD3:0 bits to 0011b and performs a jump to 
ROM code at x8010h. The ROM Debug service routine will pop data out from the 
stack according to the information received in the ICDA and ICDD register. The 
address input is the highest value that is used, as words are popped off the stack and 
returned in descending order. 

0010-0100 Write register 

Write data to a selected register. This command requires four follow-on transfer 
cycles, two for the register address and two for the data, starting with the LSB address 
and ending with the MSB data. The address is moved to the ICDA register and the 
data is moved to the ICDD register by the debug engine. This information is directly 
accessible by the ROM code. At the completion of this command period, the debug 
engine updates the CMD3:0 bits to 0100b and performs a jump to ROM code at 
x8010h. The ROM Debug service routine will update the select register according to 
the information received in the ICDA and ICDD registers. 
Any register location can be written using this command, including reserved locations 
and those used for opcode support. No protection is provided by the debugging 
interface, and avoiding side effects is the responsibility of the host system 
communicating with the DS4830A. Writing to the IP register alters the address that 
execution resumes from when the debugging engine exits. 
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OPCODE COMMAND OPERATION 

0010-0101 Write data memory 

Write data to a selected data memory location. This command requires four follow-
on transfer cycles, two for the memory address and two for the data, starting with the 
LSB address and ending with the MSB data. The input address must be based 
memory map when executing from utility ROM, as shown in Figure 2-4. The address is 
moved to the ICDA register and the data is moved to the ICDD register by the debug 
engine. This information is directly accessible by the ROM code. At the completion of 
this command period, the debug engine updates the CMD3:0 bits to 0101b and 
performs a jump to ROM code at x8010h. The ROM Debug service routine will update 
the selected data memory location according to the information received in the ICDA 
and ICDD registers. 

0010-0110 Trace 
Trace command. This command allows single stepping the CPU and requires no 
follow-on transfer cycle. The trace operation is a ‘debug mode exit, one cycle CPU 
execution, debug mode entry’ sequence. 

0010-0111 Return 
Return command. This command terminates the debug mode and returns the debug 
engine to background mode. This allows the CPU to resume its normal operation at 
the point where it has been last interrupted. 

0010-1000 Unlock password 

Unlock the password lock. This command requires 32 follow-on transfer cycles each 
containing a byte value to be compared with the program memory password for the 
purpose of clearing the PWL bit and granting access to protected debug and loader 
functions. When this command is received, the debug engine updates the CMD3:0 bit 
to 1000b and performs a jump to ROM code at x8010h. Data is loaded to the ICDB 
register when each byte of data is received, beginning with the LSB of the least 
significant word first and end with the MSB of the most significant word. 

0010-1001 Read register 

Read from a selected internal register. This command requires two follow-on 
transfer cycles, starting with the LSB address and ending with the MSB address. The 
address is moved to ICDA register by the debug engine. This information is directly 
accessible by the ROM code. At the completion of this command period, the debug 
engine updates the CMD3:0 bits to 1001b and performs a jump to ROM code at 
x8010h. The ROM Debug service routine will always assume a 16-bit register length 
and return the requested data LSB first.  
Reading a register through the debug interface returns the value that was in that 
register before the debugging engine was invoked. An exception to this rule is the SP 
register; reading the SP register through the debug interface actually returns the value 
(SP+1). 

 
21.2.2 – Read Register Map Command Host-ROM Interaction 
A read register map command reads out data contents for all implemented system and peripheral registers. The host 
does not specify a target register but instead should expect register data output in successive order, starting with the 
lowest order register in register module 0. Data is loaded by the ROM to the 8-bit ICDB register and is output one 
byte per transfer cycle. Thus, for a 16-bit register, two transfer cycles are necessary. The host initiates each transfer 
cycle to shift out the data bytes and will find valid data output tagged with a debug-valid (status = 11b). At the end of 
each transfer cycle, the debug engine clears the TXC flag to signal the ROM service routine that another byte may 
be loaded to ICDB. The ROM service routine sets the TXC flag each time after loading data to the ICDB register. 
This process is repeated until all registers have been read and output to the host. The host system recognizes the 
completion of the register read when the status debug-idle is presented. This indicates that the debug engine is 
ready for another operation. 
 
This command outputs all peripheral registers in the range M0[00h] to M5[17h], along with a fixed set of system reg-
isters. The following formatting rules apply to the returned data:  

• All peripheral registers are output as 16 bits, least significant byte first.  If the register is an 8-bit register, the 
top is returned as 00h.  

• System registers are output as 8 bits or 16 bits, least significant byte first.  
• Registers I2CBUF_S, I2CBUF_M, SPIB_M, SPIB_S, QTDATA, PWMDATA and ADDATA are not read.  

Their values are returned as 0000h. 
• Nonimplemented and reserved peripheral registers in the range M0[00h] to M5[17h] are represented as 

empty word values in Table 21-4. These values should be ignored. 
 
The first byte output by this command is the value 180 (B4h), which represents the number of words output for 
peripheral register.  There are a total of 216 words that are output by this command.   Table 21-4 lists all of the 
registers output and the order in which they are output. 
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Table 21-4: Output from Read Register Map Command 
WO
RD REGISTER WO

RD REGISTER WO
RD REGISTER WORD REGISTER WORD REGISTER WORD REGISTER WO

RD REGISTER 

0 PO2 32  64  96 MCNT 128 ADCN 160  192 A[3] 

1 PO1 33 I2CST_M 65 I2CST_S 97 MA 129 SENR 161 QTCN 193 A[4] 

2 PO0 34 I2CIE_M 66 MPNTR 98 MB 130 ADST 162 LTIL 194 A[5] 

3 EIF2 35 PO6 67 I2CTXFST 99 MC2 131 ADST1 163 HTIL 195 A6[] 

4  EIF1 36 CRC8IN 68 I2CTXFIE 100 MC1 132  164  196 A[7] 

5  EIF0 37  MIIR1 69 I2CRXFST 101 MC0 133  165  197 A[8] 

6 GTV1 38 EIF6 70 I2CRXFIE 102 GTCN2 134 DADDR 166 PWMCN 198 A[9] 

7 GTCN1 39 EIE6 71 I2CST2_S 103 SHFT 135 MIIR4 167 PWMSYNC 199 A[10] 

8 PI2 40 PI6 72 RPNTR 104 MC1R 136 TEMPCN 168 LTIH 200 A[11] 

9 PI1 41 SVM 73  105 MC0R 137 SHCN 169 HTIH 201 A[12] 

10 PI0 42 - 74  106 GTC2 138 ADMIS 170 QTLST 202 A[13] 

11 GTC1 43 - 75  107 GTV2 139 PINSEL 171  203 A[14] 

12   44 I2CCN_M 76 I2CSLA_S 108 GR_REG1 140 REFAVG 172  204 A[15] 

13 EIE2 45 I2CCK_M 77 I2CSLA2_S 109 GR_REG2 141  173  205 IP 

14  EIE1 46 I2CTO_M 78 I2CSLA3_S 110 MACRSEL 142 TWR 174 MIIR5 206 SP 

15  EIE0 47 I2CSLA_M 79 I2CSLA4_S 111 USER_INT 143 RPCFG 175  207 IV 

16 PD2 48 EIES6 80 I2CIE2_S 112 GR_REG3 144 SPICN_S 176  208 LC[0] 

17 PD1 49  PD6 81  MADDR 113  GR_REG4 145  SPICF_S 177  209 LC[1] 

18 PD0 50  82  MADDR2 114  GR_REG5 146  SPICK_S 178 SPICN_M 210 OFFS 

19  EIES2 51  83   MADDR3 115  GR_REG6 147  I2C_SPB 179 SPICF_M 211 DPC 

20  EIES1 52  84   MADDR4 116  GR_REG7 148  DEV_NUM 180 SPICK_M 212 GR 

21  EIES0 53 CRC8OUT 85 CUR_SLA 117  GR_REG8 149 DACD0 181  213 BP 

22   54  86 I2CIE_S 118  GR_REG9 150 DACD1 182  214 DP[0] 

23   55 ADCG1 87   119  GR_REG10 151 DACD2 183  215 DP[1] 

24   56 ADCG2 88 ICDT0 120  GR_REG11 152 DACD3 184 AP APC    

25   57 ADVOFF 89 ICDT1 121  GR_REG12 153 DACD4 185 PSF IC    

26   58  90 ICDC 122  GR_REG13 154 DACD5 186 IMR SC    

27   59  ADCG3 91 ICDF 123  GR_REG14 155 DACD6 187 IIR CKCN    

28   60  ADCG4 92 ICDB 124  GR_REG15 156 DACD7 188 WDCN 0    

29   61  CHIPREV 93 ICDA 125  GR_REG16 157 DACCFG 189 A[0]    

30   62 ICSLA2_M 94 ICDD 126   158  ADADDR 190 A[1]    

31   63   95   127   159  191 A[2]    

 
21.2.3 – Single Step Operation (Trace) 
The debug engine supports single step operation in debug mode by executing a Trace command from the host. The 
debug engine allows the CPU to return to its normal program execution for one cycle and then forces a debug mode 
re-entry.  The steps for the Trace command are: 

1) Set status to 10b (debug-busy) 
2) Pop the return address from the stack 
3) Set the IGE bit to logic 1 if debug mode was activated when IGE=1. 
4) Supply the CPU with an instruction addressed by the return address 
5) Stall the CPU at the end of the instruction execution 
6) Block the next instruction fetch from program memory 
7) Push the return address onto the stack 
8) Set the contents of IP to x8010h 
9) Clear the IGE bit to 0 to disable the interrupt handler 
10) Halt CPU operation 
11) Set the status to debug-idle 

 
Note that the trace operation uses a return address from the stack as a legitimate address for program fetching. The 
host must maintain consistency of program flow during the debug process. The Instruction Pointer is automatically 
incremented after each trace operation, thus a new return address will be pushed onto the stack before returning the 
control to the debug engine. Also, note that the interrupt handler is an essential part of the CPU and a pending 
interrupt could be granted during single step operation since the IGE bit state present on debug mode entry is 
restored for the single step. 
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21.2.4 – Return 
To terminate the debug mode and return the debug engine to background mode, the host must issue a Return 
command to the debug engine. This command causes the following actions: 
 

1) Pop the return address from the stack 
2) Set the IGE bit to logic 1 if debug mode was activated when IGE=1. 
3) Supply the CPU with an instruction addressed by the return address 
4) Allow the CPU to execute the normal user program 
5) Set the status to 00b (non-debug) 

 
To prevent a possible endless breakpoint matching loop, no break will occur for a breakpoint match on the first 
instruction after returning from debug mode to background mode. Returning to background mode also enables all 
internal timer functions. 
 
21.2.5 – Debug Mode Special Considerations 
The following are special considerations when using Debug Mode. 
 

• Special caution should be exercised when using the Write Register command on register bits that globally 
affect system operation (e.g., IGE, STOP). If the write register command is used to invoke stop mode 
(setting STOP = 1), the RST pin may be asserted to reset the debug engine and return to the background 
mode of operation. 

• Single stepping ('Trace') through any IGE bit change operation results in the debug engine overriding the bit 
change since it retains the IGE bit setting captured when active debug mode was entered. 

• Single stepping ('Trace') into an operation that sets STOP = 1 when IGE = 1 effectively allows enabled 
interrupts normally capable of causing exit from stop mode to do so. 

• Single stepping ('Trace') through any memory read instruction that reads from the utility ROM (such as 'move 
Acc,' @DP[0] with DP[0] set to 8000h) will cause the memory read to return an incorrect value. 

• Single stepping ('Trace') cannot be used when executing code from the utility ROM. 
• Data memory allocation is important during system development if in-circuit debug is planned. The top 32-

byte memory location may be used by the debug service routine during debug mode. The data contents in 
these locations may be altered and cannot be recovered. 

• One available stack location is needed for debug mode. If the stack is full when entering debug mode, the 
oldest data in the stack will be overwritten. 

• Any signal sampling that relies upon the internal system clock (e.g., counter inputs) can be unreliable since 
the system clock is turned off inside active debug mode between debug mode commands. 
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21.3 – In-Circuit Debug Peripheral Registers 
The following peripheral registers are used to control the in-circuit debug mode of the DS4830A. Addresses of 
registers are given as “Mx[yy],” where x is the module number (from 0 to 5 decimal) and yy is the register index (from 
00h to 1Fh hexadecimal). Fields in the bit definition tables are defined as follows:  

● Name: Symbolic names of bits or bit fields in this register.  
● Reset: The value of each bit in this register following a standard reset. If this field reads “unchanged,” the 

given bit is unaffected by standard reset. If this field reads “s,” the given bit does not have a fixed 0 or 1 reset 
value because its value is determined by another internal state or external condition.  

● POR: If present this field defines the value of each bit in this register following a power-on reset (as opposed 
to a standard reset). Some bits are unaffected by standard resets and are set/cleared by POR only.  

● Access: Bits can be read-only (r) or read/write (rw). Any special restrictions or conditions that could apply 
when reading or writing this bit are detailed in the bit description.  

 
21.3.1 – In-Circuit Debug Temp 0 Register (ICDT0, M2[18h])  
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name ICDT0[15:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access s s s s s s s s s s s s s s s s 
s = special 
 
This register is read/write accessible by the CPU only in background mode or debug mode. This register is intended 
for use by the utility ROM routines as temporary storage to save registers that might otherwise have to be placed in 
the stack. 
 
21.3.2 – In-Circuit Debug Temp 1 Register (ICDT1, M2[19h]) 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name ICDT1[15:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access s s s s s s s s s s s s s s s s 
s = special 
 
This register is read/write accessible by the CPU only in background mode or debug mode. This register is intended 
for use by the utility ROM routines as temporary storage to save registers that might otherwise have to be placed in 
the stack. 
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21.3.3 – In-Circuit Debug Control Register (ICDC, M2[1Ah])  
 
Bit 7 6 5 4 3 2 1 0 
Name DME - REGE - CMD3 CMD2 CMD1 CMD0 
Reset 0 0 0 0 0 0 0 0 
Access rs r rs r rs rs rs rs 
r = read, s = special 
 
BIT NAME DESCRIPTION 
7 DME Debug Mode Enable (DME). When this bit is cleared to 0, background mode commands 

may be executed, but breakpoints are disabled. When this bit is set to 1, breakpoints are 
enabled while background mode commands still may be entered. This bit may only be set 
or cleared from background debug mode. This bit has no meaning for the ROM code. 

6 Reserved Reserved.  Do not write to this bit. 
5 REGE Break-On Register Enable. The REGE bit is used to enable the break-on register function. 

When REGE bit is set to 1, BP4 and BP5 are used as register breakpoints. A break occurs 
when the content of BP4 is matched with the destination address of the current instruction. 
For BP5, a break occurs only on a selected data pattern for a selected destination register 
addressed by BP5. The data pattern is determined by the contents in the ICDA and ICDD 
register. The REGE bit alone does not enable register breakpoints, but simply changes the 
manner in which BP4, BP5 are used. The DME bit still must be set to a logic 1 for any 
breakpoint to occur. This bit has no meaning for the ROM code. 

4 Reserved Reserved. Do not write to this bit. 
3:0 CMD3:0 These bits reflect the current host command in debug mode. These bits are set by the 

debug engine and allow the ROM code to determine the course of action  
CMD3:0 Action 
0000 No operation 
0001 Read register 
0010 Read data memory 
0011 Read stack memory 
0100  Write register 
0101  Write data memory 
1000  Unlock password 
1001  Read selected register 
Other  Reserved 
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21.3.4 – In-Circuit Debug Flag Register (ICDF, M2[1Bh])  
Bit 7 6 5 4 3 2 1 0 
Name - - - - PSS1 PSS0 JTAG_SPE TXC 
Reset 0 0 0 0 0 0 0 0 
Access r r r r rw rw rw rw 
r = read, s = special 
 
BIT NAME DESCRIPTION 
7:4 Reserved Reserved.  Do not write to these bits. 
3:2 PSS[1:0] Programming Source Select Bits [1:0]. These bits are used to select a programming interface 

during In-System programming when JTAG_SPE is set to 1, otherwise, the logic values of 
these bits have no meaning: 

PSS1 PSS0 Interface/Action 
0 0 JTAG 
0 1 I2C Bootloader 
1 x Exit Loader 

 

1 JTAG_SPE System Program Enable. The JTAG_SPE bit is used for In-System programming support and 
its logical state, when read by the CPU, always reflects the logical-OR of the JTAG_SPE bit 
that is write accessible by the CPU and the SPE bit of the System Programming Buffer (SPB) 
Register in the TAP Module (which is accessible via JTAG). The logical state of this bit 
determines the program flow after a reset. When it is set to logic 1, In-System programming 
will be executed by the Utility ROM. When it is cleared to 0, execution will be transferred to 
user code if I2C bootloading is not required. This bit allows read/write access by the CPU and 
is cleared to 0 only on a power-on reset or Test-Logic-Reset. The JTAG SPE bit will be 
cleared by hardware when the ROD bit is set. CPU writes to the JTAG_SPE bit (0 or 1) will 
result in clearing of the PSS[1:0] bits. 

0 TXC Serial Transfer Complete. This bit is set by hardware at the end of a transfer cycle at the TAP 
communication link. The TXC bit helps the debug engine to recognize host requests, either 
command or data. This bit is normally set by ROM code to signify or request the sending or 
receiving of data. The TXC bit is cleared by the debug engine once set. CPU writes to the 
TXC bit results in clearing of the PSS[1:0] bits. 

 
21.3.5 – In-Circuit Debug Buffer Register (ICDB, M2[1Ch])  
Bit 7 6 5 4 3 2 1 0 
Name ICDB[7:0] 
Reset 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw 
 
This register serves as the parallel holding buffer for the debug shift register of the TAP. Data is read from or written 
to ICDB for serial communication between the debug routines and the external host. 
 
21.3.6 – In-Circuit Debug Address Register (ICDA, M2[1Dh])  
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name ICDA[15:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r r r r r r r r r r r r 
 
This register is used by the debug engine to store addresses so that ROM code can view that information. This 
register is also used by the debug engine as a mask register to mask out don’t care bits in the ICDD register when 
BP5 is used as a register breakpoint. When a bit in this register is set to 1, the corresponding bit location in the ICDD 
register will be compared to the data being written to the destination register to determine if a break should be 
generated. When a bit in this register is cleared, the corresponding bit in the ICDD register becomes a don’t care and 
is not compared against the data being written. When all bits in this register are cleared, any updated data pattern 
will cause a break when the BP5 register matches the destination register address of the current instruction. 
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21.3.7 – In-Circuit Debug Data Register (ICDD, M2[1Eh])  
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Name ICDD[15:0] 
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Access r r r r r r r r r r r r r r r r 
 
This register is used by the debug engine to store data or read count so that ROM code can view that information. 
This register is also used by the debug engine as a data register for content matching when BP5 is used as a 
register breakpoint. In this case, only data bits in this register with their corresponding mask bits in the ICDA register 
set will be compared with the updated destination data to determine if a break should be generated. 
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SECTION 22 – IN-SYSTEM PROGRAMMING 
The DS4830A contains an internal bootstrap loader utilizing the JTAG or I2C interfaces.  As a result, system software 
can be upgraded in-system, eliminating the need for a costly hardware retrofit when software updates are required.  
After each device reset, DS4830A ROM code is executed which determines if bootloader operation is desired.  
Figure 22-1 provides information on how the DS4830A enters into bootloader operation. 
 

Any Device Reset Occurs

Reset Device.
Begin Boot ROM code

execution at 
8000h.

ROM Code enable the 
Slave I2C Interface

Is JTAG_SPE 
bit set?

Is I2C_SPE 
bit set?

Jump to user 
code

(flash) at 0000h,

Set PSS{1:0] = 01

Bootloader

Exit Bootloader
Delay 320 Clock Cycles
Set PWL and ROD bits.

Yes

No

Yes

No

Is PSS[1:0] 
!= 1X 

Exit Loader 
Command

Yes

No

 
Figure 22-1: Entering Bootloader Operation 
 
22.1 – Detailed Description 
Following every reset, device ROM code is executed which determines if the DS4830A should enter into a 
bootloader mode.  First, the ICDF register, which is not cleared by a reset, is read to see if the System Programming 
Enable (SPE) bit is set.  See the Entering JTAG Bootloader section for more details on setting the SPE bit.  If SPE is 
set, the DS4830A will enter into bootloader operation. 
 
