
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit
patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products , Inc . 160 Rio Robles, San Jose, CA 95134 USA 1 -408-601-1000
 2013 Maxim Integrated Products The Maxim logo and Maxim Integrated are registered trademarks of Maxim Integrated Products, Inc.

DS4830A

Optical Microcontroller
User’s Guide

Rev 0; 12/13

DS4830A User’s Guide

 2

Contents
SECTION 1 – OVERVIEW .. 11

SECTION 2 – ARCHITECTURE ... 13

2.1 – Instruction Decoding ... 13

2.2 – Register Space ... 14

2.3 – Memory Types .. 15

2.3.1 – Flash Memory .. 15

2.3.2 – SRAM Memory ... 15

2.3.3 – Utility ROM ... 15

2.3.4 – Stack Memory .. 16

2.4 – Program and Data Memory Mapping and Access ... 16

2.4.1 – Program Memory Access .. 16

2.4.2 – Program Memory Mapping .. 17

2.4.3 – Data Memory Access ... 17

2.4.4 – Data Memory Mapping... 18

2.5 – Data Alignment ... 22

2.6 – Reset Conditions .. 22

2.6.1 – Power-On/Brownout Reset .. 22

2.6.2 – Watchdog Timer Reset .. 23

2.6.3 – External Reset ... 23

2.6.4 – Internal System Resets .. 24

2.6.5 – Software Reset .. 24

2.7 – Clock Generation .. 24

SECTION 3 – SYSTEM REGISTER DESCRIPTIONS ... 25

3.1 – Accumulator Pointer Register (AP, 08h[00h]) .. 27

3.2 – Accumulator Pointer Control Register (APC, 08h[01h]) ... 27

3.3 – Processor Status Flags Register (PSF, 08h[04h]) ... 27

3.4 – Interrupt and Control Register (IC, 08h[05h]) ... 28

3.5 – Interrupt Mask Register (IMR, 08h[06h]) .. 28

3.6 – System Control Register (SC, 08h[08h]) .. 28

3.7 – Interrupt Identification Register (IIR, 08h[0Bh]) .. 29

3.8 – Watchdog Control Register (WDCN, 08h[0Fh]) ... 29

3.9 – Accumulator n Register (A[n], 09h[nh]) .. 29

3.10 – Prefix Register (PFX[n], 0Bh[n] .. 29

3.11 – Instruction Pointer Register (IP, 0Ch[00h]) .. 30

3.12 – Stack Pointer Register (SP, 0Dh[01h]) ... 30

3.13 – Interrupt Vector Register (IV, 0Dh[02h]) ... 30

3.14 – Loop Counter 0 Register (LC[0], 0Dh[06h]) ... 30

3.15 – Loop Counter 1 Register (LC[1], 0Dh[07h]) ... 30

3.16 – Frame Pointer Offset Register (OFFS, 0Eh[03h]) .. 30

3.17 – Data Pointer Control Register (DPC, 0Eh[04h]) ... 31

DS4830A User’s Guide

 3

3.18 – General Register (GR, 0Eh[05h]) ... 31

3.19 – General Register Low Byte (GRL, 0Eh[06h]) ... 31

3.20 – Frame Pointer Base Register (BP, 0Eh[07h]) .. 31

3.21 – General Register Byte-Swapped (GRS, 0Eh[08h]) .. 32

3.22 – General Register High Byte (GRH, 0Eh[09h]) .. 32

3.23 – General Register Sign Extended Low Byte (GRXL, 0Eh[0Ah]) .. 32

3.24 – Frame Pointer Register (FP, 0Eh[0Bh]) ... 32

3.25 – Data Pointer 0 Register (DP[0], 0Fh[03h]) ... 32

3.26 – Data Pointer 1 Register (DP[1], 0Fh[07h]) ... 32

SECTION 4 – PERIPHERAL REGISTER DESCRIPTIONS ... 33

4.1 – Module 0 Peripheral Registers ... 34

4.2 – Module 1 Peripheral Registers ... 35

4.3 – Module 2 Peripheral Registers ... 36

4.4 – Module 3 Peripheral Registers ... 37

4.5 – Module 4 Peripheral Registers ... 38

4.6 – Module 5 Peripheral Registers ... 39

SECTION 5 – INTERRUPTS .. 40

5.1 – Servicing Interrupts ... 41

5.2 – Module Interrupt Identification Registers .. 42

5.3 – Interrupt System Operation .. 43

5.3.1 – Synchronous vs. Asynchronous Interrupt Sources .. 44

5.3.2 – Interrupt Prioritization by Software ... 44

5.3.3 – Interrupt Exception Window ... 44

SECTION 6 – DIGITAL-TO-ANALOG CONVERTER (DAC) .. 45

6.1 – Detailed Description ... 45

6.1.1 – Reference Selection .. 46

6.2 – DAC Register Descriptions ... 46

6.2.1 – DAC Configuration Register (DACCFG) .. 46

6.2.2 – DAC Data Registers (DACD0-DACD7) ... 47

6.2.3 – Reference Pin Configuration Register (RPCFG) .. 47

6.3 – DAC Code Examples .. 47

SECTION 7 – ANALOG-TO-DIGITAL CONVERTER (ADC) .. 48

7.1 – Detailed Description ... 48

7.1.1 – ADC Controller ... 48

7.1.2 – ADC Conversion Sequencing .. 49

7.1.3 – Internal Die Temperature Conversion .. 50

7.1.4 – Sample and Hold Conversion .. 51

7.1.5 – ADC Frame Sequence ... 51

7.1.6 – ADC Reference .. 51

7.1.7 – ADC Conversion Time ... 52

7.1.8 – Location Override ... 53

7.1. 9 – Averaging .. 53

DS4830A User’s Guide

 4

7.1.10 – ADC Data Reading .. 54

7.1.11 – ADC Interrupts ... 54

7.1.12 – ADC Internal Offset .. 55

7.1.13 – DAC External Reference Pins (REFINA and REFINB) as ADC Channels .. 55

7.1.14 – Fast Conversion Mode (ADST.ENABLE_2X) .. 55

7.2 – ADC Register Descriptions ... 56