If SPE is not set, the DS4830A then enables the slave I2C interface.  The I2C_SPE bit in the I2C_SPB register is 
read to determine if I2C bootloader operation is desired.  The I2C_SPB register is not cleared by a reset.  See the 
Entering I2C Bootloader section for more details on setting the I2C_SPE bit.  If I2C_SPE is set, the DS4830A will set 
the PSS[1:0] bits to 01, which designates I2C bootloader, and enter bootloader operation. 
 
If none of the preceding conditions have been met, the DS4830A ROM code will be complete.  The DS4830A will 
then jump to program memory location 0000h and begin normal program execution. 
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22.1.1 – Password Protection 
The DS4830A uses a password to protect the contents of the program memory from simple access and viewing.  
The password resides in the 32 bytes of program memory at byte address 0020h through 003Fh.  A valid password 
is defined as any value that does not contain all 0000h or FFFFh.  Following a reset, the Password Lock Bit (PWL) in 
the SC register will be set if the DS4830A contains a valid password.   
 
To protect the program memory, DS4830A grants full access to in-system programming, in-application programming 
or in-circuit debugging only after a password match has occurred.  When a password match occurs, the PWL bit will 
be cleared to 0.  When bootloading the device, the password can be matched using the Password Match command, 
through either the JTAG or I2C interface. 
 
22.1.2 – Entering JTAG Bootloader 
To enable the Bootstrap loader and establish a desired communication channel via JTAG, the System Programming 
instruction (100b) must be loaded into the TAP instruction register using the IR-Scan sequence.  The TAP retains the 
System Programming instruction until a new instruction is shifted in or the TAP controller returns to the Test-Logic-
Reset state.  See Section 16 –Test Access Port for more information regarding the JTAG port. 
 
Once the instruction is latched in the instruction parallel buffer (IR[2:0]) and is recognized by the TAP controller in the 
Update-IR state, a 3-bit data shift register is activated as the communication channel for DR-Scan sequences. This 
3-bit shift register formed between the TDI and TDO pins is directly interfaced to the 3-bit Serial Programming Buffer 
(SPB).  Table 22-1 provides a detailed description of the System Programming Buffer (SPB).  The data content of 
the SPB is reflected in the ICDF register, which allows read and write access by the CPU. These bits are cleared by 
power-on reset or Test-Logic-Reset of the TAP controller.  
 
Table 22-1: System Programming Buffer (SPB) 

BIT NAME DESCRIPTION 

2:1 PSS[1:0] 

Programming Source Select (PSS1:PSS0). These bits select the programming interface 
source.  

PSS1 PSS0 Programming Source 
0 0 JTAG 
0 1 I2C 
1 x Exit loader 

 

0 SPE 

System Programming Enable (SPE). Setting this bit to a logic 1 denotes that JTAG 
bootloading is desired upon exiting reset. The logic state of SPE is examined by the Utility 
ROM following a reset to determine the program flow.  When SPE=1, the Bootstrap 
Loader selected by the PSS[1:0] bits will be activated to perform a Bootstrap Loader 
function. If SPE=0, the Utility ROM will determine if I2C Bootloading is required before 
transferring execution control to the normal user program. 

 
Following a reset, if the System Programming Buffer is set for JTAG bootloading, the bootload routine will be 
entered.  The host must now load the Debug instruction (010b) into the TAP instruction register (IR[2:0]), which 
enables the 10-bit Debug shift register between TDI and TDO.   When operating in JTAG bootloader mode, the 
debug state machines are disabled and the sole purpose of the debug hardware is to simultaneously transfer the 
data byte shifted in from the host to the In-Circuit Debug Buffer Register (ICDB) and transfer the contents of an 
internal holding register (loaded by ROM code writes of ICDB) into the shift register for output to the host.  The 8 
most significant bits of the 10-bit shift register interface directly to the ICDB.  The transfer between the shift register 
and the ICDB register occurs on the falling edge of TCK at the Update-DR state.  The debug hardware additionally 
clears the TXC bit in the ICDF register at this point.  The ROM loader code controls the status bit output to the host 
by asserting TXC=1 when it has valid data to be shifted out. 
 
The 2 least significant bits of the 10-bit shift register are status bits.  The JTAG bootloader has the benefit of using 
the same status bit handshaking hardware that is used for in-circuit debugging.  The description of the status bits is 
described in Table 22-2. 
 
Note: When using the JTAG port, the clock rate (TCK) must be kept below 1/8 of the system clock rate. 
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Table 22-2: JTAG Bootloader Status Bits 

BITS 1:0 STATUS CONDITION 
00 Reserved Invalid condition. 
01 Reserved Invalid condition 

10 Loader-Busy ROM Loader is busy executing code or processing the current 
command. 

11 Loader-Valid ROM Loader is supplying valid output data to the host in current shift 
operation. 

 
22.1.3 – Entering I2C Bootloader 
The DS4830A also has built-in functionality that allows bootloading over I2C. Bootloading via I2C allows the system to 
update the firmware using only the I2C bus without JTAG or firmware intervention. To access the bootloading 
function, slave address 34h is used.  This slave address is setup by hardware and cannot be changed through 
firmware.  As long as the Slave I2C port is enabled, which is the default, the DS4830A will always respond to this 
slave address without any firmware interaction required.  This address should not be used for any purpose other 
than the special bootloading features.  Table 22-3 details the special functions that can be performed using slave 
address 34h.  
 
Table 22-3: Special Functions of Address 34h 
COMMAND BYTE ACTION 

F0h Sets the I2C_SPE bit in the I2C_SPB register to enable bootloading via I2C. This bit will not 
be cleared on device reset.   

BBh Executes a reset of the DS4830A when an I2C STOP is received.   
All other bytes The I2C_SPE bit in I2C_SPB is cleared.  The DS4830A will NACK this byte. 

 
To enter I2C bootloader, the host must first write slave address 34h with data F0h and then issue a STOP command.  
When the STOP command is received, the I2C _SPE bit will be set.  The DS4830A must then be reset.  This can be 
done using either the RST pin or by using the I2C self-reset.  To do an I2C self-reset, the host needs to write slave 
address 34h with data BBh.  Upon receiving an I2C STOP, a reset will be performed. 
 
22.1.4 – I2C Bootloader Disable 
The DS4830A provides options to disable the bootloader slave address 34h. The device has DEV_NUM register 
which is cleared only on POR. The bit 7 of the DEV_NUM controls bootloader slave address. Setting DEV_NUM[7] 
disables the slave address. Application in which bootloader address are not required should set the DEV_NUM[7] in 
the top of initialization function at the earliest. 
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22.2 – Bootloader Operation 
Once in bootloader mode, the JTAG and I2C interfaces both use the same commands.  How these commands are 
implemented will be different between the two interfaces.  Table 22-4 shows an example command and parameters.  
The next two sections will detail how to implement these commands using either the JTAG or I2C interface. 
 
Table 22-4: Example Bootload Command 
Byte(s) Command Data In NOP Data Out Return 
Input Command Data In 00h 00h 00h 
Output X X X Data Out 3Eh 
 
Byte Name Description 
Command All bootloader commands begin with a single command byte. The upper four bits of this command 

byte define the command family (from 0 to 15) and the lower four bits define the specific command 
within that family.  

Data In Data bytes that are input to the bootloader that are required for the command.  The number of Data 
In bytes varies for each command.  Some commands do not require any Data In bytes. 

NOP The NOP byte is only used for JTAG mode.  This is a byte of 00h that is clocked into TDI, while 
TDO is ignored.  

Data Out Data Out is any data that is returned by the bootloader.  The number of Data Out bytes varies for 
each command.  Some commands do not output any Data Out bytes. 

Return A return value of 3Eh is output by the bootloader at the start of first command and following the 
successful completion of every command thereafter.  If the Return byte is read prior to 3Eh being 
loaded by the bootloader, the read will return the data that is currently in the shift register.  The 
value 3Eh is only loaded into the shift register once.  Any subsequent reads will return invalid data. 
In JTAG bootload mode, status bits will tell when ROM loader is sending valid 3Eh. 

 
22.2.1 – JTAG Bootloader Protocol 
The JTAG port consists of a shift register.  As data is clocked into TDI, data will be clocked out of TDO.  Each “byte” 
on the JTAG port is actually 10 bits.  The two least significant bits are the status bits described in Table 22-2.  The 
data that is input to the device on the TDI pin should have the two status bits set to 0.  The following steps are 
required for each command.  
 

1) Transmit the Command byte on TDI.  Ignore the returned data on TDO. 
2) Transmit any Data In bytes on TDI.  Ignore the returned data on TDO. 
3) Transmit the NOP byte of 00h, on TDI.  Ignore the returned data on TDO. 
4) Possibly poll returned data until command execution completes. 
5) Transmit 00h on TDI for each Data Out byte.  Read the Data Out byte on TDO.   
6) Transmit 00h on TDI and verify that the Return byte output on TDO is 3Eh.  

 
Some of the bootloader commands, such as the erase and CRC commands require extra time to execute.  For these 
commands, the two status bits can be used to verify the state of the bootloader.  After issuing any of these 
commands, the NOP command can continuously be sent to the bootloader.  If the returned status bits are 10, the 
bootloader is still busy processing the command.  If the status bits are 11, the bootloader has completed execution of 
the command.  The first byte that was returned with status bits 11 will be the first byte of valid returned data from the 
bootloader. 
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22.2.2 – I2C Bootloader Protocol 
After entering the I2C bootloader, all I2C communication takes place on the default I2C bootloader slave address 36h.  
When writing data to the DS4830A, slave address 36h (R/W bit = 0) is used.  To read data from the DS4830A I2C 
bootloader, slave address 37h  (R/W bit = 1) is used.  The I2C bootloader does not return the status bits that are 
available from the JTAG bootloader.  The following I2C steps are required to send each command 

1) Send an I2C start, followed by writing slave address 36h(R/W bit set to write). 
2) Write command byte. 
3) Write any Data In bytes.   
4) The NOP byte is not required for the I2C interface.  Sending a NOP byte when using the I2C bootloader will 

place the bootloader into an unknown state.  Instead, an I2C Restart needs to be issued, followed by writing 
slave address 37h (R/W bit set to read). 

5) Possibly poll returned data until command execution completes.   
6) Read and ACK all Data Out bytes.   
7) Read and NACK the Return byte, verify that 3Eh was returned.  
8) Send an I2C STOP. 

 
Some of the bootloader commands, such as the erase and CRC commands require extra time to execute.  For these 
commands, the I2C port can be continuously polled to determine when the command completes.  This polling is done 
by reading the returned data bytes after sending slave address 37h.  The I2C bootloader will return data B7h while it 
is currently busy. When data other than B7h is returned, the bootloader is returning valid data.  An example of polling 
for the “Master Erase” command is shown in Figure 22-2.  After sending slave address 37h, the I2C bootloader will 
output B7h until the command has finished execution.  The I2C master needs to continue reading and returning 
ACK’s until 3Eh is returned. The master then NACK’s this byte (3E).  
 

Command
02h AS Slave Address(W)

36h A

Polling
B7h AA A Return

3Eh
S
R

Slave Address(R)
37h A N

A PPolling …..
B7h

KEY
S = START
SR = REPEATED START
P = STOP

A = ACKNOWLEDGE
NA = NOT ACKNOWLEDGE
SHADED = SLAVE TRANSACTION

Polling …..
B7hA

 
Figure 22-2: I2C Bootloader Polling 
 
Refer to Application Note 5602: In-System Programming Using I2C Bootloader Commands for ISP using the I2C 
bootloader.  

http://www.maximintegrated.com/AN5602
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22.3 – Bootloader Commands 
Commands for the DS4830A loader are grouped into families.  All bootloader commands begin with a single 
command byte. The upper four bits of this command byte define the command family (from 0 to 15), while the lower 
four bits define the specific command within that family.  The loader command families are shown in Table 22-5. 
 
Table 22-5: Command Families 
COMMAND FAMILY FAMILY DESCRIPTION 

0 Required 
1 Load 
2 Dump 
3 CRC 
4 Verify 
5 Load and Verify 
E Fixed Length Erase 

 
All commands, except those in Family 0, are password protected.  The password must first be matched before these 
commands can be executed. This is done using the Password Match command, which will clear the PWL bit if a 
match is made.  
 
Bootloader commands that fail for any reason set the bootloader status byte to an error code value describing the 
reason for the failure. This status byte can be read by means of the Get Status command. 
 
For proper bootloader operation, all bytes of data listed for the command must be written or read from the 
bootloader. This includes the Return byte, and for the I2C bootloader, the Dummy RX byte.  If all bytes are not read, 
the bootloader will remain in an unknown state even after a new command is sent to the bootloader. 
 
Following are descriptions of the bootloader commands that are available for use by the DS4830A bootloader. 
 
22.3.1 – Command 00h – No Operation 

 Byte 1 
 Command 

Input 00h 
Output X 

 
This is a No Operation Command.  This command can be sent at any time without the bootloader taking action.  This 
command is not password protected. 
 
22.3.2 – Command 01h – Exit Loader 

 Byte 1 
 Command 

Input 01h 
Output X 

 
This command causes the bootloader to exit. When exiting, the bootloader will clear the JTAG_SPE and I2C_SPE 
bits and then perform an internal reset of the device.  Following the reset, code execution jumps to the beginning of 
application code at address 0000h.  This command is not password protected. 
 
22.3.3 – Command 02h – Master Erase 

 Byte 1 Byte 2 Byte 3 
 Command NOP Return 

Input 02h 00h 00h 
Output X X 3Eh 

 
This command erases (sets to FFFFh) all words in the program flash memory and writes all words in the data SRAM 
to zero. This command is not password protected. After this command completes, the password lock bit is 
automatically cleared, allowing access to all bootloader commands.  This command requires approximately 40ms to 
complete. Polling for a return value of 3Eh can be performed during this execution time to determine when the 
master erase has completed.   
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22.3.4 – Command 03h – Password Match 
 Byte 1 Bytes 2 to 33 Byte 34 Byte 35 
 Command Data In NOP Return 

Input 03h 32-Byte Password 00h 00h 
Output X X X 3Eh 

 
This command accepts a 32-byte password value, which is matched against the password in program memory from 
byte address 0020h through 003Fh. If the entered value matches the password in program memory, the password 
lock bit will be cleared.  This command is not password protected. 
 
22.3.5 – Command 04h – Get Status 

 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 
 Command NOP Data Out Data Out Return 

Input 04h 00h 00h 00h 00h 
Output X X Flags Status Code 3Eh 

 
The Status Flags and Status Code returned by the Get Status command are defined in Tables 22-6 and 22-7.  This 
command is not password protected.  The Status Codes will be set whenever an error condition occurs and will only 
reflect the last error.  The Status Codes will be cleared 

• When the bootloader is initially entered 
• At the start of execution of all commands except Family 0 commands 
• At the start of execution of the Family 0 Master Erase. 

 
Table 22-6: Bootloader Status Flags 

FLAG 
BIT MEANING 

8:3 Reserved. 

2 

Word/Byte Mode Supported. 
0 – The bootloader supports byte mode only. 
1 – The bootloader supports word mode as well as byte mode. 
(Note: The DS4830A supports byte mode only) 

1 

Word/Byte Mode. 
0 – The bootloader is currently in byte mode for memory reads/writes. 
1 – The bootloader is currently in word mode for memory reads/writes. 
(Note: The DS4830A supports byte mode only) 

0 
Password Lock.  This bit will match the SC.PWL bit. 
0 – The password is unlocked or had a default value; password-protected commands may be used. 
1 – The password is locked. Password-protected commands may not be used. 

 
Table 22-7: Bootloader Status Codes 

STATUS 
VALUE MEANING 

00 No Error. The last command completed successfully. 

01 Family Not Supported. An attempt was made to use a command from a family which the 
bootloader does not support. 

02 Invalid Command. An attempt was made to use a nonexistent command within a supported 
command family. 

03 
No Password Match. An attempt was made to use a password-protected command without first 
matching a valid password. Or, the Password Match command was called with an incorrect 
password value. 

04 Bad Parameter. An input parameter passed to the command was out of range or otherwise 
invalid. 

05 Verify Failed. The verification step failed on a Load/Verify or Verify command. 
06 Unknown Register. An attempt was made to read from or write to a nonexistent register. 

07 Word Mode Not Supported. An attempt was made to set word mode access, but the bootloader 
supports byte mode access only. 

08 Master Erase Failed. The bootloader was unable to perform master erase. 
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22.3.6 – Command 05h – Get Supported Commands 
 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 
 Command NOP Data Out Data Out Data Out Data Out Return 

Input 05h 00h 00h 00h 00h 00h 00h 
Output X X SupportL SupportH 00h 00h 3Eh 

 
The SupportL (LSB) and SupportH (MSB) bytes form a 16-bit value that indicates which command families the 
bootloader supports.  If bit 0 is set to 1, it indicates that Family 0 is supported. If bit 1 is set to 1, it indicates that 
Family 1 is supported.  The value returned by the DS4830A is 403Fh, indicating that command families 0, 1, 2, 3, 4, 
5 and E are supported.  This command is not password protected. 
 
22.3.7 – Command 06h – Get Code Size 

 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 
 Command NOP Data Out Data Out Return 

Input 06h 00h 00h 00h 00h 
Output X X SizeL SizeH 3Eh 

 
This command returns SizeH:SizeL, which represents the size of available code memory in words minus 1.  The 
DS4830A will return a value of 7FFFh, which indicates 32k words of program memory are available.  This command 
is not password protected. 
 
22.3.8 – Command 07h – Get Data Size 

 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 
 Command NOP Data Out Data Out Return 

Input 07h 00h 00h 00h 00h 
Output X X SizeL SizeH 3Eh 

 
This command returns SizeH:SizeL, which represents the size of available data memory in words minus 1.  The 
DS4830A will return a value of 07FFh, which indicates 2k words of data memory are available.  This command is not 
password protected. 
 
22.3.9 – Command 08h – Get Loader Version 

 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 
 Command NOP Data Out Data Out Return 

Input 08h 00h 00h 00h 00h 
Output X X VersionL VersionH 3Eh 

 
This command returns the device’s bootloader version.  The format of the version is VersionH.VersionL.  For 
example, if VersionL returns 01h and VersionH returns 01h, this corresponds to bootloader version 1.1.  This 
command is not password protected.  
 
22.3.10 – Command 09h – Get Utility ROM Version 

 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 
 Command NOP Data Out Data Out Return 

Input 09h 00h 00h 00h 00h 
Output X X VersionL VersionH 3Eh 

 
This command returns the device’s ROM code version.  The format of the ROM version is VersionH.VersionL.  For 
example, if VersionL returns 00h and VersionH returns 01h, this corresponds to ROM version 1.0.  This command is 
not password protected.  
 



DS4830A User’s Guide 
  

  187 

22.3.11 – Command 10h – Load Code  
 Byte 1 Byte 2 Byte 3 Byte 4 (Length) 

Bytes 
Byte 

Length+5 
Byte 

Length+6 
 Command Data In Data In Data In Data In NOP Return 
Input 10h Length AddressL AddressH Data to load 00h 00h 
Output X X X X X X 3Eh 
 
This command programs (Length) bytes of data into the program flash starting at byte address 
(AddressH:AddressL). The bootloader writes one 16-bit word to flash at a time. The low bit of the address will always 
be forced to zero because instructions in program flash are word aligned. If an odd number of bytes are input, the 
final word written to the program flash will have its most significant byte set to 00h. Memory locations in flash that 
have been previously loaded must be erased (Master Erase or Page Erase Command) before they can be loaded 
with a new value. The DS4830A uses a little-endian memory architecture where the least significant byte of each 
word is loaded first. For example, if you load bytes (11h, 22h, 33h, 44h) starting at address 0000h, the first two words 
of program space will be written to 2211h, 4433h.  This command is password protected. 
 
The time required to write 1 word of data to flash is approximately 80µs. To guarantee correct programming, a 
bootloading program will need to ensure that there is at least 100µs of time between when the bootloader receives 
two words of data. The easiest way to do this is to limit the clock rate to 100kHz. The time to transmit one word of 
data with a 100kHz clock exceeds 100µs, thus giving the previously transmitted word time to be programmed into 
flash prior to processing the next word. If a faster clock rate is used, delays will need to be added to ensure that 
words are not transmitting at rates faster than 100µs. 
 
The JTAG bootloader also supports polling using the status bits as a method to determine when a word has 
successfully been written into flash. When sending the first two bytes of program data to load, the status bits should 
return as 11 to signify that the bootloader is valid.  After sending the 2nd byte, the bootloader will begin writing this 
first word to flash and will be busy. If a 3rd byte of data is written while the bootloader is busy programming the first 
word, the status bits will return as 10, which is loader busy. Upon receiving a status of 10, the 3rd byte needs to be 
sent again until the status bits return as 11, or loader valid. When this code is returned the 3rd byte has been 
received and the 4th byte can now be sent. If using the JTAG bootloader with a clock faster than 100kHz, this polling 
method should be used for every byte that is transmit to the bootloader.  
 
22.3.12 – Command 11h – Load Data  

 Byte 1 Byte 2 Byte 3 Byte 4 (Length) 
Bytes 

Byte 
Length+5 

Byte 
Length+6 

 Command Data In Data In Data In Data In NOP Return 
Input 11h Length AddressL AddressH Data to load 00h 00h 
Output X X X X X X 3Eh 

 
This command writes (Length) bytes of data into the data SRAM starting at byte address (AddressH:AddressL). The 
DS4830A uses a little-endian memory architecture where the least significant byte of each word is loaded first. For 
example, if you load bytes (11h, 22h, 33h, 44h) starting at address 0000h, the first two words of memory space will 
be written to 2211h, 4433h. This command is password protected. 
  
22.3.13 – Command 20h – Dump Code  

 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 5 Byte 6 Length 
Bytes 

Byte 
Length+7 

 Command Data In Data In Data In Data In Data In NOP Data Out Return 
Input 20h 2 AddrL AddrH LengthL LengthH 00h 00h 00h 

Output X X X X X X X Memory 3Eh 
 
This command returns the contents of the program flash memory.  The memory dump begins at byte address 
AddrH:AddrL and will contain LengthH:LengthL bytes.  This command is password protected. 
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22.3.14 – Command 21h – Dump Data  
 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 5 Byte 6 Length 

Bytes 
Byte 

Length+7 
 Command Data In Data In Data In Data In Data In NOP Data Out Return 

Input 21h 2 AddrL AddrH LengthL LengthH 00h 00h 00h 
Output X X X X X X X Memory 3Eh 
 
This command returns the contents of the SRAM memory. The memory dump begins at byte address AddrH:AddrL 
and will contain LengthH:LengthL bytes. This command is password protected. 
 
22.3.15 – Command 30h – CRC Code  

 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 
7 

Byte 8 Byte 9 Byte 
10 

 Command Data In Data In Data In Data In Data In NOP Data 
Out 

Data 
Out 

Return 

Input 30h 2 AddrL AddrH LengthL LengthH 00h 00h 00h 00h 
Output X X X X X X X CRCL CRCH 3Eh 
 
This command returns the CRC-16 value (CRCH:CRCL) of the (LengthH:LengthL) bytes of program flash starting at 
(AddrH:AddrL). The formula for the CRC calculation is X16 + X15 + X2 + 1.  This command is password protected. 
     
The CRC calculation takes approximately 45 system clock cycles per byte (4.5µs/byte). During this time polling 
should be performed to determine when the loader has finished executing the CRC calculation. If using the I2C 
loader, user should wait for time according to given length and read CRCL, CRCH, 3Eh. If using the JTAG loader, 
the JTAG status bits can be used to determine when the CRC calculation is complete. 
 
22.3.16 – Command 31h – CRC Data  

 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 
7 

Byte 8 Byte 9 Byte 
10 

 Command Data In Data In Data In Data In Data In NOP Data 
Out 

Data 
Out 

Return 

Input 31h 2 AddrL AddrH LengthL LengthH 00h 00h 00h 00h 
Output X X X X X X X CRCL CRCH 3Eh 
 
This command returns the CRC-16 value (CRCH:CRCL) of the (LengthH:LengthL) bytes of data memory starting at 
(AddrH:AddrL).  The formula for the CRC calculation is X16 + X15 + X2 + 1.  This command is password protected. 
     
The CRC calculation takes approximately 45 system clock cycles per byte (4.5µs/byte). During this time polling 
should be performed to determine when the loader has finished executing the CRC calculation. If using the I2C 
loader, user should wait for time according to given length and read CRCL, CRCH, 3Eh. If using the JTAG loader, 
the JTAG status bits can be used to determine when the CRC calculation is complete. 
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22.3.17 – Command 40h – Verify Code  
 Byte 1 Byte 2 Byte 3 Byte 4 (Length) Bytes Byte 

Length+5 
Byte 

Length+6 
 Command Data In Data In Data In Data In NOP Return 

Input 40h Length AddrL AddrH Data to Verify 00h 00h 
Output X X X X X X 3Eh 

 
This command operates in the same manner as the Load Code command, except that instead of programming the 
input data into flash memory, it verifies that the input data matches the data already in code space. If the data does 
not match, the status code is set to reflect this failure. This command is password protected. 
 
22.3.18 – Command 41h – Verify Data  

 Byte 1 Byte 2 Byte 3 Byte 4 (Length) Bytes Byte 
Length+5 

Byte 
Length+6 

 Command Data In Data In Data In Data In NOP Return 
Input 41h Length AddrL AddrH Data to Verify 00h 00h 

Output X X X X X X 3Eh 
 
This command operates in the same manner as the Load Data command, except that instead of writing the input 
data into SRAM, it verifies that the input data matches the data already in data space. If the data does not match, the 
status code is set to reflect this failure. This command is password protected. 
 
22.3.19 – Command 50h – Load and Verify Code  

 Byte 1 Byte 2 Byte 3 Byte 4 (Length) Bytes Byte 
Length+5 

Byte 
Length+6 

 Command Data In Data In Data In Data In NOP Return 
Input 50h Length AddrL AddrH Data to load and verify 00h 00h 

Output X X X X X X 3Eh 
 
This command provides the combined functionality of the Load Code and Verify Data commands. After each word of 
data is written to data memory, the loader will read this memory location and verify that the data matches the input 
data. If the verification fails, the status code will be set to reflect this failure. All the guidelines that are listed for the 
Load Code command must be followed for the Load and Verify Code command. This command is password 
protected. 
 
22.3.20 – Command 51h – Load and Verify Data  

 Byte 1 Byte 2 Byte 3 Byte 4 (Length) Bytes Byte 
Length+5 

Byte 
Length+6 

 Command Data In Data In Data In Data In NOP Return 
Input 51h Length AddrL AddrH Data to load and verify 00h 00h 

Output X X X X X X 3Eh 
 
This command provides the combined functionality of the Load Data and Verify Data commands. After each word of 
data is written to SRAM memory, the loader will read this memory location and verify that the data matches the input 
data. If the verification fails, the status code will be set to reflect this failure. The guidelines that are listed for the 
Load Data command must be followed for the Load and Verify Data command. This command is password 
protected. 
 
22.3.21 – Command E0h – Code Page Erase  

 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 
 Command Data In Data In Data In NOP Return 

Input E0h 0 PageNum 0 00h 00h 
Output X X X X X 3Eh 

 
This command erases (programs to FFFFh) all words in a 256 word (512 byte) page of the program flash memory.  
The DS4830A has 128 pages of flash. The input PageNum indicates which page to erase. For example, 
PageNum=0 would erase byte addresses 000h through 1FFh and PageNum=1 would erase byte addresses 200h 
through 3FFh. This command requires approximately 26ms to complete. Polling can be performed during this 
execution time to determine when the page erase has completed. This command is password protected. 
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SECTION 23 – PROGRAMMING 
The following section provides a programming overview of the DS4830A. For full details on the instruction set, as 
well as System Register and Peripheral Register detailed bit descriptions, see the appropriate sections in this 
user’s guide. 
 
23.1 – Addressing Modes 
The instruction set for the DS4830A provides three different addressing modes: direct, indirect and immediate. 
 
The direct addressing mode can be used to specify either source or destination registers, such as: 

 
move  A[0], A[1]  ; copy accumulator 1 to accumulator 0 

    push  A[0]                  ; push accumulator 0 on the stack 
    add   A[1]                  ; add accumulator 1 to the active accumulator 
 
Direct addressing is also used to specify addressable bits within registers. 
   
  move  C, Acc.0    ; copy bit zero of the active accumulator to the carry flag 
    move  PO0.3, #1    ; set bit three of port 0 Output register 
 
Indirect addressing, in which a register contains a source or destination address, is used only in a few cases. 
 
    move @DP[0], A[0]  ; copy accumulator 0 to the data memory location pointed to by data pointer 0 
   move  A[0], @SP--          ; where @SP-- is used to pop the data pointed to by the stack pointer register 
 
Immediate addressing is used to provide values to be directly loaded into registers or used as operands. 
 
    move  A[0], #10h           ; set accumulator 1 to 10h/16d 
 
23.2 – Prefixing Operations 
All instructions on the DS4830A are 16 bits long and execute in a single cycle. However, some operations require 
more data than can be specified in a single cycle or require that high order register index bits be set to achieve the 
desired transfer. In these cases, the prefix register module PFX is loaded with temporary data and/or required 
register index bits to be used by the following instruction. The PFX module only holds loaded data for a single cycle 
before it clears to zero. 
 
Instruction prefixing is required for the following operations, which effectively makes them two-cycle operations. 
 
• When providing a 16-bit immediate value for an operation (e.g. loading a 16-bit register, ALU operation, 

supplying an absolute program branch destination), the PFX module must be loaded in the previous cycle with 
the high byte of the 16-bit immediate value unless that high byte is zero. One exception to this rule is when 
supplying an absolute branch destination to 0023h. In this case, PFX still must be written with 00h. Otherwise, 
the branch instruction would be considered a relative one instead of the desired absolute branch. 

• When selecting registers with indexes greater than 07h within a module as destinations for a transfer or registers 
with indexes greater than 0Fh within a module as sources, the PFX[n] register must be loaded in the previous 
cycle. This can be combined with the previous item. 

 
Generally, prefixing operations can be inserted automatically by the assembler as needed, so that (for example) 
 
    move  DP[0], #1234h 
 
actually assembles as 
 
    move  PFX[0], #12h 
   move  DP[0], #34h 
 
However, the operation 
 
    move  DP[0], #0055h 
 
does not require a prefixing operation even though the register DP[0] is 16-bit. This is because the prefix value 
defaults to zero, so the line move  PFX[0], #00h is not required. 
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23.3 – Reading and Writing Registers 
All functions in the DS4830A are accessed through registers, either directly or indirectly. This section discusses 
loading registers with immediate values and transferring values between registers of the same size and different 
sizes. 
 
23.3.1 – Loading an 8-Bit Register with an Immediate Value 
Any writeable 8-bit register with a sub-index from 0h to 7h within its module can be loaded with an immediate value 
in a single cycle using the MOVE instruction. 
 
    move  AP, #05h  ; load accumulator pointer register with 5 hex 
 
Writeable 8-bit registers with sub-indexes 8h and higher can be loaded with an immediate value using MOVE as 
well, but an additional cycle is required to set the prefix value for the destination. 
  
    move  WDCN, #33h  ; assembles to:  move PFX[2], #00h 
                                ;                         move (WDCN-80h), #33h 
 
23.3.2 – Loading a 16-Bit Register with a 16-Bit Immediate Value 
Any writeable 16-bit register with a sub-index from 0h to 07h can be loaded with an immediate value in a single cycle 
if the high byte of that immediate value is zero. 
 
    move  LC[0], #0010h        ; prefix defaults to zero for high byte 
 
If the high byte of that immediate value is not zero or if the 16-bit destination sub-index is greater than 7h, an extra 
cycle is required to load the prefix value for the high byte and/or the high order register index bits. 
 
                               ; high byte <> #00h 
    move  LC[0], #0110h       ; assembles to:  move PFX[0], #01h   
                              ;                         move LC[0], #10h 
 
                              ; destination sub-index > 7h 
    move  A[8], #0034h       ; assembles to:  move PFX[2], #00h   
                               ;                         move (A[8]-80h), #34h 
 
23.3.3 – Moving Values Between Registers of the Same Size 
Moving data between same-size registers can be done in a single-cycle MOVE if the destination register’s index is 
from 0h to 7h and the source register index is between 0h and Fh. 
 
    move  A[0], A[8]           ; copy accumulator 8 to accumulator 0 
   move  LC[0], LC[1]         ; copy loop counter 1 to loop counter 0  
 
If the destination register’s index is greater than 7h or if the source register index is greater than Fh, prefixing is 
required.  
 
    move  A[15], A[0]        ; assembles to:  move PFX[2], #00h 
                                ;                         move (A[15]-80h), A[0] 
 
23.3.4 – Moving Values Between Registers of Different Sizes   
Before covering some transfer scenarios that might arise, a special register must be introduced that will be utilized in 
many of these cases. The 16-bit General Register (GR) is expressly provided for performing byte singulation of 16-
bit words. The high and low bytes of GR are individually accessible in the GRH and GRL registers respectively. A 
read-only GRS register makes a byte-swapped version of GR accessible and the GRXL register provides a sign-
extended version of GRL.  
 
8-Bit Destination  Low Byte (16-Bit Source) 
The simplest transfer possibility would be loading an 8-bit register with the low byte of a 16-bit register. This transfer 
does not require use of GR and requires a prefix only if the destination or source register are outside of the single 
cycle write or read regions, 0-7h and 0-Fh, respectively. 
 
    move  OFFS, LC[0]          ; copy the low byte of LC[0] to the OFFS register 
    move  IMR, @DP[1]          ; copy the low byte @DP[1] to the IMR register 
    move  WDCN, LC[0]         ; assembles to: move PFX[2], #00h 
                                ;                        move (WDCON-80h), LC[0] 
 
8-Bit Destination  High Byte (16-Bit Source) 
If, however, we needed to load an 8-bit register with the high byte of a 16-bit source, it would be best to use the GR 
register. Transferring the 16-bit source to the GR register adds a single cycle. 
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    move  GR, LC[0]            ; move LC[0] to the GR register 
    move  IC, GRH              ; copy the high byte into the IC register 
 
16-Bit Destination  Concatenation (8-Bit Source, 8-Bit Source) 
Two 8-bit source registers can be concatenated and stored into a 16-bit destination by using the prefix register to 
hold the high order byte for the concatenated transfer. An additional cycle may be required if either source byte 
register index is greater than 0Fh. 
 
    move  PFX[0], IC           ; load high order source byte IC into PFX 
    move  @++SP, AP            ; store @DP[0] the concatenation of IC:AP 
                              
                                ; 16-bit destination sub-index: dst=08h 
                                ;  8-bit source sub-indexes: 
                                ;  high=10h, low=11h  
    move  PFX[1], #00h         ;   
    move  PFX[3], high         ; PFX=00:high 
    move  dst, low             ; dst=high:low 
 
Low (16-Bit Destination)  8-Bit Source 
To modify only the low byte of a given 16-bit destination, the 16-bit register should be moved into the GR register 
such that the high byte can be singulated and the low byte written exclusively. An additional cycle is required if the 
destination index is greater than 0Fh. 
 

move  GR, DP[0]            ; move DP[0] to the GR register 
move  PFX[0], GRH          ; get the high byte of DP[0] via GRH 
move  DP[0], #20h          ; store the new DP[0] value 
  
                               ; 16-bit destination sub-index: dst=10h 
                               ;  8-bit source sub-index: src=11h 
move  PFX[1], #00h         ;  
move  GR, dst              ; read dst word to the GR register 
move  PFX[5], GRH          ; get the high byte of dst via GRH 
move  dst, src             ; store the new dst value 

 
 
High (16-Bit Destination)  8-Bit Source 
To modify only the high byte of a given 16-bit destination, the 16-bit register should be moved into the GR register 
such that the low byte can be singulated and the high byte can be written exclusively. Additional cycles are required 
if the destination index is greater than 0Fh or if the source index is greater than 0Fh. 
 

move  GR, DP[0]            ; move DP[0] to the GR register 
move  PFX[0], #20h         ; get the high byte of DP[0] via GRH 
move  DP[0], GRL          ; store the new DP[0] value 
  
                               ; 16-bit destination sub-index: dst=10h 
                               ;  8-bit source sub-index: src=11h 
move  PFX[1], #00h         ;  
move  GR, dst              ; read dst word to the GR register 
move  PFX[1], #00h 
move  PFX[4], src          ; get the new src byte  
move  dst, GRL             ; store the new dst value 
 

If the high byte needs to be cleared to 00h, the operation can be shortened by transferring only the GRL byte to the 
16-bit destination (example follows): 
 

move  GR, DP[0]            ; move DP[0] to the GR register 
move  DP[0], GRL           ; store the new DP[0] value, 00h used for high byte 

 
23.4 – Reading and Writing Register Bits 
The MOVE instruction can also be used to directly set or clear any one of the lowest 8 bits of a peripheral register in 
module 0h-5h or a system register in module 8h. The set or clear operation will not affect the upper byte of a 16-bit 
register that is the target of the set or clear operation. If a set or clear instruction is used on a destination register that 
does not support this type of operation, the register high byte will be written with the prefix data and the low byte will 
be written with the bit mask (i.e. all 0’s with a single 1 for the set bit operation or all ones with a single 0 for the clear 
bit operation). 
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Register bits may be set or cleared individually using the MOVE instruction as follows. 
 
 move  IGE, #1              ; set IGE (Interrupt Global Enable) bit 

move  APC.6, #0            ; clear IDS bit (APC.6) 
 
As with other instructions, prefixing is required to select destination registers beyond index 07h.  
 
The MOVE instruction may also be used to transfer any one of the lowest 8 bits from a register source or any bit of 
the active accumulator (Acc) to the Carry flag. There is no restriction on the source register module for the ‘MOVE C, 
src.bit’ instruction.   
 

move  C, IIR.3            ; copy IIR.3 to Carry 
move  C, Acc.7            ; copy Acc.7 to Carry  

 
Prefixing is required to select source registers beyond index 15h. 
 
 
23.5 – Using the Arithmetic and Logic Unit 
The DS4830A provides a 16-bit Arithmetic and Logic Unit (ALU) which allows operations to be performed between 
the active accumulator and any other register. The DS4830A is equipped with sixteen 16-bit working accumulators.  
 
23.5.1 – Selecting the Active Accumulator 
Any of the sixteen accumulator registers A[0] through A[15] may be selected as the active accumulator by setting the 
low four bits of the Accumulator Pointer Register (AP) to the index of the accumulator register you want to select. 
 

move  AP, #01h             ; select A[1] as the active accumulator 
move  AP, #0Fh             ; select A[15] as the active accumulator 

 
The current active accumulator can be accessed as the Acc register, which is also the register used as the implicit 
destination for all arithmetic and logical operations. 
 

move  A[0], #55h           ; set A[0] =   0055 hex  
 
move  AP, #00h             ; select A[0] as active accumulator 
move  Acc, #55h            ; set A[0] =   0055 hex  

 
 
23.5.2 – Enabling Auto-Increment and Auto-Decrement 
The accumulator pointer AP can be set to automatically increment or decrement after each arithmetic or logical 
operation. This is useful for operations involving a number of accumulator registers, such as adding or subtracting 
two multibyte integers. If auto-increment/decrement is enabled, the AP register will increment or decrement after any 
of the following operations: 
 

• ADD src  (Add source to active accumulator) 
• ADDC src  (Add source to active accumulator with carry) 
• SUB src  (Subtract source from active accumulator) 
• SUBB src  (Subtract source from active accumulator with borrow) 
• AND src  (Logical AND active accumulator with source) 
• OR src   (Logical OR active accumulator with source) 
• XOR src  (Logical XOR active accumulator with source) 
• CPL   (Bitwise complement active accumulator) 
• NEG   (Negate active accumulator) 
• SLA   (Arithmetic shift left on active accumulator) 
• SLA2   (Arithmetic shift left active accumulator 2 bit positions) 
• SLA4   (Arithmetic shift left active accumulator 4 bit positions) 
• SRA   (Arithmetic shift right on active accumulator) 
• SRA2   (Arithmetic shift right active accumulator 2 bit positions) 
• SRA4   (Arithmetic shift right active accumulator 4 bit positions) 
• RL   (Rotate active accumulator left) 
• RLC   (Rotate active accumulator left through Carry flag) 
• RR   (Rotate active accumulator right) 
• RRC   (Rotate active accumulator right through Carry flag) 
• SR   (Logical shift active accumulator right) 
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• MOVE Acc, src  (Copy data from source to active accumulator) 
• MOVE dst, Acc  (Copy data from active accumulator to destination) 
• MOVE Acc, Acc  (Recirculation of active accumulator contents) 
• XCHN   (Exchange nibbles within each byte of active accumulator) 
• XCH   (Exchange active accumulator bytes) 

  
The active accumulator may not be the source in any instruction where it is also the implicit destination. 
 