7.2.1 – ADC Control Register (ADCN) ... 56

7.2.2 – ADC Status Register (ADST) ... 57

7.2.3 – PIN Select Register (PINSEL) ... 57

7.2.4 – ADC Status Register (ADST1) .. 58

7.2.5 – ADC Address Register (ADADDR) .. 58

7.2.6 – ADC Data and Configuration Register (ADDATA) ... 58

7.2.7 – Reference Pin Configuration Register (RPCFG) ... 60

7.2.8 – Temperature Control Register (TEMPCN) ... 61

7.2.9 – Average and Reference Control Register (REFAVG) ... 61

7.2.10 – ADC Voltage Offset Register (ADVOFF) ... 62

7.2.11 – ADC Voltage Scale Trim Registers (ADCG1, ADCG2, ADCG3 and ADCG4) .. 62

7.3 – ADC Code Examples .. 63

SECTION 8 – SAMPLE AND HOLD ... 65

8.1 – Detailed Description ... 65

8.1.1 – Operation ... 65

8.1.2 – Fast Mode Operation ... 66

8.1.3 – Sampling Control ... 67

8.1.4 – Pin Capacitance Discharge ... 68

8.1.5 – Sample and Hold Data Reading .. 69

8.1.6 – Sample and Hold Interrupts ... 69

8.2 – Sample and Hold Register Descriptions ... 70

SECTION 9 – QUICK TRIP (FAST COMPARATOR) ... 73

9.1 – Detailed Description ... 73

9.1.1 – Quick Trip List Sequencing .. 74

9.1.2 – Operation ... 74

9.1.3 – Setting Quick Trip Thresholds ... 75

9.1.4 – Quick Trip Interrupts .. 76

9.2 – Quick Trip Register Descriptions .. 77

SECTION 10 – I2C-COMPATIBLE MASTER INTERFACE .. 81

10.1 – Detailed Description ... 81

10.1.1 – Description of Master I2C Interface .. 81

10.1.2 – Default Operation ... 81

10.1.3 – I2C Clock Generation ... 81

10.1.4 – Timeout .. 82

10.1.5 – Generating a START ... 83

10.1.6 – Generating a STOP ... 85

DS4830A User’s Guide

 5

10.1.7 – Transmitting a Slave Address .. 85

10.1.8 – Transmitting Data ... 85

10.1.9 – Receiving Data ... 87

10.1.10 – I2C Master Clock Stretching ... 88

10.1.11 – Resetting the I2C Master Controller ... 88

10.1.12 – Alternate Location .. 89

10.1.13 – Operation as a Slave ... 89

10.1.14 – GPIO .. 89

10.2 – I2C Master Controller Register Description .. 90

SECTION 11 – I2C-COMPATIBLE SLAVE INTERFACE .. 94

11.1 – Detailed Description ... 95

11.1.1 – Default Operation ... 95

11.1.2 – Slave Addresses .. 95

11.1.3 – I2C START Detection ... 95

11.1.4 – I2C STOP Detection ... 95

11.1.5 – Slave Address Matching .. 95

11.1.6 – Advanced Mode Operation RX FIFO and TX Pages ... 97

11.1.7 – Transmitting Data ... 98

11.1.8 – Receiving Data ... 100

11.1.9 – Clock Stretching ... 100

11.1.10 – SMBus Timeout ... 102

11.1.11 – Resetting the I2C Slave Controller ... 102

11.2 – I2C Slave Controller Register Description .. 103

SECTION 12 – SERIAL PERIPHERAL INTERFACE (SPI) .. 111

12.1 – Serial Peripheral Interface (SPI) Detailed Description ... 111

12.1.1 – SPI Transfer Formats .. 111

12.1.2 – SPI Character Lengths .. 113

12.2 – SPI System Errors .. 113

12.2.1 – Mode Fault ... 113

12.2.2 – Receive Overrun .. 113

12.2.3 – Write Collision While Busy .. 114

12.3 – SPI Interrupts .. 114

12.4 – SPI Master .. 114

12.4.1 – SPI Transfer Baud Rates .. 114

12.4.2 – SPI Master Operation .. 114

12.4.3 – SPI Master Register Descriptions ... 116

12.5 – SPI Slave .. 118

12.5.1 – SPI Slave Select .. 118

12.5.2 – SPI Transfer Baud Rates ... 118

12.5.3 – SPI Slave Operation .. 118

12.5.4 – SPI Slave Register Descriptions ... 119

DS4830A User’s Guide

 6

SECTION 13 – 3-WIRE ... 121

13.1 – Detailed Description ... 121

13.1.1 – Operation ... 121

13.2 – 3-Wire Register Descriptions .. 123

SECTION 14 – PWM .. 124

14.1 – Detailed Description ... 124

14.1.1 – PWMCN and PWMDATA SFRs .. 124

14.1.2 – PWMSYNC SFR .. 125

14.2 – Individual PWM Channel Operation ... 126

14.2.1 – Duty Cycle Register (DCYCn) ... 126

14.2.2 – PWM Configuration Register (PWMCFGn) ... 127

14.2.3 – PWM DELAY Register (PWMDLYn) .. 131

14.3 – PWM Output Register Descriptions .. 132

14.4 – PWM Output Code Examples .. 137

SECTION 15 – GENERAL-PURPOSE INPUT/OUTPUT (GPIO) PINS ... 138

15.1 – Overview ... 138

15.2 – GPIO Port Register Descriptions .. 141

15.2.1 – GPIO Direction Register Port (PD0, PD1, PD2, and PD6) .. 141

15.2.2 – GPIO Output Register Port (PO0, PO1, PO2, and PO6)... 141

15.2.3 – GPIO Input Register for Port (PI0, PI1, PI2, and PI6) ... 141

15.2.4 – GPIO Port External Interrupt Edge Select Register (EIES0, EIES1, EIES2, and EIES6) 141

15.2.5 – GPIO Port External Interrupt Flag Register (EIF0, EIF1, EIF2, and EIF6) .. 142

15.2.6 – GPIO Port External Interrupt Enable Register (EIE0, EIE1, EIE2, and EIE6) ... 142

15.3 – GPIO Code Example .. 142

15.3.1 – GPIO Pin as Output ... 142

15.3.2 – GPIO High-Impedance Input ... 142

15.3.3 – GPIO Weak Pullup Input .. 142

15.3.4 – GPIO Open-Drain Output .. 142

SECTION 16 – GENERAL-PURPOSE TIMERS .. 143

16.1 – Detailed Description ... 143

16.1.1 – Timer Modes .. 143

16.1.2 – Clock Selection .. 144

16.1.3 – Timer Clock Prescaler ... 144

16.2 – Timer Register Descriptions ... 145

SECTION 17 – SUPPLY VOLTAGE MONITOR (SVM).. 147

SECTION 18 – HARDWARE MULTIPLIER MODULE ... 148

18.1 – Hardware Multiplier Organization ... 148

18.2 – Hardware Multiplier Controls .. 148

18.3 – Register Output Selection .. 149

18.3.1 – Signed-Unsigned Operand Selection .. 149

18.3.2 – Operand Count Selection .. 149

18.4 – Hardware Multiplier Operations .. 149

DS4830A User’s Guide

 7

18.4.1 – Accessing the Multiplier ... 149

18.5 – Hardware Multiplier Peripheral Registers ... 151

18.6 – Hardware Multiplier Examples .. 155

SECTION 19 – WATCHDOG TIMER ... 156

19.1 - Overview ... 156

19.2 – Watchdog Timer Description .. 156

19.2.1 – Watchdog Timer Interrupt Operation ... 157

19.2.2 – Watchdog Timer Reset Operation ... 157

19.2.3 – Watchdog Timer Applications .. 157

SECTION 20 – TEST ACCESS PORT (TAP) ... 159

20.1 – TAP Controller .. 160

20.2 – TAP State Control ... 161

20.2.1 – Test-Logic-Reset .. 161

20.2.2 – Run-Test-Idle ... 161

20.2.3 – IR-Scan Sequence ... 161

20.2.4 – DR-Scan Sequence ... 162

20.3 – Communication via TAP ... 162

20.3.1 – TAP Communication Examples – IR-Scan and DR-Scan ... 163

SECTION 21 – IN-CIRCUIT DEBUG MODE .. 165

21.1 – Background Mode Operation ... 166

21.1.1 – Breakpoint Registers ... 167

21.1.2 – Using Breakpoints .. 169

21.2 – Debug Mode ... 170

21.2.1 – Debug Mode Commands ... 170

21.2.2 – Read Register Map Command Host-ROM Interaction .. 172

21.2.3 – Single Step Operation (Trace) ... 173

21.2.4 – Return .. 174

21.2.5 – Debug Mode Special Considerations .. 174

21.3 – In-Circuit Debug Peripheral Registers .. 175

SECTION 22 – IN-SYSTEM PROGRAMMING .. 179

22.1 – Detailed Description ... 179

22.1.1 – Password Protection .. 180

22.1.2 – Entering JTAG Bootloader ... 180

22.1.3 – Entering I2C Bootloader ... 181

22.1.4 – I2C Bootloader Disable ... 181

22.2 – Bootloader Operation ... 182

22.2.1 – JTAG Bootloader Protocol ... 182

22.2.2 – I2C Bootloader Protocol ... 183

22.3 – Bootloader Commands ... 184

22.3.1 – Command 00h – No Operation .. 184

22.3.2 – Command 01h – Exit Loader ... 184

22.3.3 – Command 02h – Master Erase .. 184

DS4830A User’s Guide

 8

22.3.4 – Command 03h – Password Match ... 185

22.3.5 – Command 04h – Get Status .. 185

22.3.6 – Command 05h – Get Supported Commands .. 186

22.3.7 – Command 06h – Get Code Size .. 186

22.3.8 – Command 07h – Get Data Size ... 186

22.3.9 – Command 08h – Get Loader Version .. 186

22.3.10 – Command 09h – Get Utility ROM Version ... 186

22.3.11 – Command 10h – Load Code .. 187

22.3.12 – Command 11h – Load Data ... 187

22.3.13 – Command 20h – Dump Code .. 187

22.3.14 – Command 21h – Dump Data ... 188

22.3.15 – Command 30h – CRC Code .. 188

22.3.16 – Command 31h – CRC Data ... 188

22.3.17 – Command 40h – Verify Code .. 189

22.3.18 – Command 41h – Verify Data ... 189

22.3.19 – Command 50h – Load and Verify Code .. 189

22.3.20 – Command 51h – Load and Verify Data ... 189

22.3.21 – Command E0h – Code Page Erase .. 189