There is an additional notation that can be used to refer to the active accumulator for the instruction “MOVE dst, 
Acc”. If the instruction is instead written as “MOVE dst, A[AP]”, the source value is still the active accumulator, but no 
AP auto-increment or auto-decrement function will take place, even if this function is enabled. Note that the active 
accumulator may not be the destination for the MOVE dst, A[AP] instruction (i.e. MOVE Acc, A[AP] is prohibited). 
 
So, the two instructions 
 

move  A[7], Acc 
move  A[7], A[AP] 
 

are equivalent except that the first instruction triggers auto-inc/dec (if it is enabled), while the second one will never 
do so. 
 
The Accumulator Pointer Control Register (APC) controls the automatic increment/decrement mode as well as 
selects the range of bits (modulo) in the AP register that will be incremented or decremented. There are nine 
different unique settings for the APC register, as listed in Table 23-1. 
 
Table 23-1. Accumulator Pointer Control Register Settings 

APC.2 
(MOD2) 

APC.1 
(MOD1) 

APC.0 
(MOD0) 

APC.6 
(IDS) APC AUTO-INCREMENT/-DECREMENT SETTING 

0 0 0 0 00h No auto-increment/decrement (default mode) 
0 0 1 0 01h Increment bit 0 of AP (modulo 2) 
0 0 1 1 41h Decrement bit 0 of AP (modulo 2) 
0 1 0 0 02h Increment bits [1:0] of AP (modulo 4) 
0 1 0 1 42h Decrement bits [1:0] of AP (modulo 4) 
0 1 1 0 03h Increment bits [2:0] of AP (modulo 8) 
0 1 1 1 43h Decrement bits [2:0] of AP (modulo 8) 
1 0 0 0 04h Increment all 4 bits of AP (modulo 16) 
1 0 0 1 44h Decrement all 4 bits of AP (modulo 16) 

 
For the modulo increment or decrement operation, the selected range of bits in AP are incremented or decremented. 
However, if these bits roll over or under, they simply wrap around without affecting the remaining bits in the 
accumulator pointer. So, the operations can be defined as follows: 
 

• Increment modulo 2:    AP = AP[3:1] + ((AP[0] + 1) mod 2) 
• Decrement modulo 2:  AP = AP[3:1] + ((AP[0] – 1) mod 2) 
• Increment modulo 4:  AP = AP[3:2] + ((AP[1:0] + 1) mod 4) 
• Decrement modulo 4:  AP = AP[3:2] + ((AP[1:0] – 1) mod 4) 
• Increment modulo 8:  AP = AP[3] + ((AP[2:0] + 1) mod 8) 
• Decrement modulo 8:  AP = AP[3] + ((AP[2:0] – 1) mod 8) 
• Increment modulo 16:  AP = (AP + 1) mod 16 
• Decrement modulo 16:  AP = (AP – 1) mod 16 

 
For this example, assume that all 16 accumulator registers are initially set to zero. 
 

move  AP, #02h             ; select A[2] as active accumulator 
move  APC, #02h            ; auto-increment AP[1:0] modulo 4 
                               ;  AP   A[0]   A[1]   A[2]   A[3]   
                               ;  02   0000   0000   0000   0000 
add   #01h                 ;  03   0000   0000   0001   0000 
add   #02h                 ;  00   0000   0000   0001   0002 
add   #03h                 ;  01   0003   0000   0001   0002 
add   #04h                 ;  02   0003   0004   0001   0002 
add   #05h                 ;  03   0003   0004   0006   0002 
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23.5.3 – ALU Operations Using the Active Accumulator and a Source 
The following arithmetic and logical operations can use any register or immediate value as a source. The active 
accumulator Acc is always used as the second operand and the implicit destination. Also, Acc may not be used as 
the source for any of these operations. 
 

add   A[4]                  ; Acc = Acc + A[4] 
addc  #32h                ; Acc = Acc + 0032h + Carry  
sub   A[15]                 ; Acc = Acc – A[15] 
subb  A[1]                  ; Acc = Acc – A[1] - Carry 
cmp   #00h                 ; If (Acc == 0000h), set Equals flag  
and   A[0]                 ; Acc = Acc AND A[0] 
or    #55h                  ; Acc = Acc OR  
xor   A[1]                  ; Acc = Acc XOR A[1] 
  

23.5.4 – ALU Operations Using Only the Active Accumulator 
The following arithmetic and logical operations operate only on the active accumulator. 
 

cpl                        ; Acc = NOT Acc 
neg                        ; Acc = (NOT Acc) + 1 
rl                         ; Rotate accumulator left (not using Carry) 
rlc                        ; Rotate accumulator left through Carry 
rr                         ; Rotate accumulator right (not using Carry) 
rrc                        ; Rotate accumulator right through Carry 
sla                        ; Shift accumulator left arithmetically once 
sla2   ; Shift accumulator left arithmetically twice 
sla4   ; Shift accumulator left arithmetically four times  
sr                         ; Shift accumulator right, set Carry to Acc.0, set Acc.15 to zero 
sra                        ; Shift accumulator right arithmetically once 
sra2                       ; Shift accumulator right arithmetically twice  
sra4                       ; Shift accumulator right arithmetically four times 
xchn                       ; Swap low and high nibbles of each Acc byte 
xch     ; Swap low byte and high byte of Acc        

 
 
23.5.5 – ALU Bit Operations Using Only the Active Accumulator 
The following operations operate on single bits of the current active accumulator in conjunction with the Carry flag. 
Any of these operations may use an Acc bit from 0 to 15. 
 

move  C, Acc.0             ; copy bit 0 of accumulator to Carry 
move  Acc.5, C            ; copy Carry to bit 5 of accumulator 
and   Acc.3                ; Acc.3 = Acc.3 AND Carry 
or    Acc.0                 ; Acc.0 = Acc.0 OR Carry 
xor   Acc.1                 ; Acc.1 = Acc.1 OR Carry 

 
None of the above bit operations will cause the auto-increment, auto-decrement, or modulo operations defined by 
the accumulator pointer control (APC) register.  
 
 
23.5.6 – Example: Adding Two 4-Byte Numbers Using Auto-Increment 
 

move  A[0], #5678h         ; First number – 12345678h 
move  A[1], #1234h 
move  A[2], #0AAAAh        ; Second number – 0AAAAAAAh 
move  A[3], #0AAAh 
move  APC, #81h            ; Active Acc = A[0], increment low bit = mod 2 
add   A[2]                  ; A[0] = 5678h + AAAAh = 0122h + Carry 
addc  A[3]                  ; A[1] = 1234h + AAAh + 1 = 1CDFh 

; 12345678h + 0AAAAAAAh = 1CDF0122h 
 
23.6 – Processor Status Flag Operations 
The Processor Status Flag (PSF) register contains five flags that are used to indicate and store the results of 
arithmetic and logical operations.  Four of these flags can be used for conditional program branching.   
 
23.6.1 – Sign Flag 
The Sign flag (PSF.6) reflects the current state of the most significant bit of the active accumulator, (Acc.15). If 
signed arithmetic is being used, this flag indicates whether the value in the accumulator is positive or negative. 
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Since the Sign flag is a dynamic reflection of the high bit of the active accumulator, any instruction that changes the 
value in the active accumulator can potentially change the value of the Sign flag. Also, any instruction that changes 
which accumulator is the active one (including AP auto-increment/decrement) can also change the Sign flag. 
 
The following operation uses the Sign flag: 
 

JUMP S, src   ; Jump if Sign flag is set 
 
23.6.2 – Zero Flag 
The Zero flag (PSF.7) is a dynamic flag that reflects the current state of the active accumulator, Acc.  If all bits in the 
active accumulator are zero, the Zero flag will equal 1. Otherwise, it will equal 0. 
     
Since the Zero flag is a dynamic reflection of (Acc == 0), any instruction that changes the value in the active 
accumulator can potentially change the value of the Zero flag. Also, any instruction that changes which accumulator 
is the active one (including AP auto-increment/decrement) can also change the Zero flag. 
 
The following operations use the Zero flag: 
 

JUMP Z, src  ; Jump if Zero flag is set 
JUMP NZ, src  ; Jump if Zero flag is cleared 

 
23.6.3 – Equals Flag 
The Equals flag (PSF.0) is a static flag set by the CMP instruction. When the source given to the CMP instruction is 
equal to the active accumulator, the Equals flag is set to 1. When the source is different from the active accumulator, 
the Equals flag is cleared to 0. 
 
The following instructions use the value of the Equals flag. Note that the ‘src’ for the JUMP E/NE instructions must be 
immediate. 
 

JUMP E, src  ; Jump if Equals flag is set 
JUMP NE, src  ; Jump if Equals flag is cleared 

 
In addition to the CMP instruction, any instruction using PSF as the destination can alter the Equals flag. 
 
23.6.4 – Carry Flag 
The Carry flag (PSF.1) is a static flag indicating that a carry or borrow bit resulted from the last ADD/ADDC or 
SUB/SUBB operation. Unlike the other status flags, it can be set or cleared explicitly and is also used as a generic bit 
operand by many other instructions. 
 
The following instructions can alter the Carry flag: 

• ADD src   (Add source to active accumulator) 
• ADDC src   (Add source and Carry to active accumulator) 
• SUB src   (Subtract source from active accumulator) 
• SUBB src   (Subtract source and Carry from active accumulator) 
• SLA, SLA2, SLA4            (Arithmetic shift left active accumulator) 
• SRA, SRA2, SRA4  (Arithmetic shift right active accumulator) 
• SR    (Shift active accumulator right) 
• RLC / RRC   (Rotate active accumulator left / right through Carry) 
• MOVE C, Acc.<b>  (Set Carry to selected active accumulator bit) 
• MOVE C, #i    (Explicitly set, i=1, or clear,  i=0, the Carry flag) 
• CPL C    (Complement Carry) 
• MOVE C, src.<b>  (Copy bit addressable register bit to Carry) 
• any instruction using PSF as the destination 

 
The following instructions use the value of the Carry flag: 

• ADDC src   (Add source and Carry to active accumulator) 
• SUBB src   (Subtract source and Carry from active accumulator) 
• RLC / RRC   (Rotate active accumulator left / right through Carry) 
• CPL C    (Complement Carry) 
• MOVE Acc.<b>, C  (Set selected active accumulator bit to Carry) 
• AND Acc.<b>   (Carry = Carry AND selected active accumulator bit) 
• OR Acc.<b>   (Carry = Carry OR selected active accumulator bit) 
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• XOR Acc.<b>   (Carry = Carry XOR selected active accumulator bit) 
• JUMP C, src   (Jump if Carry flag is set) 
• JUMP NC, src   (Jump if Carry flag is cleared) 

 
23.6.5 – Overflow Flag 
The Overflow flag (PSF.2) is a static flag indicating that the carry or borrow bit (Carry status Flag) resulting from the 
last ADD/ADDC or SUB/SUBB operation but did not match the carry or borrow of the high order bit of the active 
accumulator. The overflow flag is useful when performing signed arithmetic operations. 
 
The following instructions can alter the Overflow flag: 

• ADD src   (Add source to active accumulator) 
• ADDC src   (Add source and Carry to active accumulator) 
• SUB src   (Subtract source from active accumulator) 
• SUBB src   (Subtract source and Carry from active accumulator) 

 
 
23.7 – Controlling Program Flow 
The DS4830A provides several options to control program flow and branching. Jumps may be unconditional, 
conditional, relative or absolute. Subroutine calls store the return address on the hardware stack for later return. 
Built-in counters and address registers are provided to control looping operations. 
 
23.7.1 – Obtaining the Next Execution Address 
The address of the next instruction to be executed can be read at any time by reading the Instruction Pointer (IP) 
register. This can be particularly useful for initializing loops. Note that the value returned is actually the address of 
the current instruction plus 1, so this will be the address of the next instruction executed as long as the current 
instruction does not cause a jump. 
 
 
23.7.2 – Unconditional Jumps 
An unconditional jump can be relative (IP +127/-128 words) or absolute (to anywhere in program space). Relative 
jumps must use an 8-bit immediate operand, such as 
 
     Label1:                        ; must be within +127/-128 words of the JUMP 
 .... 

jump  Label1 
    
 
Absolute jumps may use a 16-bit immediate operand, a 16-bit register, or an 8-bit register. 
   
  jump  LongJump             ; assembles to: move PFX[0], #high(LongJump) 
                                ;                         jump         #low(LongJump) 
    jump  DP[0]                ; absolute jump to the address in DP[0] 
 
If an 8-bit register is used as the jump destination, the prefix value is used as the high byte of the address and the 
register is used as the low byte. 
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23.7.3 – Conditional Jumps 
Conditional jumps transfer program execution based on the value of one of the status flags (C, E, Z, S). Except 
where noted for JUMP E and JUMP NE, the absolute and relative operands allowed are the same as for the 
unconditional JUMP command. 
 

 jump c, Label1             ; jump to Label1 if Carry is set 
 jump nc, LongJump          ; jump to LongJump if Carry is not set 
 jump z, LC[0]              ; jump to 16-bit register destination if Zero is set 
 jump nz, Label1            ; jump to Label1 if Zero is not set (Acc<>0) 
 jump s, A[2]               ; jump to A[2] if Sign flag is set  
 jump e, Label1             ; jump to Label1 if Equal is set 
 jump ne, Label1            ; jump to Label1 if Equal is cleared 

                              
JUMP E and JUMP NE may only use immediate destinations. 
 
23.7.4 – Calling Subroutines 
The CALL instruction works the same as the unconditional JUMP, except that the next execution address is pushed 
on the stack before transferring program execution to the branch address. The RET instruction is used to return from 
a normal call, and RETI is used to return from an interrupt handler routine. 
 

 call  Label1      ; if Label1 is relative, assembles to : call #immediate 
 call  LongCall             ; assembles to:  move PFX[0], #high(LongCall) 
                               ;                          call #low(LongCall) 
 call  LC[0]                 ; call to address in LC[0] 

        LongCall: 
 ret                         ; return from subroutine 

 
23.7.5 – Looping Operations 
Looping over a section of code can be performed by using the conditional jump instructions. However, there is built-
in functionality, in the form of the ‘DJNZ LC[n], src’ instruction, to support faster, more compact looping code with 
separate loop counters. The 16-bit registers LC[0], and LC[1] are used to store these loop counts. The ‘DJNZ LC[n], 
src’ instruction automatically decrements the associated loop counter register and jumps to the loop address 
specified by src if the loop counter has not reached 0.  
 
To initialize a loop, set the LC[n] register to the count you wish to use before entering the loop’s main body.  
The desired loop address should be supplied in the src operand of the ‘DJNZ LC[n], src’ instruction. When the  
supplied loop address is relative (+127/-128 words) to the DJNZ LC[n] instruction, as is typically the case, the 
assembler automatically calculates the relative offset and inserts this immediate value in the object code.  
 

 move  LC[1], #10h          ; loop 16 times 
     LoopTop:                       ; loop addr relative to djnz LC[n],src instruction 

 call  LoopSub    
 djnz  LC[1], LoopTop       ; decrement LC[1] and jump if nonzero 

 
When the supplied loop address is outside of the relative jump range, the prefix register (PFX[0]) is used to supply 
the high byte of the loop address as required.  
 

 move  LC[1], #10h          ; loop 16 times 
     LoopTop:                       ; loop addr not relative to djnz LC[n],src 

 call  LoopSub    
 ...  
 djnz  LC[1], LoopTop       ; decrement LC[1] and jump if nonzero 
   ; assembles to: move PFX[0], #high(LoopTop) 
                              ;                        djnz LC[1], #low(LoopTop) 

 
If loop execution speed is critical and a relative jump cannot be used,  one might consider preloading an internal 16-
bit register with the src loop address for the ‘DJNZ LC[n], src’  loop. This ensures that the prefix register will not be 
needed to supply the loop address and always yields the fastest execution of the DJNZ instruction.  
 

 move  LC[0], #LoopTop      ; using LC[0] as address holding register  
                               ; assembles to: move PFX[0], #high(LoopTop) 
                               ;                        move LC[0], #low(LoopTop) 
 move  LC[1], #10h          ; loop 16 times 
 ... 

     LoopTop:                       ; loop address not relative to djnz LC[n],src 
 call  LoopSub    
 ... 
 djnz  LC[1], LC[0]         ; decrement LC[1] and jump if nonzero 
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If opting to preload the loop address to an internal 16-bit register, the most time and code efficient means is by 
performing the load in the instruction just prior to the top of the loop: 
 

 move  LC[1], #10h          ; Set loop counter to 16 
 move  LC[0], IP            ; Set loop address to the next address 

     LoopTop:                       ; loop addr not relative to djnz LC[n],src 
 ... 

 
23.7.6 – Conditional Returns 
Similar to the conditional jumps, the DS4830A microcontroller also supports a set of conditional return operations. 
Based upon the value of one of the status flags, the CPU can conditionally pop the stack and begin execution at the 
address popped from the stack. If the condition is not true, the conditional return instruction does not pop the stack 
and does not change the instruction pointer. The following conditional return operations are supported: 
 

RET C   ; if C=1, a RET is executed 
RET NC   ; if C=0, a RET is executed 
RET Z   ; if Z=1 (Acc=00h), a RET is executed 
RET NZ   ; if Z=0 (Acc<>00h), a RET is executed 
RET S   ; if S=1, a RET is executed 

  
23.8 – Handling Interrupts 
Handling interrupts in the DS4830A microcontroller is a three-part process. 
 
First, the location of the interrupt handling routine must be set by writing the address to the 16-bit Interrupt Vector 
(IV) register. This register defaults to 0000h on reset, but this will usually not be the desired location since this will 
often be the location of reset / power-up code. 
 

 move  IV, IntHandler    ; move PFX[0], #high(IntHandler) 
                            ; move IV, #low(IntHandler) 
                            ; PFX[0] write not needed if IntHandler addr=0023h 

 
Next, the interrupt must be enabled. For any interrupts to be handled, the IGE bit in the Interrupt and Control register 
(IC) must first be set to 1. Next, the interrupt itself must be enabled at the module level and locally within the module 
itself. The module interrupt enable is located in the Interrupt Mask register, while the location of the local interrupt 
enable will vary depending on the module in which the interrupt source is located. 
 
Once the interrupt handler receives the interrupt, the Interrupt in Service (INS) bit will be set by hardware to block 
further interrupts, and execution control is transferred to the interrupt service routine. Within the interrupt service 
routine, the source of the interrupt must be determined. Since all interrupts go to the same interrupt service routine, 
the Interrupt Identification Register (IIR) must be examined to determine which module initiated the interrupt. For 
example, the II0 (IIR.0) bit will be set if there is a pending interrupt from module 0. These bits cannot be cleared 
directly; instead, the appropriate bit flag in the module must be cleared once the interrupt is handled. 
 
INS is set automatically on entry to the interrupt handler and cleared automatically on exit (RETI). 
 
     IntHandler: 
    push  PSF                  ; save C since used in identification process 
    move  C, IIR.X             ; check highest priority flag in IIR 
    jump  C, ISR_X             ; if IIR.X is set, interrupt from module X 
    move  C, IIR.Y             ; check next highest priority int source 
    jump  C, ISR_Y             ; if IIR.Y is set, interrupt from module Y 
    ...  
     ISR_X: 
    ... 
    reti 
 
To support high priority interrupts while servicing another interrupt source, the IMR register may be used to create a 
user-defined prioritization. The IMR mask register should not be utilized when the highest priority interrupt is being 
serviced because the highest priority interrupt should never be interrupted. This is default condition when a hardware 
branch is made the Interrupt Vector address (INS is set to 1 by hardware and all other interrupt sources are blocked). 
The code below demonstrates how to use IMR to allow other interrupts.  
      
     ISR_Z: 

pop   PSF                  ; restore PSF 
push  IMR                  ; save current interrupt mask 
move  IMR, #int_mask       ; new mask to allow only higher priority ints 
move  INS, #0              ; re-enable interrupts 
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 ...  
(interrupt servicing code) 
... 
pop   IMR                  ; restore previous interrupt mask 
ret                         ; back to code or lower priority interrupt 

 
Note that configuring a given IMR register mask bit to '0' only prevents interrupt conditions from the corresponding 
module or system from generating an interrupt request. Configuring an IMR mask bit to '0' does not prevent the 
corresponding IIR system or module identification flag from being set. This means that when using the IMR mask 
register functionality to block interrupts, there may be cases when both the mask (IMR.x) and identifier (IIR.x) bits 
should be considered when determining if the corresponding peripheral should be serviced. 
 
23.8.1 – Conditional Return from Interrupt 
Similar to the conditional returns, the DS4830A microcontroller also supports a set of conditional return from interrupt 
operation. Based upon the value of one of the status flags, the CPU can conditionally pop the stack, clear the INS bit 
to 0, and begin execution at the address popped from the stack. If the condition is not true, the conditional return 
from interrupt instruction leaves the INS bit unchanged, does not pop the stack and does not change the instruction 
pointer. The following conditional return from interrupt operations are supported: 
 

RETI C   ; if C=1, a RETI is executed 
RETI NC   ; if C=0, a RETI is executed 
RETI Z   ; if Z=1 (Acc=00h), a RETI is executed 
RETI NZ   ; if Z=0 (Acc<>00h), a RETI is executed 
RETI S   ; if S=1, a RETI is executed 

23.9 – Accessing the Stack 
The hardware stack is used automatically by the CALL, RET and RETI instructions, but it can also be used explicitly 
to store and retrieve data. All values stored on the stack are 16 bits wide. 
 
The PUSH instruction increments the stack pointer SP and then stores a value on the stack. When pushing a 16-bit 
value onto the stack, the entire value is stored. However, when pushing an 8-bit value onto the stack, the high byte 
stored on the stack comes from the prefix register. The @++SP stack access mnemonic is the associated 
destination specifier that generates this push behavior, thus the following two instruction sequences are equivalent: 
 

move  PFX[0], IC 
push  PSF                 ; stored on stack: IC:PSF 
 
move  PFX[0], IC 
move  @++SP, PSF  ; stored on stack: IC:PSF 

 
The POP instruction removes a value from the stack and then decrements the stack pointer. The @SP-- stack 
access mnemonic is the associated source specifier that generates this behavior, thus the following two instructions 
are equivalent: 
 
    pop   PSF 
    move  PSF, @SP-- 
 
The POPI instruction is equivalent to the POP instruction but additionally clears the INS bit to ‘0’. Thus, the following 
two instructions would be equivalent: 
 
    popi  IP 
    reti 
 
The @SP-- mnemonic can be utilized by the DS4830A microcontroller so that stack values may be used directly by 
ALU operations (e.g. ADD src, XOR src, etc.) without requiring that the value be first popped into an intermediate 
register or accumulator.  
    
    add   @SP--  ; sum the last three words pushed onto the stack  
    add   @SP--  ;  with Acc, disregarding overflow 
    add   @SP--     
 
The stack pointer SP can be set explicitly.  For a DS4830A, which has a stack depth of 16 words, only the lowest 
four bits are used and setting SP to 0Fh will return it to its reset state.  
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Since the stack is 16 bits wide, it is possible to store two 8-bit register values on it in a single location. This allows 
more efficient use of the stack if it is being used to save and restore registers at the start and end of a subroutine. 
 
     SubOne: 
    move  PFX[0], IC   
    push  PSF                  ; store IC:PSF on the stack 
    ... 
    pop   GR                   ; 16-bit register 
    move  IC, GRH              ; IC was stored as high byte 
    move  PSF, GRL             ; PSF was stored as low byte 
    ret 
 
23.10 – Accessing Data Memory 
Data memory is accessed through the data pointer registers DP[0] and DP[1] or the Frame Pointer BP[Offs]. Once 
one of these registers is set to a location in data memory, that location can be read or written as follows, using the 
mnemonic @DP[0], @DP[1] or @BP[OFFS] as a source or destination. 
 

move  DP[0], #0000h        ; set pointer to location 0000h 
move  A[0], @DP[0]         ; read from data memory 
move  @DP[0], #55h         ; write to data memory 

 
Either of the data pointers may be post-incremented or post-decremented following any read or may be pre-
incremented or pre-decremented before any write access by using the following syntax. 
 
    move  A[0], @DP[0]++       ; increment DP[0] after read 
    move  @++DP[0], A[1]       ; increment DP[0] before write 
    move  A[5], @DP[1]--       ; decrement DP[1] after read 
    move  @--DP[1], #00h       ; decrement DP[1] before write 
 
The Frame Pointer (BP[OFFS]) is actually comprised of a base pointer (BP) and an offset from the base pointer 
(OFFS). For the frame pointer, the offset register (OFFS) is the target of any increment or decrement operation. The 
base pointer (BP) is unaffected by increment and decrement operations on the Frame Pointer. Similar to DP[n], the 
OFFS register may be pre-incremented/decremented when writing to data memory and may be post-
incremented/decremented when reading from data memory. 
 
    move  A[0], @BP[OFFS--]          ; decrement OFFS after read 
    move  @BP[++OFFS], A[1]          ; increment OFFS before write 
 
All three data pointers support both byte and word access to data memory. Each data pointer has its own word/byte 
select (WBSn) special function register bit to control the access mode associated with the data pointer. These three 
register bits (WBS2 which controls BP[Offs] access, WBS1 which controls DP[1] access and WBS0 which control 
DP[0] access) reside in the Data Pointer Control (DPC) register. When a given WBSn control bit is configured to 1, 
the associated pointer is operated in the word access mode. When the WBSn bit is configured to 0, the pointer is 
operated in the byte access mode. Word access mode allows addressing of 64k words of memory while byte access 
mode allows addressing of 64k bytes of memory. 
 
Each data pointer (DP[n]) and Frame Pointer base, BP register) is actually implemented internally as a 17-bit register 
(e.g. 16:0).  The Frame Pointer offset register (OFFS) is implemented internally as a 9-bit register (e.g.8:0). The 
WBSn bit for the respective pointer controls whether the highest 16 bits (16:1) of the pointer are in use, as is the 
case for word mode (WBSn = 1) or whether the lowest 16 bits (15:0) are in use, as will be the case for byte mode 
(WBSn = 0). The WBS2 bit also controls whether the high 8 bits (8:1) of the offset register are in use (WBS2 = 1) or 
the low 8 bits (7:0) are used (WBS2 = 0). All data pointer register reads, writes, auto-increment/decrement 
operations occur with respect to the current WBSn selection. Data pointer increment and decrement operations only 
affect those bits specific to the current word or byte addressing mode (e.g., incrementing a byte mode data pointer 
from FFFFh does not carry into the internal high order bit that is utilized only for word mode data pointer access). 
Switching from byte to word access mode or vice versa does not alter the data pointer contents. Therefore, it is 
important to maintain the consistency of data pointer address value within the given access mode. 
 

move  WBS0, #0             ; DP[0] in byte mode 
move  DP[0], #1            ; DP[0]=0001h (byte mode, index 1) 
move  WBS0, #1             ; DP[0] in word mode, byte mode lsbit not visible 
move  DP[0], #1  ; DP[0]=0001h (word mode, index 1) 
move  WBS0, #0             ; DP[0] in byte mode 
move  GR, DP[0]  ; GR = 0003h (word index 1, byte index 1) 

 
The three pointers share a single read/write port on the data memory and thus, the user must knowingly activate a 
desired pointer before using it for data memory read operations. This can be done explicitly using the data pointer 
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select bits (SDPS1:0; DPC.1:0), or implicitly by writing to the DP[n], BP or OFFS registers.  Any indirect memory 
write operation using a data pointer will set the SDPS bits, thus activating the write pointer as the active source 
pointer. 
    

move  SDPS1, #1  ; (explicit) selection of FP as the pointer 
move  DP[0], src           ; (implicit) selection of DP[0]; set SDPS1:0=00b 
move  DP[1], DP[1]         ; (implicit) selection of DP[1]; set SDPS1:0=01b 
move  OFFS, src            ; (implicit) selection of FP; set SDPS1=1 
move  WBS1, #0             ; (implicit) selection of byte access for DP[1] 

 
Once the pointer selection has been made, it will remain in effect until: 

• the source data pointer select bits are changed via the explicit or implicit methods described above (i.e. 
another data pointer is selected for use).  

• the memory to which the active source data pointer is addressing is enabled for code fetching using the 
Instruction Pointer, or 

• a memory write operation is performed using a data pointer other than the current active source pointer. 
 

move  DP[1], DP[1]          ; select DP[1] as the active pointer 
move  dst, @DP[1]           ; read from pointer 
move  @DP[1], src           ; write using a data pointer 
                               ; DP[0] is needed  
move  DP[0], DP[0]          ; select DP[0] as the active pointer  

 
To simplify data pointer increment / decrement operations without disturbing register data, a virtual NUL destination 
has been assigned to system module 6, sub-index 7 to serve as a bit bucket. Data pointer increment / decrement 
operations can be done as follows without altering the contents of any other register: 
 

move  NUL, @DP[0]++       ; increment DP[0] 
move  NUL, @DP[0]--       ; decrement DP[0] 

 
The following data pointer related instructions are invalid: 
 

 move @++DP[0], @DP[0]++ 
 move @++DP[1], @DP[1]++ 
 move @BP[++Offs], @BP[Offs++] 
 move @--DP[0], @DP[0]-- 
 move @--DP[1], @DP[1]-- 
 move @BP[--Offs], @BP[Offs--] 
 move @++DP[0], @DP[0]-- 
 move @++DP[1], @DP[1]-- 
 move @BP[++Offs], @BP[Offs--] 
 move @--DP[0], @DP[0]++ 
 move @--DP[1], @DP[1]++ 
 move @BP[--Offs], @BP[Offs++] 
 move @DP[0], @DP[0]++ 
 move @DP[1], @DP[1]++ 
 move @BP[Offs], @BP[Offs++] 
 move @DP[0], @DP[0]-- 
 move @DP[1], @DP[1]-- 
 move @BP[Offs], @BP[Offs--] 
 move DP[0], @DP[0]++ 
 move DP[0], @DP[0]-- 
 move DP[1], @DP[1]++ 
 move DP[1], @DP[1]-- 
 move Offs, @BP[Offs--] 
 move Offs, @BP[Offs++] 
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SECTION 24 – INSTRUCTION SET 
Table 24-1. Instruction Set Summary 

 
MNEMONIC DESCRIPTION 16-BIT INSTRUCTION 

WORD 
STATUS 

BITS 
AFFECTED 

AP 
INC/DEC NOTES 

LO
G

IC
A

L 
O

P
E

R
A

TI
O

N
S

 

AND src Acc  Acc AND src f001 1010 ssss ssss S, Z Y 1 
OR src Acc  Acc OR src f010 1010 ssss ssss S, Z Y 1 
XOR src Acc  Acc XOR src f011 1010 ssss ssss S, Z Y 1 
CPL Acc  ~Acc 1000 1010 0001 1010 S, Z Y  
NEG Acc  ~Acc + 1 1000 1010 1001 1010 S, Z Y  
SLA Shift Acc left arithmetically 1000 1010 0010 1010 C, S, Z Y  
SLA2 Shift Acc left arithmetically twice 1000 1010 0011 1010 C, S, Z Y  
SLA4 Shift Acc left arithmetically four times 1000 1010 0110 1010 C, S, Z Y  
RL Rotate Acc left (w/o C) 1000 1010 0100 1010 S Y  
RLC Rotate Acc left (through C) 1000 1010 0101 1010 C, S, Z Y  
SRA Shift Acc right arithmetically 1000 1010 1111 1010 C, Z Y  
SRA2 Shift Acc right arithmetically twice 1000 1010 1110 1010 C, Z Y  
SRA4 Shift Acc right arithmetically four times 1000 1010 1011 1010 C, Z Y  
SR Shift Acc right  (0  msbit) 1000 1010 1010 1010 C, S, Z Y  
RR Rotate Acc right  (w/o C) 1000 1010 1100 1010 S Y  
RRC Rotate Acc right (though C) 1000 1010 1101 1010 C, S, Z Y  

B
IT

 O
P

E
R

A
TI

O
N

S
 

MOVE C, Acc.<b> C  Acc.<b> 1110 1010 bbbb 1010 C   
MOVE C, #0 C  0 1101 1010 0000 1010 C   
MOVE C, #1 C  1 1101 1010 0001 1010 C   
CPL C C  ~C 1101 1010 0010 1010 C   
MOVE Acc.<b>, C Acc.<b>  C 1111 1010 bbbb 1010 S, Z   
AND Acc.<b> C  C AND Acc.<b> 1001 1010 bbbb 1010 C   
OR Acc.<b> C  C OR Acc.<b> 1010 1010 bbbb 1010 C   
XOR Acc.<b> C  C XOR Acc.<b> 1011 1010 bbbb 1010 C   
MOVE dst.<b>, #1 dst.<b>  1 1ddd dddd 1bbb 0111 C,E  2 
MOVE dst.<b>, #0 dst.<b>  0 1ddd dddd 0bbb 0111 C,E  2 
MOVE C, src.<b> C  src.<b> fbbb 0111 ssss ssss C   

M
A

TH
 ADD src Acc  Acc + src f100 1010 ssss ssss C, S, Z, OV Y 1 

ADDC src Acc  Acc + (src + C) f110 1010 ssss ssss C, S, Z, OV Y 1 
SUB src Acc  Acc – src f101 1010 ssss ssss C, S, Z, OV Y 1 
SUBB src Acc  Acc – (src + C) f111 1010 ssss ssss C, S, Z, OV Y 1 

B
R

A
N

C
H

IN
G

 

{L/S}JUMP src IP  IP + src or src f000 1100 ssss ssss   6 
{L/S}JUMP C, src If C=1, IP  (IP + src) or src f010 1100 ssss ssss   6 
{L/S}JUMP NC, src If C=0, IP  (IP + src) or src  f110 1100 ssss ssss   6 
{L/S}JUMP Z, src If Z=1, IP  (IP + src) or src f001 1100 ssss ssss   6 
{L/S}JUMP NZ, src If Z=0, IP  (IP + src) or src f101 1100 ssss ssss   6 
{L/S}JUMP E, src If E=1, IP  (IP + src) or src 0011 1100 ssss ssss   6 
{L/S}JUMP NE, src If E=0, IP  (IP + src) or src 0111 1100 ssss ssss   6 
{L/S}JUMP S, src If S=1, IP  (IP + src) or src f100 1100 ssss ssss   6 
{L/S}DJNZ LC[n], src If --LC[n] <> 0, IP (IP + src) or src f10n 1101 ssss ssss   6 
{L/S}CALL src @++SP  IP+1; IP  (IP+src) or src f011 1101 ssss ssss   6,7 
RET IP  @SP-- 1000 1100 0000 1101    
RET C If C=1, IP  @SP-- 1010 1100 0000 1101    
RET NC If C=0, IP  @SP-- 1110 1100 0000 1101    
RET Z If Z=1, IP  @SP-- 1001 1100 0000 1101    
RET NZ If Z=0, IP  @SP-- 1101 1100 0000 1101    
RET S If S=1, IP  @SP-- 1100 1100 0000 1101    
RETI IP  @SP-- ; INS 0  1000 1100 1000 1101    
RETI C If C=1, IP  @SP-- ; INS 0 1010 1100 1000 1101    
RETI NC If C=0, IP  @SP-- ; INS 0 1110 1100 1000 1101    
RETI Z If Z=1, IP  @SP-- ; INS 0 1001 1100 1000 1101    
RETI NZ If Z=0, IP  @SP-- ; INS 0 1101 1100 1000 1101    
RETI S If S=1, IP  @SP-- ; INS 0 1100 1100 1000 1101    

D
A

TA
 

TR
A

N
S

FE
R

 XCH  Swap Acc bytes 1000 1010 1000 1010 S Y  
XCHN Swap nibbles in each Acc byte 1000 1010 0111 1010 S Y  
MOVE dst, src dst  src fddd dddd ssss ssss C,S,Z,E (Note 8) 7,8 
PUSH src @++SP  src f000 1101 ssss ssss   7 
POP dst dst  @SP-- 1ddd dddd 0000 1101 C,S,Z,E  7 
POPI dst dst  @SP-- ; INS  0 1ddd dddd 1000 1101 C,S,Z,E  7 

 CMP src E  (Acc = src) f111 1000 ssss ssss E   
 NOP No operation 1101 1010 0011 1010    
 
Note 1: The active accumulator (Acc) is not allowed as the src in operations where it is the implicit destination. 
Note 2: Only module 8 and modules 0-5 are supported by these single-cycle bit operations. Potentially affects C or E if PSF register is the 

destination. Potentially affects S and/or Z if AP or APC is the destination. 
Note 3: The terms Acc and A[AP] can be used interchangeably to denote the active accumulator. 
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Note 4: Any index represented by <b> or found inside [ ] brackets is considered variable, but required. 
Note 5: The active accumulator (Acc) is not allowed as the dst if A[AP] is specified as the src. 
Note 6: The '{L/S}' prefix is optional. 
Note 7: Instructions that attempt to simultaneously push/pop the stack (e.g. PUSH @SP--, PUSH @SPI--, POP @++SP, POPI @++SP) or modify 

SP in a conflicting manner (e.g., MOVE SP, @SP--) are invalid.  
Note 8: Special cases: If ‘MOVE APC, Acc’ sets the APC.CLR bit, AP will be cleared, overriding any auto-inc/dec/modulo operation specified for 

AP. If ‘MOVE AP, Acc’ causes an auto-inc/dec/modulo operation on AP, this overrides the specified data transfer (i.e., Acc will not be 
transferred to AP). 

ADD / ADDC src                   Add / Add with Carry 
 
Description: The ADD instruction sums the active accumulator (Acc or A[AP]) and the specified src data 

and stores the result back to the active accumulator.  The ADDC instruction additionally 
includes the Carry (C) Status Flag in the summation.  For the complete list of src specifiers, 
reference the MOVE instruction.  Because the source field is limited to 8 bits, the PFX[n] 
register is used to supply the high-byte of data for 16 bit sources. 

 
Status Flags:  C, S, Z, OV 
 
ADD  
Operation:  Acc  Acc + src 
 
Encoding:  15                 0 

f100 1010 ssss ssss 
 
Example(s):     ; Acc = 2345h for each example 

ADD A[3]  ; A[3]=FF0Fh 
   ;  Acc =2254h,C=1, Z=0, S=0, OV=0 
ADD #0C0h  ;  Acc =2405h,C=0, Z=0, S=0, OV=0 
ADD A[4]  ; A[4]=C000h 
   ;  Acc = E345h, C=0, Z=0, S=1, OV=0 
ADD A[5]  ; A[5]=6789h 
   ;  Acc = 8ACEh, C=0, Z=0, S=1, OV=1  
 

ADDC  
Operation:  Acc  Acc + C + src 
 
Encoding:  15                  0 

f110 1010 ssss ssss 
 
Example(s):     ; Acc = 2345h for each example 

ADDC A[3]  ; A[3] = DCBAh, C=1 
   ;  Acc = 0000h, C=1, Z=1, S=0, OV=0 
ADDC @DP[0]-- ; @DP[0] = 00EEh, C=1 

  ;  Acc = 2434h, C=0, Z=0, S=0, OV=0 
 
Special Notes: The active accumulator (Acc) is not allowed as the src for these operations. 
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AND src                                 Logical AND 
 
Description: Performs a logical-AND between the active accumulator (Acc) and the specified src data.  

For the complete list of src specifiers, reference the MOVE instruction.  Because the source 
field is limited to 8 bits, the PFX[n] register is used to supply the high-byte of data for 16 
bit sources. 
 

Status Flags:  S, Z  
 
Operation:  Acc  Acc AND src 
 
Encoding:  15                 0 

f001 1010 ssss ssss 
 
Example(s):     ; Acc = 2345h for each example 

AND A[3]  ; A[3]=0F0Fh 
   ;  Acc = 0305h, S=0, Z=0 
AND  #33h  ;  Acc = 0001h 
AND #2233h  ; generates object code below 

; MOVE PFX[0], #22h (smart-prefixing) 
; AND #33h 
;  Acc = 2201h 

MOVE PFX[0], #0Fh  
   AND M0[8]  ; M0[8]=0Fh (assume M0[8] is an 8-bit register) 

;  Acc = 0305h 
 
Special Notes: The active accumulator (Acc) is not allowed as the src for this operation. 
 