SECTION 23 – PROGRAMMING ... 190

23.1 – Addressing Modes .. 190

23.2 – Prefixing Operations ... 190

23.3 – Reading and Writing Registers ... 191

23.3.1 – Loading an 8-Bit Register with an Immediate Value .. 191

23.3.2 – Loading a 16-Bit Register with a 16-Bit Immediate Value ... 191

23.3.3 – Moving Values Between Registers of the Same Size ... 191

23.3.4 – Moving Values Between Registers of Different Sizes ... 191

23.4 – Reading and Writing Register Bits ... 192

23.5 – Using the Arithmetic and Logic Unit ... 193

23.5.1 – Selecting the Active Accumulator .. 193

23.5.2 – Enabling Auto-Increment and Auto-Decrement ... 193

23.5.3 – ALU Operations Using the Active Accumulator and a Source .. 195

23.5.4 – ALU Operations Using Only the Active Accumulator ... 195

23.5.5 – ALU Bit Operations Using Only the Active Accumulator ... 195

23.5.6 – Example: Adding Two 4-Byte Numbers Using Auto-Increment ... 195

23.6 – Processor Status Flag Operations ... 195

23.6.1 – Sign Flag .. 195

23.6.2 – Zero Flag .. 196

23.6.3 – Equals Flag .. 196

23.6.4 – Carry Flag .. 196

23.6.5 – Overflow Flag ... 197

23.7 – Controlling Program Flow ... 197

23.7.1 – Obtaining the Next Execution Address .. 197

DS4830A User’s Guide

 9

23.7.2 – Unconditional Jumps ... 197

23.7.3 – Conditional Jumps ... 198

23.7.4 – Calling Subroutines .. 198

23.7.5 – Looping Operations.. 198

23.7.6 – Conditional Returns ... 199

23.8 – Handling Interrupts ... 199

23.8.1 – Conditional Return from Interrupt .. 200

23.9 – Accessing the Stack ... 200

23.10 – Accessing Data Memory .. 201

SECTION 24 – INSTRUCTION SET .. 203

SECTION 25 – UTILITY ROM .. 231

25.1 – Overview ... 231

25.2 – In-Application Programming Functions .. 232

25.2.1 – UROM_flashWrite .. 232

25.2.2 – UROM_flashErasePage .. 232

25.3 – Data Transfer Functions ... 233

25.3.1 – UROM_moveDP0 .. 233

25.3.2 – UROM_moveDP0inc.. 233

25.3.3 – UROM_moveDP0dec .. 234

25.3.4 – UROM_moveDP1 .. 234

25.3.5 – UROM_moveDP1inc.. 234

25.3.6 – UROM_moveDP1dec .. 235

25.3.7 – UROM_moveBP .. 235

25.3.8 – UROM_moveBPinc .. 235

25.3.9 – UROM_moveBPdec... 236

25.3.10 – UROM_copyBuffer ... 236

25.4 Special Functions .. 237

25.4. 1 – UROM_copyWord ... 237

25.4. 2 – Software Reset ... 237

25.5 – Utility ROM Examples ... 238

25.5.1 – Reading Constant Word Data from Flash .. 238

25.5.2 – Reading Constant Byte Data from Flash (Indirect Function Call) .. 238

SECTION 26 – MISCELLANEOUS .. 239

26.1 – Overview ... 239

26.2 – CRC8 .. 239

26.2.1 – CRC Data In (CRC8IN) .. 239

26.2.2 – CRC Data Out (CRC8OUT) ... 239

26.2.3 – Example ... 239

26.3 – Software Interrupts ... 239

26.3.1 – User Interrupt Register (USER_INT) ... 240

26.4 – General-Purpose Registers .. 240

26.4.1 – General-Purpose Register ... 240

DS4830A User’s Guide

 10

26.5 – Device Number and I2C Bootloader Address Disable .. 240

26.5.1 – Device Number Register (DEV_NUM)... 240

DS4830A User’s Guide

 11

SECTION 1 – OVERVIEW
The DS4830A optical microcontroller is a low-power, 16-bit microcontroller with a unique peripheral set supporting a wide
variety of optical transceiver controller applications. It provides a complete optical control, calibration, and monitor
solution. The DS4830A is based on the high-performance, 16-bit, reduced instruction set computing (RISC) architecture
with on-chip flash program memory and SRAM data memory.