 
 
 
 
 
AND Acc.<b>                                                                                          Logical AND Carry Flag with Accumulator Bit 
 
Description: Performs a logical-AND between the Carry (C) status flag and a specified bit of the active 

accumulator (Acc.<b>) and returns the result to the Carry.  
 
Status Flags:  C 
 
Operation:  C  C AND Acc.<b> 
 
Encoding:  15                 0 

1001 1010 bbbb 1010 
 
Example(s):     ; Acc = 2345h, C=1 at start 

AND Acc.0  ; Acc.0=1    C=1 
AND Acc.1  ; Acc.1=0    C=0 
AND C, Acc.8  ; Acc.8=1    C=0 
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{L/S}CALL src                                        {Long/Short} Call to Subroutine 
 
Description: Performs a call to the subroutine destination specified by src.  The CALL instruction uses an 

8-bit immediate src to perform a relative short call (IP +127/-128 words). The CALL 
instruction uses a 16-bit immediate src to perform an absolute long CALL to the specified 
16-bit address.  The PFX[0] register is used to supply the high byte of a 16-bit immediate 
address for the absolute long CALL. Using the optional ‘L’ prefix (i.e. LCALL) will result in 
an absolute long call and use of the PFX[0] register.  Using the optional ‘S’ prefix (i.e. 
SCALL) will attempt to generate a relative short call, but will be flagged by the assembler if 
the destination is out or range.  Specifying an internal register src (no matter whether 8-bit or 
16-bit) always produces an absolute CALL to a 16-bit address, thus the ‘L’ and ‘S’ prefixes 
should not be used.  The PFX[n] register value is used to supply the high address byte when 
an 8-bit register src is specified.   

 
Status Flags:  None 
 
Operation:  @++SP  IP + 1   PUSH 

IP  src     Absolute CALL 
IP  IP + src    Relative CALL 

 
Encoding:  15                  0 

f011 1101 ssss ssss 
 
Example(s):  CALL label1   ; relative call to label1 (must be within IP +127/ - 

; 128 address range) 
CALL label1   ; absolute call to label1 = 0120h 

; MOVE PFX[0], #01h 
    ; CALL #20h. 
CALL DP[0]   ; DP[0] holds 16-bit address of subroutine 
CALL  M0[0]   ; assume M0[0] is an 8-bit register 

; absolute call to addr16 
       ; high(addr16)=00h   (PFX[0]) 
       ; low (addr16)=M0[0]  
   MOVE PFX[0], #22h      ; 

CALL  M0[0]   ; assume M0[0] is an 8-bit register 
       ; high(addr16)=22h   (PFX[0]) 
       ; low (addr16)=M0[0]  
    
   LCALL label1   ; label=0120h and is relative to this instruction 
       ; absolute call is forced by use of ‘L’ prefix 
       ; MOVE PFX[0], #01h 
       ; CALL #20h 
   SCALL label1   ; relative offset for label1 calculated and used 
       ; if label1 is not relative, assembler will generate an error 
   SCALL #10h   ; relative offset of #10h is used directly by the CALL 
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CMP  src                      Compare Accumulator 
 
Description: Compare for equality between the active accumulator and the least significant byte of the 

specified src. Because the source is limited to 8 bits, the PFX[n] register is used to supply 
the high-byte of data for 16 bit sources. 

 
Status Flags:  E 
 
Operation:  Acc = src: E  1 

Acc <> src: E  0 
 
Encoding:  15                 0 

f111 1000 Ssss ssss 
 
Example(s):  CMP  #45h  ; Acc = 0145h, E=0 
   CMP  #145h  ; PFX[0] register used 

; MOVE PFX[0], #01h (smart-prefixing) 
      ; CMP  #45h  E=1 

 
CPL                                        Complement Acc 
 
Description: Performs a logical bitwise complement (1’s complement) on the active accumulator (Acc or 

A[AP]) and returns the result to the active accumulator.  
 

Status Flags:  S, Z 
 
Operation:  Acc  ~Acc 
 
Encoding:  15                  0 

1000 1010 0001 1010 
 
Example(s):     ; Acc = FFFFh, S=1, Z=0 

CPL   ; Acc  0000h, S=0, Z=1 
; Acc = 0990h, S=0, Z=0 

CPL   ; Acc  F66Fh, S=1, Z=0 
 

CPL C                                       Complement Carry Flag 
 
Description:  Logically complements the Carry (C) Flag. 
 
Status Flag:  C  
 
Operation:  C  ~C 
 
Encoding:  15                 0 

1101 1010 0010 1010 
 
Example(s):    ; C = 0 

CPL C  ; C  1 
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{L/S}DJNZ LC[n], src                                 Decrement Counter, {Long/Short} Jump Not Zero  
 
Description: The DJNZ LC[n], src instruction performs a conditional branch based upon the associated 

Loop Counter (LC[n]) register.  The DJNZ LC[n], src instruction decrements the LC[n] loop 
counter and branches to the address defined by src if the decremented counter has not 
reached 0000h. Program branches can be relative or absolute depending upon the src 
specifier and may be qualified by using the ‘L’ or ‘S’ prefixes as documented in the JUMP 
src opcode. 
 

Status Flags:  None 
 
Operation:  LC[n]  LC[n] –1 

  LC[n] <> 0: IP  IP + src (relative) –or— src (absolute) 
  LC[n] = 0: IP  IP + 1 

 
Encoding:  15                 0 

f10n 1101 ssss ssss 
 
Example(s):  MOVE LC[1], #10h      ; counter = 10h 

Loop: 
ADD  @DP[0]++ ; add data memory contents to Acc, post-inc DP[0] 
DJNZ  LC[1],  Loop ; 16 times before falling through 
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{L/S} JUMP src                                    Unconditional {Long/Short} Jump 
 
Description: Performs an unconditional jump as determined by the src specifier. The JUMP instruction 

uses an 8-bit immediate src to perform a relative jump (IP +127/-128 words). The JUMP 
instruction uses a 16-bit immediate src to perform an absolute JUMP to the specified 16-bit  
address.  The PFX[0] register is used to supply the high byte of a 16-bit immediate address 
for the absolute JUMP. Using the optional ‘L’ prefix (i.e. LJUMP) will result in an absolute 
long jump and use of the PFX[0] register.  Using the optional ‘S’ prefix (i.e. SJUMP) will 
attempt to generate a relative short jump, but will be flagged by the assembler if the 
destination is out or range.  Specifying an internal register src (no matter whether 8-bit or 16-
bit) always produces an absolute JUMP to a 16-bit address, thus the ‘L’ and ‘S’ prefixes 
should not be used.  The PFX[n] register value is used to supply the high address byte when 
an 8-bit register src is specified. 

 
Status Flags:  None 
 
Operation:  IP  src     Absolute JUMP 

IP  IP + src    Relative JUMP 
 
Encoding:  15                 0 

f000 1100 ssss ssss 
 
Example(s):  JUMP label1   ; relative jump to label1 (must be within range 
       ;  IP +127/-128 words) 

JUMP label1   ; absolute jump to label1= 0400h 
; MOVE PFX[0], #04h 

       ; JUMP #00h 
JUMP DP[0]   ; absolute jump to addr16 DP[0] 

   JUMP M0[0]   ; assume M0[0] is an 8-bit register 
       ; absolute jump to addr16             
       ; high(addr16)=00h   (PFX[0]) 
       ; low (addr16)=M0[0]  
 
   LJUMP label1   ; label=0120h and is relative to this instruction 
       ; absolute jump is forced by use of ‘L’ prefix 
       ; MOVE PFX[0], #01h 
       ; JUMP #20h 
   SJUMP label1   ; relative offset for label1 calculated and used 
       ; if label1 is not relative, assembler will generate an error 
   SJUMP #10h   ; relative offset of #10h is used directly by the JUMP 
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{L/S} JUMP C / {L/S} JUMP NC, src                                                 Conditional {Long/Short} Jump on Status Flag 
{L/S} JUMP Z / {L/S} JUMP NZ, src 
{L/S} JUMP E / {L/S} JUMP NE, src 
{L/S} JUMP S, src 
 
Description: Performs conditional branching based upon the state of a specific processor status flag.  

JUMP C results in a branch if the Carry flag is set while JUMP NC branches if the Carry flag 
is clear. JUMP Z results in a branch if the Zero flag is set while JUMP NZ branches if the 
Zero flag is clear. JUMP E results in a branch if the Equal flag is set while JUMP NE 
branches if the Equal flag is clear. JUMP S results in a branch if the Sign flag is set. 
Program branches can be relative or absolute depending upon the src specifier and may be 
qualified by using the ‘L’ or ‘S’ prefixes as documented in the JUMP src opcode.  Special src 
restrictions apply to JUMP E and JUMP NE. 
 

Status Flags:  None   
 
JUMP C 
Operation:  C=1: IP  IP + src (relative) –or— src (absolute)  
   C=0: IP  IP + 1 
 
Encoding:  15                 0 

f010 1100 ssss ssss 
 
Example(s):  JUMP C, label1  ; C=0, branch not taken 
 
 
JUMP NC  
Operation:  C=0: IP  IP + src (relative) –or— src (absolute) 
   C=1: IP  IP +1 
 
Encoding:  15                 0 

f010 1100 ssss ssss 
 
Example(s):  JUMP NC, label1 ; C=0, branch taken  
 
 
JUMP Z  
Operation:  Z=1: IP  IP + src 
   Z=0: IP  IP + 1 
 
Encoding:  15                 0 

f001 1100 ssss ssss 
 
Example(s):  JUMP Z, label1  ; Z=1, branch taken  



DS4830A User’s Guide 
  

  211 

JUMP NZ 
Operation:  Z=0: IP  IP + src  (relative) –or— src (absolute) 
   Z=1: IP  IP + 1 
 
Encoding:  15                 0 

f101 1100 ssss ssss 
 
Example(s):  JUMP NZ, label1 ; Z=1, branch not taken  
 
 
JUMP E  
Operation:  E=1: IP  IP + src (relative) –or— src (absolute) 
   E=0: IP  IP + 1 
 
Encoding:  15                 0 

0011 1100 ssss ssss 
 
Example(s):  JUMP E, label1  ; E=1, branch taken  

 
Special Notes: The src specifier must be immediate data. 
 
 
JUMP NE  
Operation:  E=0: IP  IP + src (relative) –or— src (absolute) 
   E=1: IP  IP + 1 
 
Encoding:  15                 0 

0111 1100 ssss ssss 
 
Example(s):  JUMP NE, label1 ; E=1, branch not taken  
 
Special Notes: The src specifier must be immediate data. 
 
 
JUMP S 
Operation:  S=1: IP  IP + src (relative) –or— src (absolute) 
   S=0: IP  IP + 1 
 
Encoding:  15                 0 

f100 1100 ssss ssss 
 
Example(s):  JUMP S, label1  ; S=0, branch not taken  
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MOVE dst, src                                               Move Data 
 
Description: Moves data from a specified source (src) to a specified destination (dst). A list of defined 

source, destination specifiers is given in the table below.  Also, since src can be either 8-bit 
(byte) or 16-bit (word) data, the rules governing data transfer are also explained below in the 
encoding section.  

 
Status Flags:  S, Z (if dst is Acc or AP or APC)  
   C, E (if dst is PSF) 
 
Operation:  dst  src 
 
Encoding:  15                 0 

fddd dddd ssss ssss 
 
Source Specifier Codes 

src 
src Bit 
Encoding 
f ssss ssss 

16 or 
8 Bits Description 

#k 0 kkkk kkkk 8 kkkkkkkk = immediate (literal) data 
MN[n] 1 nnnn 

0NNN 8/16 nnnn selects one of first 16 registers in module NNN; where NNN= 0-5. Access to 
2nd 16 using PFX[n].   

AP 1 0000 1000 8 Accumulator Pointer 
APC 1 0001 1000 8 Accumulator Pointer Control 
PSF 1 0100 1000 8 Processor Status Flag Register 
IC 1 0101 1000 8 Interrupt and Control Register 
IMR 1 0110 1000 8 Interrupt Mask Register 
SC 1 1000 1000 8 System Control Register 
IIR 1 1011 1000 8 Interrupt Identification Register 
CKCN 1 1110 1000 8 Clock Control Register 
WDCN 1 1111 1000 8 Watchdog Control Register 
A[n] 1 nnnn 1001 16 nnnn  selects one of 16 accumulators  
Acc 1 0000 1010 16 Active Accumulator = A[AP]. Update AP per APC  
A[AP] 1 0001 1010 16 Active Accumulator = A[AP].  No change to AP  
IP 1 0000 1100 16 Instruction Pointer 
@SP-- 1 0000 1101 16 16-bit word @SP, post-decrement SP 
SP 1 0001 1101 16 Stack Pointer 
IV 1 0010 1101 16 Interrupt Vector 
LC[n] 1 011n 1101 16 n selects one of 2 loop counter registers 
@SPI-- 1 1000 1101 16 16-bit word @SP, post-decrement SP, INS=0 
@BP[Offs] 1 0000 1110 8/16 Data memory @BP[Offs] 
@BP[Offs++] 1 0001 1110 8/16 Data memory @BP[Offs]; post increment OFFS 
@BP[Offs--] 1 0010 1110 8/16 Data memory @BP[Offs]; post decrement OFFS 
OFFS 1 0011 1110 8 Frame Pointer Offset from Base Pointer (BP) 
DPC 1 0100 1110 16 Data Pointer Control Register 
GR 1 0101 1110 16 General Register 
GRL 1 0110 1110 8 Low byte of GR register 
BP 1 0111 1110 16 Frame Pointer Base Pointer (BP) 
GRS 1 1000 1110 16 Byte-swapped GR register 
GRH 1 1001 1110 8 High byte of GR register 
GRXL 1 1010 1110 16 Sign Extended low byte of GR register 
FP 1 1011 1110 16 Frame Pointer (BP[Offs]) 
@DP[n] 1 0n00 1111 8/16 Data memory @DP[n] 
@DP[n]++ 1 0n01 1111 8/16 Data memory @DP[n], post increment DP[n] 
@DP[n]-- 1 0n10 1111 8/16 Data memory @DP[n], post decrement DP[n] 
DP[n] 1 0n11 1111 16 n selects 1 of 2 data pointers 
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MOVE dst, src                                          
(continued) 
Destinati
on 
Specifier 
Codesdst 

dst Bit 
Encoding 
ddd dddd 

16 or 8 
Bits Description 

NUL 111 0110 8/16 Null (virtual) destination.  Intended as a bit bucket to assist software with pointer 
increments/decrements.  

MN[n] nnn 0NNN 8/16 nnnn selects one of first 8 registers in module NNN; where NNN= 0-5. Access to next 24 using 
PFX[n]. 

AP 000 1000 8 Accumulator Pointer 
APC 001 1000 8 Accumulator Pointer Control 
PSF 100 1000 8 Processor Status Flag Register 
IC 101 1000 8 Interrupt and Control Register 
IMR 110 1000 8 Interrupt Mask Register 
A[n] nnn 1001 16 nnn  selects 1 of  first 8 accumulators: A[0]..A[7] 
Acc 000 1010 16 Active Accumulator = A[AP].   
PFX[n] nnn 1011 8 nnn selects one of 8 Prefix Registers 
@++SP 000 1101 16 16-bit word @SP, pre-increment SP 
SP 001 1101 16 Stack Pointer 
IV 010 1101 16 Interrupt Vector 
LC[n] 11n 1101 16 n selects one of 2 loop counter registers 
@BP[Offs] 000 1110 8/16 Data memory @BP[Offs] 
@BP[++Offs] 001 1110 8/16 Data memory @BP[Offs]; pre increment OFFS 
@BP[--Offs] 010 1110 8/16 Data memory @BP[Offs]; pre decrement OFFS 
OFFS 011 1110 8 Frame Pointer Offset from Base Pointer (BP) 
DPC 100 1110 16 Data Pointer Control Register 
GR 101 1110 16 General Register 
GRL 110 1110 8 Low byte of GR register 
BP 111 1110 16 Frame Pointer Base Pointer (BP) 
@DP[n] n00 1111 8/16 Data memory @DP[n] 
@++DP[n] n01 1111 8/16 Data memory @DP[n], pre increment DP[n] 
@--DP[n] n10 1111 8/16 Data memory @DP[n], pre decrement DP[n] 
DP[n] n11 1111 16 n selects one of 2 data pointers 
    
 2-Cycle Destination Access Using PFX[n] register (see Special Notes) 
SC 000 1000 8 System Control Register 
CKCN 110 1000 8 Clock Control Register 
WDCN 111 1000 8 Watchdog Control Register 
A[n] nnn 1001 16 nnn selects 1 of second 8 accumulators A[8]..A[15] 
GRH 001 1110 8 High byte of GR register 

 
Data Transfer Rules   

dst (16-bit)  src (16-bit):  dst[15:0]  src[15:0] 
dst (8-bit)  src (8-bit):   dst[7:0]  src[7:0] 

 dst (16-bit)  src (8-bit):  dst[15:8]  00h * 
      dst[7:0]  src[7:0] 

dst (8-bit)  src (16-bit):  dst[7:0]  src[7:0] 
 

* Note: The PFX[0] register may be used to supply a separate high order data byte for this type of transfer. 
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Example(s):  MOVE  A[0], A[3]  ; A[0]  A[3] 
   MOVE DP[0], #110h               ; DP[0]  #0110h  (PFX[0] register used) 
       ; MOVE PFX[0], #01h (smart-prefixing) 
       ; MOVE DP[0], #10h 
   MOVE DP[0], #80h  ; DP[0]  #0080h (PFX[0] register not needed) 
 
Special Notes: Proper loading of the PFX[n] registers, when for the purpose of supplying 16-bit immediate 

data or accessing 2-cycle destinations, is handled automatically by the assembler and is 
therefore an optional step for the user when writing assembly source code.  Examples of the 
automatic PFX[n] code insertion by the assembler are demonstrated below. 

 
 Initial Assembly Code  Assembler Output 
 MOVE DP[0], #0100h  MOVE PFX[0], #01h 

MOVE DP[0], #00h 
 
MOVE A[15], A[7]  MOVE PFX[2], any src 

     MOVE A[7], A[7] 
  
 MOVE A[8], #3040h  MOVE PFX[2], #30h 
     MOVE A[0], #40h 
 
  
  
MOVE Acc.<b>,    Move Carry Flag to Accumulator Bit 
 
Description:  Replaces the specified bit of the active accumulator with the Carry bit.  
 
Status Flags:  S, Z 
 
Operation:  Acc.<b>  C 
 
Encoding:  15                 0 

1111 1010 bbbb 1010 
 
Example(s):     ; Acc = 8000h, S=1, Z=0, C=0 

MOVE Acc.15, C ; Acc = 0000h, S=0, Z=1  
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MOVE C, Acc.<b> Move Accumulator Bit to Carry Flag 
 
Description:  Replaces the Carry (C) status flag with the specified active accumulator bit.  
 
Status Flag:  C 
 
Operation:  C  Acc.<b> 
 
Encoding:  15                 0 

1110 1010 bbbb 1010 
 
Example(s):     ; Acc = 01C0h, C=0 

MOVE C, Acc.8  ; C =1  
 
 
 
MOVE  C, src.<b>  Move Bit to Carry Flag 
 
Description:  Replaces the Carry (C) status flag with the specified source bit src.<b>.  
 
Status Flag:  C 
 
Operation:  C  src.<b>  
 
Encoding:  15                 0 

fbbb 0111 ssss ssss 
 
Example(s):     ; M0[0] = FEh; C=1 (assume M0[0] is an 8-bit register) 
   MOVE C, M0[0].0 ; C=0 

   
Special Notes: Only system module 8 and peripheral modules (0-5) are supported by MOVE C,src.<b>. 
 
 
 
MOVE C, #0                                       Clear Carry Flag 
 
Description:  Clears the Carry (C) processor status flag. 
 
Status Flag:  C  0  
 
Operation:  C  0 
 
Encoding:  15                 0 

1101 1010 0000 1010 
 
Example(s):     ; C = 1 

MOVE  C, #0  ; C  0 
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MOVE C, #1                                  Set Carry Flag 
 
Description:  Sets the Carry (C) processor status flag. 
 
Status Flags:  C  1  
 
Operation:  C  1 
 
Encoding:  15                 0 

1101 1010 0001 1010 
 
Example(s):     ; C = 0 

MOVE C, #1  ; C  1 
 
 
 
MOVE  dst.<b>, #0                                           Clear Bit 
 
Description:  Clears the bit specified by dst.<b>.  
 
Status Flags:  C, E (if dst is PSF) 
 
Operation:  dst.<b>  0 
 
Encoding:  15                 0 

1ddd dddd 0bbb 0111 
 
Example(s):     ; M0[0] = FEh  

MOVE  M0[0].1, #0 ; M0[0] = FCh 
MOVE  M0[0].7, #0 ; M0[0] = 7Ch 

 
Special Notes: Only system module 8 and peripheral modules (0-5) are supported by MOVE dst.<b>, #0. 
 
 
 
MOVE  dst.<b>, #1                                               Set Bit 
 
Description:  Sets the bit specified by dst.<b>.  
 
Status Flags:  C, E (if dst is PSF) 
 
Operation:  dst.<b>  1 
 
Encoding:  15                 0 

1ddd dddd 1bbb 0111 
 
Example(s):     ; M0[0] = 00h 

MOVE  M0[0].1, #1 ; M0[0] = 02h 
MOVE  M0[0].7, #1 ; M0[0] = 82h 

 
Special Notes: Only system module 8 and peripheral modules (0-5) are supported by MOVE dst.<b>, #1. 
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NEG                       Negate Accumulator 
 
Description: Performs a negation (two’s complement) of the active accumulator and returns the result 

back to the active accumulator. 
 
Status Flags:   S, Z  
 
Operation:  Acc  ~Acc + 1 
 
Encoding:  15                 0 

1000 1010 1001 1010 
 
Example(s):     ; Acc = FEEDh, S=1, Z=0 

NEG   ; Acc = 0113h,   S=0, Z=0 
 

OR src                                                Logical OR 
 
Description: Performs a logical-OR between the active accumulator (Acc or A[AP]) and the specified src 

data. For the complete list of src specifiers, reference the MOVE instruction. Because the 
source is limited to 8 bits, the PFX[n] register is used to supply the high-byte of data for 
16 bit sources. 

 
Status Flags:  S, Z 
 
Operation:  Acc  Acc OR src 
 
Encoding:  15                 0 

f010 1010 ssss ssss 
 
Example(s):     ; Acc = 2345h for each example 
   OR A[3]   ; A[3]= 0F0Fh  Acc = 2F4Fh 

OR #1133h  ; MOVE PFX[0], #11h (smart-prefixing) 
; OR #33h  Acc = 3377h 

 
Special Notes: The active accumulator (Acc) is not allowed as the src for this operation. 

OR Acc.<b>                                                                                                Logical OR Carry Flag with Accumulator Bit 
 
Description: Performs a logical-OR between the Carry (C) status flag and a specified bit of the active 

accumulator (Acc.<b>) and returns the result to the Carry.  
 
Status Flags:  C 
 
Operation:  C  C OR Acc.<b> 
 
Encoding:  15                 0 

1010 1010 bbbb 1010 
 
 
Example(s):     ; Acc = 2345h, C=0 at start 
   OR Acc.1  ; Acc.1=0    C=0 

OR Acc.2  ; Acc.2=1    C=1 
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POP dst Pop Word from the Stack 
 
Description: Pops a single word from the stack (@SP) to the specified dst and decrements the stack 

pointer (SP). 
 

Status Flags:  S, Z  (if dst = Acc or AP or APC) 
C, E (if dst = PSF) 
 

Operation:  dst  @ SP--  
 
Encoding:  15                 0 

1ddd dddd 0000 1101 
 
Example(s):  POP GR   ; GR  1234h 

POP @DP[0]   ; @DP[0]  76h (WBS0=0) 
    ; @DP[0]  0876h (WBS0=1) 
 
Stack Data:    

xxxxh  
1234h  SP (initial) 
0876h  SP (after POP GR) 
xxxxh  SP (after POP @DP[0]) 
xxxxh  

POPI dst                                                                                                      Pop Word from the Stack Enable Interrupts 
 
Description: Pops a single word from the stack (@SP) to the specified dst and decrements the stack 

pointer (SP). Additionally, POPI returns the interrupt logic to a state in which it can 
acknowledge additional interrupts.  
 

Status Flags:  S, Z  (if dst = Acc or AP or APC) 
C, E (if dst = PSF) 
 

Operation:  dst  @ SP-- 
INS  0 

 
Encoding:  15                 0 

1ddd dddd 1000 1101 
 
Example(s):  See POP  
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PUSH  src                          Push Word to the Stack 
 
Description:  Increments the stack pointer (SP) and pushes a single word specified by src to the stack 
(@SP). 
 
Status Flags:  None 
 
Operation:  SP  ++SP 
 
Encoding:  15                 0 

f000 1101 ssss ssss 
 
Example(s):  PUSH GR   ; GR=0F3Fh 

PUSH #40h 
 
Stack Data:    

xxxxh  
0040h  SP (after PUSH #40h) 
0F3Fh  SP (after PUSH GR) 
xxxxh  SP (initial) 
xxxxh  

 
RET                       Return from Subroutine 
 
Description: RET pops a single word from the stack (@SP) into the Instruction Pointer (IP) and 

decrements the stack pointer (SP).   The decremented SP is saved as the new stack pointer 
(SP). 

 
Status Flags: None 
 
Operation:  IP  @ SP-- 
    
Encoding:  15                 0 

1000 1100 0000 1101 
 
Example(s):  RET 

     Code Execution: 

Addr (IP) Opcode 
0311h … 
0312h RET 
0103h … 

 
 
                 Stack Data:    

xxxxh  
xxxxh  
0103h  SP (before RET) 
xxxxh  SP (after RET) 
xxxxh  
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RET C / RET NC                                 Conditional Return on Status Flag 
RET Z / RET NZ 
RET S 
 
Description: Performs conditional return (RET) based upon the state of a specific processor status flag.  

RET C returns if the Carry flag is set while RET NC returns if the Carry flag is clear. RET Z 
returns if the Zero flag is set while RET NZ returns if the Zero flag is clear.  RET S returns if 
the Sign flag is set.  See RET for additional information on the return operation. 
 

Status Flags:  None   
 
RET C 
Operation:  C=1: IP  @SP--  
   C=0: IP  IP + 1 
 
Encoding:  15                 0 

1010 1100 0000 1101 
 
Example(s):  RET C   ; C=1, return (RET) is performed.  
 
RET NC  
Operation:  C=0: IP  @SP-- 
   C=1: IP  IP +1 
 
Encoding:  15                 0 

1110 1100 0000 1101 
 
Example(s):  RET NC  ; C=1, return (RET) does not occur   
 
RET Z  
Operation:  Z=1: IP  @SP-- 
   Z=0: IP  IP + 1 
 
Encoding:  15                 0 

1001 1100 0000 1101 
 
Example(s):  RET Z   ; Z=0, return (RET) does not occur  
 
RET NZ 
Operation:  Z=0: IP  @SP-- 
   Z=1: IP  IP + 1 
 
Encoding:  15                 0 

1101 1100 0000 1101 
 
Example(s):  RET NZ  ; Z=0, return (RET) is performed 
 
 
RET S 
Operation:  S=1: IP  @SP-- 
   S=0: IP  IP + 1 
 
Encoding:  15                 0 

1100 1100 0000 1101 
 
Example(s):  RET S   ; S=0, return (RET) does not occur  
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RETI                                 Return from Interrupt 
 
Description: RETI pops a single word from the stack (@SP) into the Instruction Pointer (IP) and 

decrements the stack pointer (SP).  Additionally, RETI returns the interrupt logic to a state in 
which it can acknowledge additional interrupts.  

 
Status Flags:  None 
 
Operation:  IP  @SP-- 

INS 0 
 
Encoding:  15                 0 

1000 1100 1000 1101 
 
Example(s):  see RET 

 
 
RETI C / RETI NC                                                           Conditional Return from Interrupt on Status Flag 
RETI Z / RETI NZ    
RETI S 
 
Description: Performs conditional return from interrupt (RETI) based upon the state of a specific 

processor status flag.  RETI C returns if the Carry flag is set while RETI NC returns if the 
Carry flag is clear. RETI Z returns if the Zero flag is set while RETI NZ returns if the Zero 
flag is clear.  RETI S returns if the Sign flag is set.  See RETI for additional information on 
the return from interrupt operation. 
 

Status Flags:  None   
 
 
RETI C 
Operation:  C=1: IP  @SP-- 

         INS 0 
   C=0: IP  IP + 1 
 
Encoding:  15                 0 

1010 1100 1000 1101 
 
Example(s):  RETI C   ; C=1, return from interrupt (RETI) is performed.  
 
 
RETI NC  
Operation:  C=0: IP  @SP-- 

         INS 0    
                                    C=1: IP  IP +1 
 
Encoding:  15                 0 

1110 1100 1000 1101 
 
Example(s):  RETI NC  ; C=1, return from interrupt (RETI) does not occur   
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RETI Z  
Operation:  Z=1: IP  @SP-- 
                     INS 0   
   Z=0: IP  IP + 1 
 
Encoding:  15                 0 

1001 1100 1000 1101 
 
Example(s):  RETI Z   ; Z=0, return from interrupt (RETI) does not occur  
 
 
RETI NZ 
Operation:  Z=0: IP  @SP-- 
                     INS 0   
   Z=1: IP  IP + 1 
 
Encoding:  15                  0 

1101 1100 1000 1101 
 
Example(s):  RETI NZ  ; Z=0, return from interrupt (RETI) is performed 
 
 
 
RETI S 
Operation:  S=1: IP  @SP-- 
                    INS 0   
   S=0: IP  IP + 1 
 
Encoding:  15                 0 

1100 1100 1000 1101 
 
Example(s):  RETI S   ; S=0, return from interrupt (RETI) does not occur  
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RL / RLC          Rotate Left Accumulator Carry Flag (Ex/In)clusive  
 
Description: Rotates the active accumulator left by a single bit position.  The RL instruction circulates the 

msb of the accumulator (bit 15) back to the lsb (bit 0) while the RLC instruction includes the 
Carry (C) flag in the circular left shift.  
 

Status Flags:  C (for RLC only), S, Z (for RLC only) 
 
 
RL Operation:                    15  Active Accumulator  (Acc)              0 

                

 

    Acc.[15:1] Acc.[14:0];  Acc.0  Acc.15 

 
Encoding:  15                 0 

1000 1010 0100 1010 
 
Example(s):     ; Acc = A345h, S=1, Z=0 

RL   ; Acc = 468Bh, S=0, Z=0 
RL   ; Acc = 8D16h, S=1, Z=0 
 

 
 
RLC Operation:       15  Active Accumulator  (Acc)             0      Carry Flag 

                  

 
      Acc.[15:1] Acc.[14:0];   Acc.0  C;  C  Acc.15 
 

 
Encoding:  15                 0 

1000 1010 0101 1010 
 
Example(s):     ; Acc = A345h, C=1, S=1, Z=0 

RLC   ; Acc = 468Bh, C=1, S=0, Z=0 
RLC   ; Acc = 8D17h, C=0, S=1, Z=0 
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RR / RRC                   Rotate Right Accumulator Carry Flag (Ex/In)clusive  
 
Description: Rotates the active accumulator right by a single bit position.  The RR instruction circulates 

the lsb of the accumulator (bit 0) back to the msb (bit 15) while the RRC instruction includes 
the Carry (C) flag in the circular right shift. 
 

Status Flags:  C (for RRC only), S, Z (for RRC only)  
 
 
RR Operation:                     15  Active Accumulator  (Acc)              0 

                

 

       Acc.[14:0] Acc.[15:1];  Acc.15  Acc.0 
 
Encoding:  15                 0 

1000 1010 1100 1010 
 
Example(s):     ; Acc = A345h, S=1, Z=0 

RR   ; Acc = D1A2h, S=1, Z=0 
RR   ; Acc = 68D1h, S=0, Z=0 
 

 
 
RRC Operation:       15  Active Accumulator  (Acc)             0      Carry Flag 

                  

 
   Acc.[14:0] Acc.[15:1];   Acc.15  C;  C  Acc.0 
 

Encoding:  15                 0 
1000 1010 1101 1010 

 
Example(s):     ; Acc = A345h, C=1, S=1, Z=0 

RRC   ; Acc = D1A2h, C=1, S=1, Z=0 
RRC   ; Acc = E8D1h, C=0, S=1, Z=0 
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SLA / SLA2 / SLA4            Shift Accumulator Left Arithmetically One, Two, or Four Times  
 
Description: Shifts the active accumulator left once, twice, or four times respectively for SLA, SLA2, and 

SLA4.  For each shift iteration, a ‘0’ is shifted into the lsb and the msb is shifted into the 
Carry (C) flag. For signed data, this shifting process effectively retains the sign orientation of 
the data to the point at which overflow/underflow would occur.  
 

Status Flags:  C, S, Z 
 
 
 
SLA Operation:      Carry Flag     15             Active Accumulator  (Acc)           0 

                  0 
 

C  Acc.15;   Acc.[15:1] Acc.[14:0];   Acc.0  0 
 
Encoding:  15                 0 

1000 1010 0010 1010 
 
Example(s):     ; Acc = E345h, C=0, S=1, Z=0 

SLA   ; Acc = C68Ah, C=1, S=1, Z=0 
SLA   ; Acc = 8D14h, C=1, S=1, Z=0 

 
 
 
 
SLA2 Operation:      Carry Flag     15                Active Accumulator  (Acc)         0 

                  0 
 
C  Acc.14;  Acc.[15:2] Acc.[13:0];  Acc.[1:0]  0 

 
Encoding:  15                 0 

1000 1010 0011 1010 
 
Example(s):     ; Acc = E345h, C=0, S=1, Z=0 

SLA2   ; Acc = 8D14h, C=1, S=1, Z=0 
 
 
 
 
SLA4 Operation:   Carry Flag     15                Active Accumulator  (Acc)         0 

                  0 
 

C  Acc.12;  Acc.[15:4] Acc.[11:0];  Acc.[3:0]  0 
 
Encoding:  15                 0 

1000 1010 0110 1010 
 
Example(s):     ; Acc = E345h, C=0, S=1, Z=0 

SLA4   ; Acc = 3450h, C=0, S=0, Z=0 
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SR               Shift Accumulator Right  
SRA / SRA2 / SRA4          Shift Accumulator Right Arithmetically One, Two, or Four Times 
 
Description: Shifts the active accumulator right once for the SR, SRA instructions and 2 or 4 times 

respectively for the SRA2, SRA4 instructions. The SR instruction shifts a 0 into the 
accumulator msb while the SRA, SRA2, and SRA4 instructions effectively shift a copy of the 
current msb into the accumulator, thereby preserving any sign orientation.  For each shift 
iteration, the accumulator lsb is shifted into the Carry (C) flag. 
 

Status Flags:  C, S (changes for SR only), Z  
 
 
 
 
SR Operation:                 15       Active Accumulator  (Acc)                0      Carry Flag 

0                    
 

Acc.15  0;  Acc.[14:0] Acc.[15:1];  C  Acc.0 
 
Encoding:  15                 0 

1000 1010 1010 1010 
 
Example(s):     ; Acc = A345h, C=1, S=1, Z=0 

SR   ; Acc = 51A2h, C=1, S=0, Z=0 
SR   ; Acc = 28D1h, C=0, S=0, Z=0 

 
 
 
SRA Operation:        15   Active Accumulator  (Acc)             0      Carry Flag 

                  

 
Acc.[14:0] Acc.[15:1] 
Acc.15  Acc.15 
C  Acc.0 

 
Encoding:  15                 0 

1000 1010 1111 1010 
 
Example(s):     ; Acc = 0003h, C=0, Z=0 

SRA   ; Acc = 0001h, C=1, Z=0 
SRA   ; Acc = 0000h, C=1, Z=1 
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SRA2 Operation:        15   Active Accumulator  (Acc)             0      Carry Flag 

                  

 
Acc.[13:0] Acc.[15:2] 
Acc.[15:14]  Acc.15 
C  Acc.1 

 
Encoding:  15                 0 

1000 1010 1110 1010 
 
Example(s):     ; Acc = 0003h, C=0, Z=0 

SRA2   ; Acc = 0000h, C=1, Z=1 
 

 
 
SRA4 Operation:        15   Active Accumulator  (Acc)             0      Carry Flag 

                  

 
Acc.[11:0] Acc.[15:4] 
Acc.[15:12]  Acc.15 
C  Acc.3 

 
Encoding:  15                 0 

1000 1010 1011 1010 
 
Example(s):     ; Acc = 9878h, C=0, Z=0 

SRA4   ; Acc = F987h, C=1, Z=0 
SRA4   ; Acc = FF98h, C=0, Z=0 
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SUB / SUBB  src            Subtract / Subtract with Borrow 
 
Description: Subtracts the specified src from the active accumulator (Acc) and returns the result back to 

the active accumulator.  The SUBB additionally subtracts the borrow (Carry Flag) which may 
have resulted from previous subtraction. For the complete list of src specifiers, reference the 
MOVE instruction. Because the source is limited to 8 bits, the PFX[n] register is used to 
supply the high-byte of data for 16 bit sources. 

 
Status Flags:  C, S, Z, OV 
 
SUB Operation: Acc  Acc - src 
 
Encoding:  15                 0 

f101 1010 ssss ssss 
 
Example(s):     ; Acc = 2345h to start, A[1]= 1250h 

SUB A[1]  ; Acc = 10F5h, C=0, S=0, Z=0, OV=0 
SUB A[1]  ; Acc = FEA5h, C=1, S=1, Z=0, OV=0 
SUB    A[2]  ; A[2] =7FFFh  

;  Acc = 7EA6h; C=0, S=0, Z=0, OV=1 
 
SUBB Operation: Acc  Acc – (src + C) 
 
Encoding:  15                 0 

f111 1010 ssss ssss 
 
Example(s):     ; Acc = 2345h, A[1]= 1250h, C=1 

SUBB  A[1]  ; Acc = 10F4h, C=0, S=0, Z=0 
SUBB  A[1]  ; Acc = FEA4h, C=1, S=1, Z=0  

 
Special Notes: The active accumulator (Acc) is not allowed as the src for these operations. 
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XCH         Exchange Accumulator Bytes 
 
Description:  Exchanges the upper and lower bytes of the active accumulator. 
 
Status Flags:  S 
 
Operation:  Acc.[15:8]  Acc.[7:0] 

Acc.[7:0]  Acc.[15:8] 
 
Encoding:  15                 0 

1000 1010 1000 1010 
 
Example(s):     ; Acc = 2345h 

XCH   ; Acc = 4523h 
 
 
 
XCHN        Exchange Accumulator Nibbles  
 
Description:  Exchanges the upper and lower nibbles in the active accumulator byte(s).  
Status Flags:  S 
 
Operation:  Acc.[7:4]  Acc.[3:0] 

Acc.[3:0]  Acc.[7:4] 
Acc.[15:12]  Acc.[11:8] 
Acc.[11:8]  Acc.[15:12] 

 
Encoding:  15                 0 

1000 1010 0111 1010 
 
Example(s):     ; Acc = 2345h 

XCHN   ; Acc = 3254h 
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XOR  src                                 Logical XOR 
 
Description: Performs a logical-XOR between the active accumulator (Acc or A[AP]) and the specified src 

data. For the complete list of src specifiers, reference the MOVE instruction. Because the 
source is limited to 8 bits, the PFX[n] register is used to supply the high-byte of data for 
16 bit sources. 

 
Status Flags:  S, Z 
 
Operation:  Acc  Acc XOR src 
 
Encoding:  15                 0 

f011 1010 ssss ssss 
 
Example(s):     ; Acc = 2345h  

XOR A[2]  ; A[2]=0F0Fh; Acc  2C4Ah 
 
Special Notes: The active accumulator (Acc) is not allowed as the src for this operation. 
 