The resources and features that the DS4830A provides for monitoring and controlling an optical system include the
following:

 16-Bit Low-Power Microcontroller
 400kHz I2C-Compatible Slave Communication Interface

• Four User-Programmable Slave Addresses
• 8-Byte Transmit Page for Each Slave Address
• 8-Byte Receive Page Shared Between All Slave Addresses

 32KWords Flash Program Memory
 2KWords Data RAM
 32-Level Hardware Stack
 13-Bit ADC with a 26 Input Mux

• 16 Single or 8 Differential Mode ADC Channels
• Four User-Selectable Gains for Individual Channel
• VDD, Internal Reference, and DAC External References Measurement
• ADC Samples Averaging Options

 10 PWM Channels
• Pulse Spreading Using Delta-Sigma Algorithm
• PWM Output Synchronization
• User-Selectable 7- to 16-Bit Resolution
• 1MHz Switching Using 133MHz External Clock

 10-Bit Fast Comparator with 16 Input Mux
• Single and Differential Mode
• Low and High Threshold Configurations
• 3.2µs Conversion Time per Channel

 Two Independent Sample and Hold (S/H)
• Single, Fast, and Dual Mode Operation
• Internal and External Trigger Option
• Pin Discharge
• S/H Samples Averaging Options

 Fast Internal Die Temperature Sensors with Averaging Option
 12-Bit, 8 Voltage DAC Channels Selectable Internal or External Reference Option
 Serial Interfaces

• SPI Master and Slave Interface
• 400kHz I2C-Compatible Master with Alternate Location Option
• 3-Wire Master Interface

 Dual Hardware Multiplier Unit
 Two 16-Bit Timers with Synchronous and Compare Modes
 Watchdog Timer
 Maskable Interrupt Sources
 Brownout Monitor
 31 GPIO pins
 Supply Voltage Monitoring
 Internal 20MHz Oscillator, CPU Core Frequency 10MHz
 Included ROM Routines that allow Bootloading and In-Application Programming of Flash Memory
 In-System Debugging
 Four Software Interrupts
 Fast Hardware CRC-8 for Packet Error Checking (PEC)

DS4830A User’s Guide

 12

Figure 1-1: DS4830A Block Diagram

This document is provided as a supplement to the DS4830A IC data sheet. This user’s guide provides the information
necessary to develop applications using the DS4830A. All electrical and timing specifications, pin descriptions, package
information, and ordering information can be found in the DS4830A IC data sheet.

DS4830A User’s Guide

 13

SECTION 2 – ARCHITECTURE
The DS4830A contains a low-cost, high-performance microcontroller with flash memory. It is structured on a highly
advanced, 16-accumulator-based, 16-bit RISC architecture. Fetch and execution operations are completed in one cycle
without pipelining, since the instruction contains both the opcode and data. The highly efficient core is supported by 16
accumulators and a 32-level hardware stack, enabling fast subroutine calling and task switching.

Data can be quickly and efficiently manipulated with three internal data pointers. Two of these data pointers, DP0 and
DP1, are stand-alone 16-bit pointers. The third data pointer, Frame Pointer, is composed of a 16-bit base pointer (BP) and
an 8-bit offset register (OFFS). All three pointers support post-increment/decrement functionality for read operations and
pre-increment/decrement for write operations. For the Frame Pointer (FP=BP[OFFS]), the increment/decrement operation
is executed on the OFFS register and does not affect the base pointer. Multiple data pointers allow more than one
function to access data memory without having to save and restore data pointers each time.

Stack functionality is provided by dedicated memory with a 16-bit width and a depth of 32. An on-chip memory
management unit (MMU) allows logical remapping of the program and data spaces, and thus facilitates in-system
programming and fast access to data tables, arrays, and constants located in flash memory.

This section provides details on the following topics.

1. Instruction decoding
2. Register space
3. Memory types
4. Program and data memory mapping and access
5. Data alignment
6. Reset conditions
7. Clock generation

2.1 – Instruction Decoding
The DS4830A uses the standard 16-bit core instruction set, which is described in the Instruction Set section. Every
instruction is encoded as a single 16-bit word. The instruction word format is shown in Figure 2-1.

FORMAT DESTINATION SOURCE

s sdf s s s s s sd d d d d d

Figure 2-1: Instruction Word Format

• Bit 15 (f) indicates the format for the source field of the instruction as follows:
o If f equals 0, the instruction is an immediate source instruction. The source field represents an immediate

8-bit value.
o If f equals 1, the instruction is a register source instruction. The source field represents the register that

the source value will be read from.
• Bits 14 to 8 (ddddddd) represent the destination for the transfer. This value always represents a destination

register. The lower four bits contain the module specifier and the upper three bits contain the register index in
that module.

• Bits 7 to 0 (ssssssss) represent the source for the transfer. Depending on the value of the format field, this can
either be an immediate value or a source register. If this field represents a register, the lower four bits contain the
module specifier and the upper four bits contain the register index in that module.

This instruction word format presents the following limitations.

1. There are 32 registers per register module, but only four bits are allocated to designate the source register and
only three bits are allocated to designate the destination register.

2. The source field only provides 8 bits of data for an immediate value; however a 16-bit immediate value may be
required.

The DS4830A uses a prefix register (PFX) to address these limitations. The prefix register provides the additional bits
required to access all 32 register within a module. The prefix register also provides the additional 8 bits of data required
to make a 16-bit immediate data source. The data that is written to the prefix register survives for only one clock cycle.
This means the write to the prefix register must occur immediately prior to the instruction requiring the prefix register. The
prefix register is cleared to zero after one cycle so it will not affect any other instructions. The write to the prefix register is

DS4830A User’s Guide

 14

done automatically by the assembler and requires one additional execution cycle. So, while most instructions execute in
a single cycle, two cycles are needed for instructions that require the prefix register.

The architecture of the DS4830A is transport-triggered. This means that writing to or reading from certain register
locations will also cause side effects to occur. These side effects form the basis of the DS4830A’s higher level opcodes,
such as ADDC, OR, and JUMP. While these opcodes are actually implemented as MOVE instructions between certain
register locations, the encoding is handled by the assembler and need not be a concern to the programmer. The unused
"empty" locations in the System Register Modules are used for these higher level opcodes.