 
 
XOR Acc.<b>                                                                                          Logical XOR Carry Flag with Accumulator Bit 
 
Description: Performs a logical-XOR between the Carry (C) status flag and a specified bit of the active 

accumulator (Acc.<b>) and returns the result to the Carry.  
Status Flags:  C 
 
Operation:  C  C XOR Acc.<b> 
 
Encoding:  15                 0 

1011 1010 bbbb 1010 
 
Example(s):     ; Acc = 2345h, C=1 at start 

XOR Acc.1  ; Acc.1=0    C=1 
XOR Acc.2  ; Acc.2=1    C=0  
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SECTION 25 – UTILITY ROM 
25.1 – Overview  
The DS4830A utility ROM includes routines that provide the following functions to application software: 
• In-application programming routines for flash memory (program, erase, mass erase) 
• Single word/byte copy and buffer copy routines for lookup tables in flash 
 

To provide backwards compatibility among different versions of the utility ROM, a function address table is 
included that contains the entry points for all user-callable functions. With this table, user code can determine 
the entry point for a given function as follows: 
1. Read the location of the function address table from address 0800Dh in the utility ROM. 
2. The entry points for each function listed below are contained in the function address table, one word per 

function, in the order given by their function numbers.  
 

For example, the entry point for the UROM_flashEraseAll function can be determined by the following 
procedure. 
1. functionTable = romMemory[800Dh] 
2. flashEraseAllEntry = romMemory[functionTable + 2] 

  
It is also possible to call utility ROM functions directly, using the entry points given in Table 25-1. Calling a 
function directly will provide faster code execution.  
 

 
Table 25-1: DS4830A Utility ROM Functions  

INDEX FUNCTION NAME ENTRY 
POINT SUMMARY 

0 UROM_flashWrite 843Ch Programs a single word of flash memory. 
1 UROM_flashErasePage 845Fh Erases (programs to FFFFh) a 256-word page of flash. 
2 UROM_flashEraseAll 8475h Erases (programs to FFFFh) all flash memory. 
3 UROM_moveDP0 8484h Reads a byte/word at DP[0]. 
4 UROM_moveDP0inc 8487h Reads a byte/word at DP[0], then increments DP[0]. 
5 UROM_moveDP0dec 848Ah Reads a byte/word at DP[0], then decrements DP[0]. 
6 UROM_moveDP1 848Dh Reads a byte/word at DP[1]. 
7 UROM_moveDP1inc 8490h Reads a byte/word at DP[1], then increments DP[0]. 
8 UROM_moveDP1dec 8493h Reads a byte/word at DP[1], then decrements DP[0]. 
9 UROM_moveBP 8496h Reads a byte/word at BP[OFFS]. 
10 UROM_moveBPinc 8499h Reads a byte/word at BP[OFFS], then increments OFFS. 
11 UROM_moveBPdec 849Ch Reads a byte/word at BP[OFFS], then decrements OFFS. 

12 UROM_copyBuffer 849Fh Copies LC[0] bytes/words (up to 255) from DP[0] to 
BP[OFFS]. 
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25.2 – In-Application Programming Functions  
25.2.1 – UROM_flashWrite  
Function UROM_flashWrite 

Summary Programs a single word of flash memory 

Inputs 
A[0]: Word address in program flash memory to write. 
A[1]: Value to write to flash memory. 

Outputs Carry: Set on error and cleared on success 

Destroys PSF, LC[1] 
Notes: 

• This function uses two stack levels to save and restore values.  
• If the watchdog reset function is active, it should be disabled before calling this function.  
• Interrupts are disabled while in this function. 
• If the flash location has already been programmed to a  value other than FFFFh, this function returns with an 

error (Carry set). In order to reprogram a flash location, the location must first be erased by calling 
UROM_flashErasePage or UROM_flashEraseAll. 

 
25.2.2 – UROM_flashErasePage 
Function UROM_flashErasePage 

Summary Erases (programs to FFFFh) a 512-byte page of flash memory. 

Inputs 
A[0]: Word address located in the page to be erased. (The page number is the high 8 bits of 
A[0].) 

Outputs Carry: Set on error and cleared on success. 

Destroys PSF, LC[1], GR, AP, APC, A[0] 
Notes:  

• If the watchdog reset function is active, it should be disabled before calling this function.  
• Interrupts are disabled while in this function. 
• When calling this function from flash, care should be taken that the return address is not in the page which is 

being erased. 
 
25.2.3 – UROM_flashEraseAll 
Function UROM_flashEraseAll 

Summary Erases (programs to FFFFh) all locations in flash memory 

Inputs None 

Outputs Carry: Set on error and cleared on success. 

Destroys PSF, GR, LC[1], LC[0], AP, APC, A[0] 

Notes: 
• If the watchdog reset function is active, it should be disabled before calling this function.  
• Interrupts are disabled while in this function.. 
• This function can only be called by code running from the RAM. Attempting to call this function while running 

from the flash results in an error. 
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25.3 – Data Transfer Functions 
The DS4830A cannot access data from the same memory segment that is currently being used for instructions.  
For example, when instructions are executing from FLASH, data in FLASH cannot be accessed.  The following 
utility ROM functions can be used to transfer data from one memory segment to another. For example, if data in 
FLASH needs to be copied to SRAM, one of these ROM functions can be called to do this transfer.  This is useful 
when code is executing from FLASH and access to lookup tables or non-volatile data that is stored in FLASH is 
required.  These functions can also be used by code running from SRAM to read data that is stored in SRAM. 
  
Since these functions are executed from utility ROM, addresses must be specified correctly to point to the 
intended memory segments.  When executing from utility ROM, the memory map is illustrated in Figure 2-4.  For 
example, data located at word address 0100h in the FLASH must be accessed at word address 8100h (or byte 
address 8200h) when using any of the functions listed in the following sections. 
 
25.3.1 – UROM_moveDP0 
Function UROM_moveDP0 

Summary Reads the byte/word value pointed to by DP[0]. 

Inputs DP[0]: Address to read from data space (include 8000h offset if reading from flash). 

Outputs GR: Data byte/word read. 

Destroys None 

Notes: 
• Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.  
• The address passed to this function should be based on the data memory mapping for the utility ROM, as 

shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access 
either the upper or lower half of program flash memory.  

• This function automatically selects DP[0] as the data pointer before reading the byte/word value. 
• Implemented as: move GR, @DP[0] 

25.3.2 – UROM_moveDP0inc 
Function UROM_moveDP0inc 

Summary Reads the byte/word value pointed to by DP[0], then increments DP[0]. 

Inputs DP[0]: Address to read from data space (include 8000h offset if reading from flash). 
Outputs GR: Data byte/word read.DP[0] is incremented. 

Destroys None 

Notes: 
• Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.  
• The address passed to this function should be based on the data memory mapping for the utility ROM, as 

shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access 
either the upper or lower half of program flash memory.  

• This function automatically selects DP[0] as the data pointer before reading the byte/word value. 
• Implemented as: move GR, @DP[0]++ 



DS4830A User’s Guide 
  

  234 

25.3.3 – UROM_moveDP0dec 
Function UROM_moveDP0dec 

Summary Reads the byte/word value pointed to by DP[0], then decrements DP[0]. 

Inputs DP[0]: Address to read from data space (include 8000h offset if reading from flash). 

Outputs GR: Data byte/word read. DP[0] is decremented. 

Destroys None 

Notes: 
• Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.  
• The address passed to this function should be based on the data memory mapping for the utility ROM, as 

shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access 
either the upper or lower half of program flash memory.  

• This function automatically selects DP[0] as the data pointer before reading the byte/word value. 
• Implemented as: move GR, @DP[0]-- 

25.3.4 – UROM_moveDP1 
Function UROM_moveDP1 

Summary Reads the byte/word value pointed to by DP[1]. 

Inputs DP[1]: Address to read data space (include 8000h offset if reading from flash). 

Outputs GR: Data byte/word read. 

Destroys None 

Notes: 
• Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode.  
• The address passed to this function should be based on the data memory mapping for the utility ROM, as 

shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access 
either the upper or lower half of program flash memory.  

• This function automatically selects DP[1] as the data pointer before reading the byte/word value. 
• Implemented as: move GR, @DP[1] 

25.3.5 – UROM_moveDP1inc 
Function UROM_moveDP1inc 

Summary Reads the byte/word value pointed to by DP[1], then increments DP[1]. 
Inputs DP[1]: Address to read from data space (include 8000h offset if reading from flash). 

Outputs GR: Data byte/word read. DP[1] is incremented. 

Destroys None 

Notes: 
• Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode.  
• The address passed to this function should be based on the data memory mapping for the utility ROM, as 

shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access 
either the upper or lower half of program flash memory.  

• This function automatically selects DP[1] as the data pointer before reading the byte/word value. 
• Implemented as: move GR, @DP[1]++ 
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25.3.6 – UROM_moveDP1dec 
Function UROM_moveDP1dec 

Summary Reads the byte/word value pointed to by DP[1], then decrements DP[1]. 

Inputs DP[1]: Address to read from data space (include 8000h offset if reading from flash). 

Outputs GR: Data byte/word read. DP[1] is decremented. 

Destroys None 
Notes: 

• Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode.  
• The address passed to this function should be based on the data memory mapping for the utility ROM, as 

shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access 
either the upper or lower half of program flash memory.  

• This function automatically selects DP[1] as the data pointer before reading the byte/word value. 
• Implemented as: move GR, @DP[1]-- 

 
25.3.7 – UROM_moveBP 
Function UROM_moveBP 

Summary Reads the byte/word value pointed to by BP[OFFS]. 
Inputs BP[OFFS]: Address to read from data space (include 8000h offset if reading from flash). 

Outputs GR: Data byte/word read. 

Destroys None. 
Notes: 

• Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode.  
• The address passed to this function should be based on the data memory mapping for the utility ROM, as 

shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access 
either the upper or lower half of program flash memory.  

• This function automatically selects BP[OFFS] as the data pointer before reading the byte/word value. 
• Implemented as: move GR, @BP[OFFS] 

25.3.8 – UROM_moveBPinc 
Function UROM_moveBPinc 

Summary Reads the byte/word value pointed to by BP[OFFS], then increments OFFS. 
Inputs BP[OFFS]: Address to read from data space (include 8000h offset if reading from flash). 

Outputs GR: Data byte/word read. OFFS is incremented. 

Destroys None 

Notes: 
• Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode.  
• The address passed to this function should be based on the data memory mapping for the utility ROM, as 

shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access 
either the upper or lower half of program flash memory.  

• This function automatically selects BP[OFFS] as the data pointer before reading the byte/word value. 
• Implemented as: move GR, @BP[OFFS++] 
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25.3.9 – UROM_moveBPdec 
Function UROM_moveBPdec 

Summary Reads the byte/word value pointed to by BP[OFFS], then decrements OFFS. 
Inputs BP[OFFS]: Address to read from data space (include 8000h offset if reading from flash). 

Outputs GR: Data byte/word read. OFFS is decremented. 

Destroys None 

Notes: 
• Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode.  
• The address passed to this function should be based on the data memory mapping for the utility ROM, as 

shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access 
either the upper or lower half of program flash memory.  

• This function automatically selects BP[OFFS] as the data pointer before reading the byte/word value. 
• Implemented as: move GR, @BP[OFFS--] 

25.3.10 – UROM_copyBuffer 
Function UROM_copyBuffer 

Summary LC[0] bytes/words (up to 256) from DP[0] to BP[OFFS]. 

Inputs 

DP[0]: Starting address to copy from. 
BP[OFFS]: Starting address to copy to. 
LC[0]: Number of bytes/words to copy. 

Outputs OFFS is incremented by LC[0]. DP[0] is incremented by LC[0]. 

Destroys LC[0] 
Notes: 
• This function can be used to copy from program flash to data RAM, or from one part of data RAM to another. 

It cannot be used to copy data into flash memory; the UROM_writeFlash function should be used for this 
purpose.  

• Before calling this function, DPC should be set appropriately to configure DP[0] and BP[OFFS] for byte or 
word mode. Both DP[0] and BP[OFFS] should be configured to the same mode (byte or word) for correct 
buffer copying.  

• The addresses passed to this function should be based on the data memory mapping for the utility ROM, as 
shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access either 
the upper or lower half of program flash memory.  

• This function automatically selects the data pointers before reading the byte/word values. 
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25.4 Special Functions   
The DS4830A provides software reset and read single word functions. 
 
25.4. 1 – UROM_copyWord 
 
Function UROM_copyWord 

Summary 1 word DP[0] to A[0]. 

Inputs DP[0]: Starting address to copy from. 

Outputs A[0] 

Destroys A[0], DP[0] 
UROM 
Address 885Bh 

Notes: 
• This function can be used to copy a word from program flash to data RAM, or from one part of data RAM to 

another.  
• Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.  
• The addresses passed to this function should be based on the data memory mapping for the utility ROM, as 

shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access either 
the upper or lower half of program flash memory.  

• This function automatically selects the data pointers before reading the byte/word values. 
 
25.4. 2 – Software Reset 
UROM has necessary code at the location 8854h which can generate an internal reset when application 
software jumps to this location. 
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25.5 – Utility ROM Examples 
 
25.5.1 – Reading Constant Word Data from Flash 
 
UROM_moveDP0inc  equ  08487h 
 
move  DPC, #1Ch                                    ; Set all pointers to word mode 
move DP[0], #(table + 8000h)                 ; Point to address of data as viewed in the Utility ROM memory map 
lcall #UROM_moveDP0inc 
move A[0], GR                                      
; A[0] = 1111h  
lcall #UROM_moveDP0inc 
move A[1], GR                                         ; A[1] = 2222h  
lcall #UROM_moveDP0inc 
move A[2], GR                                      
; A[0] = 3333h  
lcall #UROM_moveDP0inc 
move A[3], GR                                         ; A[1] = 4444h  
sjump $ 
 
org 0100h 
table: 
    dw 1111h, 2222h, 3333h, 4444h 
 

 
25.5.2 – Reading Constant Byte Data from Flash (Indirect Function Call) 
 
INDX_moveDP0inc  equ  4 
 
move DPC, #1Ch    ; Set all pointers to word mode  
move DP[0], #800Dh    ; Fetch location of function table from Utility ROM  
move BP, @DP[0]    ; Set base pointer to function table location  
move Offs, #INDX_moveDP0inc  ; Set offset to moveDP0inc entry in table  
move A[7], @BP[Offs]    ; Get address of moveDP0inc function  
move DPC, #00h    ; Set all pointers to byte mode  
move DP[0], #((table * 2) + 8000h) ; Point to address of data as viewed in the Utility ROM memory map  and 
convert  

; to byte mode pointer  
lcall A[7]     ; moveDP0inc  
move A[0], GR     ; A[0] = 34h  
lcall A[7]     ; moveDP0inc  
move A[1], GR     ; A[1] = 12h  
lcall A[7]     ; moveDP0inc  
move A[2], GR     ; A[2] = 78h  
lcall A[7]     ; moveDP0inc  
move A[3], GR     ; A[3] = 56h  
sjump $  
 
org 0100h  
table:  
    dw 1234h, 5678h 
 
 
    
 
 
 



DS4830A User’s Guide 
  

  239 

SECTION 26 – MISCELLANEOUS  
26.1 – Overview 
Miscellaneous features of DS4830A are  
• CRC8  
• Software interrupts  
• General-purpose registers. 

 
26.2 – CRC8 
DS4830A has an built-in hardware CRC8. The registers used for CRC8 are CRC8IN and CRC8OUT. They are 
defined in Module 1. SMBus 2.0 specification is followed for CRC algorithm (CRC polynomial is x8+x2+x+1). 
 
26.2.1 – CRC Data In (CRC8IN) 
 
Bit 7 6 5 4 3 2 1 0 
Name CRC8IN_7 CRC8IN_6 CRC8IN_5 CRC8IN_4 CRC8IN_3 CRC8IN_2 CRC8IN_1 CRC8IN_0 
Reset 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw 

  
BIT NAME DESCRIPTION 
7:0 CRC8IN[7:0] CRC Data in. The user program writes data to this register for which CRC8 should be 

applied to. 

 
26.2.2 – CRC Data Out (CRC8OUT) 
 
Bit 7 6 5 4 3 2 1 0 
Name CRC8OUT_7 CRC8OUT_6 CRC8OUT_5 CRC8OUT_4 CRC8OUT_3 CRC8OUT_2 CRC8OUT_1 CRC8OUT_0 
Reset 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw 

  
BIT NAME DESCRIPTION 
7:0 CRC8OUT[7:0] CRC Data out. The user program reads CRC8 result from this register for all the 

data that was written to CRC8IN. 
Note: This register has to be cleared to 0x00 by software before starting a CRC8 
calculation. 

 
26.2.3 – Example 
 
unsigned char Calculate_CRC8(unsigned char* data, int length) 
{ 
 unsigned int i = 0; 
 unsigned char CRC_result; 
 CRC8OUT = 0x00; 
 for( ; i<length ; i++) 

{ 
 CRC8IN = data[i]; 

  //Incrementing i in the loop takes a cycle atleast. So CRC should have been completed in this time. 
} 
CRC_result = CRC8OUT; 

 return CRC_result; 
} 
 
26.3 – Software Interrupts 
The DS4830A has four software interrupts that the application program can use to generate interrupts for general-
purpose application requirements. The user can generate an interrupt by setting a bit in the USER_INT[3:0]. The 
USER_INT[7:4] are single cycle read/write bits which can be used in the time critical interrupts. 
 



DS4830A User’s Guide 
  

  240 

26.3.1 – User Interrupt Register (USER_INT) 
 
Bit 7 6 5 4 3 2 1 0 
Name SW_F3 SW_F2 SW_F1 SW_F0 SW_INT4 SW_INT 3 SW_INT 2 SW_INT 1 
Reset 0 0 0 0 0 0 0 0 
Access rw rw rw rw rw rw rw rw 
 
BIT NAME DESCRIPTION 
7:4 SW_F3[3:0] Software flags: Single cycle read/write bits for general-purpose flags for 

application usage. 
3:0 SW_INT[3:0] Software Interrupt: 

Setting this bit to ‘1’ generates an interrupt. 
 
 
26.4 – General-Purpose Registers 
DS4830A has 16 general-purpose registers defined in Module 3. Reading from GP_REG1 and GP_REG2 take a 
single clock cycle and writing to these registers takes two clock cycles. For GP_REG3 to GP_REG16, reading from 
and writing to take two clock cycles. These registers can be used by time critical software in place of program 
variables to save clock cycles during memory access. 
 
26.4.1 – General-Purpose Register  
(GP_REG1, GP_REG2, GP_REG3, GP_REG4, GP_REG5, GP_REG6, GP_REG7, GP_REG8, GP_REG9, 
GP_REG10, GP_REG11, GP_REG12, GP_REG13, GP_REG14, GP_REG15, GP_REG16) 
 
Bit 15 14 13 12 11 10 9 8 
Name GP_REGx_15 GP_REGx_14 GP_REGx_13 GP_REGx_12 GP_REGx_11 GP_REGx_10 GP_REGx_9 GP_REGx_8 
Reset 0 0 0 0 0 0 0 0 
Access rw rw rw rw Rw rw rw rw 
 
Bit 7 6 5 4 3 2 1 0 
Name GP_REGx_7 GP_REGx_6 GP_REGx_5 GP_REGx_4 GP_REGx_3 GP_REGx_2 GP_REGx_1 GP_REGx_0 
Reset 0 0 0 0 0 0 0 0 
Access rw rw rw rw Rw rw rw rw 

  
BIT NAME DESCRIPTION 
15:0 GP_REGx_n General-Purpose Register x Bit n. The software can use these bits in place of 

variables. 

 
26.5 – Device Number and I2C Bootloader Address Disable 
The DS4830A has DEV_NUM register which is used to disable the bootloader slave address (34h). On POR, this 
register is initialized to default value.  
 
26.5.1 – Device Number Register (DEV_NUM) 
 
Bit 7 6 5 4 3 2 1 0 
Name BOOT_DIS DEV_NUM[6:0] 
Reset 0 x x x x x x x 
Access rw rw rw rw rw rw rw rw 
 
BIT NAME DESCRIPTION 
7 BOOT_DIS BOOT DIS flags: Setting this bit to ‘1’ will disable the bootloader slave address 

(34h). On POR, this bit is set to ‘0’. 
6:0 DEV_NUM DEV_NUM: 

The DEV_NUM[6:0] is configured in the production for indication and tracibility 
purpose. 
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