The instruction set is designed to be highly orthogonal. All arithmetic and logical operations that use two registers can use
any register along with the accumulator. Data can be transferred between any two registers in a single instruction.

2.2 – Register Space
The DS4830A provides a total of 13 register modules broken up into two different groups. These groupings are
descriptive only, as there is no difference between accessing the two register groups from a programming perspective.

The two groups are:

1. System Registers: These are modules 8h, 9h, and Bh through Fh. The System Registers in the DS4830A are
used to implement higher level opcodes as well as the following common system features.

• 16-bit ALU and associated status flags (zero, equals, carry, sign, overflow)
• 16 working accumulator registers, each 16-bit, along with associated control registers
• Instruction pointer
• Registers for interrupt control, handling, and identification
• Auto-decrementing Loop Counters for fast, compact looping
• Two Data Pointer registers and a Frame Pointer for data memory access

2. Peripheral Registers: These are the lower six modules (Modules 0h through 5h). The Peripheral Registers in the

DS4830A are used for functionalities such as ADC, Fast Comparator, DAC, PWM Outputs, Timers, Sample and
Hold, 3-Wire, I2C Master and Slave, SPI Master and Slave, 31-GPIO pins, etc. The Peripheral Registers are not
used to implement opcodes.

Each System Register module has 16 registers, while each Peripheral Register module has 32 registers. The number of
cycles required to access a particular register depends upon the register’s index within the module. The access times
based upon the register index are grouped as follows:

• The first eight registers (index 0h to 7h) in each module may be read from or written to in a single cycle
• The second eight registers (index 8h to 0Fh) may be read from in a single cycle and written to in two cycles (by

using the prefix register PFX).
• The last sixteen registers (10h to 1Fh) in Peripheral Register modules may be read or written in two cycles

(always requiring use of the prefix register PFX).

Registers may be 8 or 16 bits in length. Some registers may contain reserved bits. The user should not write to any
reserved bits. Data transfers between registers of different sizes are handled as shown in Table 2-1.

• If the source and destination registers are both 8 bits wide, data is copied bit to bit.
• If the source register is 8 bits wide and the destination register is 16 bits wide, the data from the source register is

transferred into the lower 8 bits of the destination register. The upper 8 bits of the destination register are set to
the current value of the prefix register; this value is normally zero, but it can be set to a different value by the
previous instruction if needed. The prefix register reverts back to zero after one cycle, so this must be done by the
instruction immediately before the one that will be using the value.

• If the source register is 16 bits wide and the destination register is 8 bits wide, the lower 8 bits of the source are
transferred to the destination register.

• If both registers are 16 bits wide, data is copied bit to bit.

The above rules apply to all data movements between defined registers. Data transfer to/from undefined register locations
has the following behavior:

• If the destination is an undefined register, the MOVE is a dummy operation but may trigger an underlying
operation according to the source register (e.g., @DPn--).

• If the destination is a defined register and the source is undefined, the source data for the transfer will depend
upon the source module width. If the source is from a module containing 8-bit or 8-bit and 16-bit source registers,

DS4830A User’s Guide

 15

the source data will be equal to the prefix data as the upper 8 bits and 00h as the lower 8 bits. If the source is
from a module containing only 16-bit source registers, 0000h source data is used for the transfer.

Table 2-1. Register-to-Register Transfer Operations

SOURCE REGISTER
SIZE (BITS)

DESTINATION REGISTER SIZE
(BITS)

PREFIX
SET?

DESTINATION SET TO VALUE
HIGH 8 BITS LOW 8 BITS

8 8 X — Source [7:0]
8 16 No 00h Source [7:0]
8 16 Yes PFX [7:0] Source [7:0]
16 8 X — Source [7:0]
16 16 X Source [15:8] Source [7:0]

2.3 – Memory Types
In addition to the internal register space, the DS4830A incorporates the following memory types:

• 32KWords of flash memory
• 4KWords of utility ROM contain a debugger and program loader
• 2KWords of SRAM
• 32-level hardware stack for storage of program return addresses

The memory on the DS4830A is organized according to Harvard architecture. This means that there are separate busses
for both program and data memory. Stack memory is also separate and is accessed through a dedicated register set.

2.3.1 – Flash Memory
The DS4830A contains 32KWords (32K x 16) of flash memory. The flash memory begins at address 0000h and is
contiguous through word address 7FFFh. The flash memory can also be used for storing lookup tables and other non-
volatile data.

The incorporation of flash memory allows the contents of the flash memory to be upgraded in the field, either by the
application or by one of the bootloaders (JTAG or I2C). Writing to flash memory must be done indirectly by using routines
that are provided by the utility ROM. See the Utility ROM and In-System Programming sections for more details.

2.3.2 – SRAM Memory
The DS4830A contains 2KWords (2K x 16) of SRAM memory. The SRAM memory address begins at address 0000h and
is contiguous through word address 07FFh. The contents of the SRAM are indeterminate after power-on reset, but are
maintained during non-POR resets.

When using the in-circuit debugging features, the highest 19 bytes of the SRAM must be reserved for saved state storage
and working space for the debugging routines. If in-circuit debug is not used, the entire 2KWords of SRAM is available for
application use.

2.3.3 – Utility ROM
The utility ROM is a 4kWord segment of memory. The utility ROM memory address begins at word address 8000h and is
contiguous through word address 8FFFh. The utility ROM is programmed at the factory and cannot be modified. The
utility ROM provides the following system utility functions:

• Reset vector (not user code reset vector)
• In-system programming (bootstrap loader) over JTAG or I2C-compatible interfaces
• In-circuit debug routines
• Routines for in-application flash programming

Following any reset, the DS4830A automatically starts execution at the Reset Vector which is address 8000h in the utility
ROM. The ROM code determines whether the program execution should immediately jump to the start of application code
(flash address 0000h), or to one of the special routines mentioned. Routines within the utility ROM are firmware-
accessible and can be called as subroutines by the application software. See the Utility ROM, In-System Programming,
and In-Circuit Debug sections for more information on the routines provided by the utility ROM.

DS4830A User’s Guide

 16

2.3.4 – Stack Memory
A 16-bit, 32-level on-chip stack provides storage for program return addresses and temporary storage of system registers.
The stack is used automatically by the processor when the CALL, RET, and RETI instructions are executed, and when an
interrupt is serviced. The stack can also be used explicitly to store and retrieve data by using the @SP- - source, @++SP
destination, or the PUSH, POP, and POPI instructions. The POPI instruction acts identically to the POP instruction except
that it additionally clears the INS bit.

The width of the stack is 16 bits to accommodate the instruction pointer size. On reset, the stack pointer SP initializes to
the top of the stack (1Fh). The CALL, PUSH, and interrupt vectoring operations first increment SP and then store a value
at @SP. The RET, RETI, POP, and POPI operations first retrieve the value at @SP and then decrement SP.
The stack memory is initialized to indeterminate values upon reset or power-up. Stack memory is dedicated for stack
operations only and cannot be accessed by the DS4830A program or data busses.

When using the in-circuit debugging features, one word of the stack must be reserved for the debugging routines. If in-
circuit debug is not used, the entire stack is available for application use.

2.4 – Program and Data Memory Mapping and Access
The memory on the DS4830A is implemented using Harvard architecture, with separate busses for program and data
memory. The Memory Management Unit (MMU) allows the DS4830A to also support a pseudo-Von Neumann memory
map. The pseudo Von Neumann memory map allows each of the memory segments (flash, SRAM, and utility ROM) to
be logically mapped into a single contiguous memory map. This allows all of the memory segments to be accessed as
both program and memory data. The pseudo-Von Neumann memory map provides the following advantages:

• Program execution can occur from the flash, SRAM, or utility ROM memory segments.
• The SRAM and flash memory segments can both be used for data memory.

Using the pseudo-Von Neumann memory map does have one restriction. This restriction is that a particular memory
segment cannot be simultaneously accessed as both program and data memory.

2.4.1 – Program Memory Access
The instructions that the DS4830A is executing reside in what is defined as the program memory. The MMU fetches the
instructions using the program bus. The Instruction Pointer (IP) register designates the program memory address of the
next instruction to fetch. The Instruction Pointer is read/write accessible by the user software. A write to the Instruction
Pointer will force program flow to the new address on the next cycle following the write. The content of the Instruction
Pointer will be incremented by 1 automatically after each fetch operation. From an implementation perspective, system
interrupts and branching instructions simply change the contents of the Instruction Pointer and force the opcode to fetch
from a new program location.

DS4830A User’s Guide

 17

2.4.2 – Program Memory Mapping
The DS4830A’s mapping of the three memory segments (flash, SRAM, and utility ROM) as program memory is shown in
Figure 2-2. The mapping of memory segments into program space is always the same. When referring to memory as
program memory, all addresses are given as word addresses. The 32KWord flash memory segment is located at
memory location 0000h through 7FFFh and is logically divided into two pages, each containing 16KWords. The utility
ROM is located from location 8000h through 8FFFh, followed by the SRAM memory segment at location A000h through
A7FFh. The user code reset vector, which is the first instruction of user program code that is executed, is located at flash
memory address 0000h. User program code should always begin at this address.

2K * 16
SRAM

16K * 16
FLASH

(SEGMENT 0)

4K * 16
UROM

PROGRAM
SPACE

16K * 16
FLASH

(SEGMENT 1)

0000h

3FFFh
4000h

7FFFh

8FFFh

A000h

A7FFh

FFFFh

8000h

Figure 2-2: Program Memory Mapping

2.4.3 – Data Memory Access
Data memory mapping and access control are handled by the memory management unit (MMU). Read/write access to
data memory can be in word or in byte mode. The DS4830A provides three pointers that can be used for indirect
accessing of data memory. The DS4830A has two data pointers (@DPn) and one frame pointer (@BP[OFFS]). These
pointers are implemented as registers that can be directly accessed by user software. A data memory access requires
only one system clock period.

2.4.3.1 – Data Pointers
To access data memory, the data pointers are used as one of the operands in a MOVE instruction. If the data pointer is
used as a source, the core performs a load operation that reads data from the memory location addressed by the data

DS4830A User’s Guide

 18

pointer. If the data pointer is used as destination, the core performs a store operation that writes data to the memory
location addressed by the data pointer. Following are some examples of setting and using a data pointer.
 move DP[0], #0100h ; set pointer DP[0] to address 100h
 move Acc, @DP[0] ; read data from location 100h
 move @DP[0], Acc ; write to location 100h

The address pointed to by the data pointers can be automatically incremented or decremented. If the data pointer is used
as a source, the pointer can be incremented or decremented after the data access. If the data pointer is used as a
destination, the increment or decrement can occur prior to the data access. Following are examples of using the data
pointers increment/decrement features.
 move Acc, @DP[0]++ ; increment DP[0] after read
 move Acc, @DP[1]-- ; decrement DP[1] after read
 move @++DP[0], Acc ; increment DP[0] before write
 move @--DP[1], Acc ; decrement DP[0] before write

2.4.3.2 – Frame Pointer
The frame pointer (BP[OFFS]) is formed by the 16-bit unsigned addition of the 16-bit Frame Pointer Base Register (BP)
and the 8-bit Frame Pointer Offset Register (OFFS). The method the DS4830A uses to access data using the frame
pointer is similar to the data pointers. When increments or decrements are used, only the value of OFFS is incremented
or decremented. The base pointer (BP) will remain unaffected by increments or decrements of the OFFS register,
including when the OFFS register rolls over from FFh to 00h or from 00h to FFh. Following are examples of how to use
the frame pointer.
 move BP, #0100h ; set base pointer to address 100h
 move OFFS, #10h ; set the offset to 10h,
 move Acc, @BP[OFFS] ; read data from location 0110h
 move @BP[OFFS], Acc ; write data to location 0110h
 move Acc, @BP[OFFS++] ; increment OFFS after read
 move Acc, @BP[OFFS++] ; decrement OFFS after read
 move @BP[++OFFS], Acc ; increment OFFS before write
 move @BP[--OFFS], Acc ; decrement OFFS before write

2.4.4 – Data Memory Mapping
The DS4830A’s pseudo-Von Neumann memory map allows the MMU to read data from each of the three memory
segments (flash, SRAM, utility ROM). The MMU can also write data directly to the SRAM memory segment. Data
memory can be written to the flash memory segment, but because writing to flash requires the use of the utility ROM
routines, this is not a direct access. The logical mapping of the three memory segments as data memory varies
depending upon:

• which memory segment instructions are currently being executed from
• if data memory is being accessed in word or byte mode

In all cases, whichever memory segment is currently being used, program memory cannot be accessed as data memory.

When the program is currently executing instructions from either the SRAM or utility ROM memory segments, the flash
memory will be mapped to half of the data memory space. If word access mode is selected, both pages (32KWords) can
be logically mapped to data memory space. If byte access mode is selected, only one page (32KBytes) can be logically
mapped to half of the data memory space. When operating in byte access mode, the selection of which flash page is
mapped into data memory space is determined by the Code Data Access bit (CDA0):

CDA0 Selected Page in Byte Mode Selected Page in Word Mode
0 P0 P0 and P1
1 P1 P0 and P1

The next three sections detail the mapping of the different memory segments as data memory depending upon which
memory segment instructions are currently being executed from.

DS4830A User’s Guide

 19

2.4.4.1 – Memory Map When Executing from Flash Memory
When executing from the flash memory:

• Read and write operations of SRAM memory are executed normally.
• The utility ROM can be read as data, starting at 8000h of the data space. The utility ROM cannot be written.

Figure 2-3 illustrates the mapping of the SRAM and utility ROM memory segments into data memory space when code is
executing from the flash memory segment.

2K * 16
SRAM

16K * 16
FLASH

(SEGMENT 0)

4K * 16
UTILITY ROM

PROGRAM
SPACE

16K * 16
FLASH

(SEGMENT 1)

0000h

3FFFh
4000h

7FFFh

8FFFh

A000h

A7FFh

FFFFh

8000h

4K * 8
SRAM

DATA SPACE
(BYTE MODE)

0000h

7FFFh

9FFFh

FFFFh

8000h

4K * 16
UTILITY ROM

0000h

7FFFh

8FFFh

FFFFh

8000h

0FFFh

8K * 8
UTILITY ROM

DATA SPACE
(WORD MODE)

2K * 16
SRAM

07FFh

EX
EC

U
TI

N
G

 F
R

O
M

Figure 2-3: Memory Map When Executing from Flash Memory

DS4830A User’s Guide

 20

2.4.4.2 – Memory Map When Executing from Utility ROM
When executing from the utility ROM:

• Read and write operations of SRAM memory are executed normally.
• Reading of flash memory is executed normally. Writing to flash memory requires the use of the utility ROM

routines.
• One page (byte access mode) or both pages (word access mode) of the flash memory can be accessed as data

with an offset of 8000h as determined by the CDA0 bit.

Figure 2-4 illustrates the mapping of the SRAM and flash memory segments into data memory space when code is
executing from the utility ROM memory segment.

2K * 16
SRAM

16K * 16
FLASH

(SEGMENT 0)

4K * 16
UTILITY ROM

PROGRAM
SPACE

16K * 16
FLASH

(SEGMENT 1)

0000h

3FFFh
4000h

7FFFh

8FFFh

A000h

A7FFh

FFFFh

8000h

32K * 8
LOWER HALF
(SEGMENT 0)

OF FLASH

4K * 8
SRAM

DATA SPACE
(BYTE MODE,

CDA0 = 0)

0000h

FFFFh

8000h

32K * 8
UPPER HALF
(SEGMENT 1)

OF FLASH

0000h

FFFFh

8000h

0FFFh

DATA SPACE
(BYTE MODE,

CDA0 = 1)

4K * 8
SRAM

0FFFh

EX
EC

U
TI

N
G

 F
R

O
M

32K * 16
FLASH

0000h

FFFFh

8000h

DATA SPACE
(WORD MODE)

2K * 16
SRAM

07FFh

Figure 2-4: Memory Map When Executing from Utility ROM

DS4830A User’s Guide

 21

2.4.4.3 – Memory Map When Executing from SRAM
When executing from the SRAM:

• The utility ROM can be read as data, starting at 8000h of the data space. The utility ROM cannot be written.
• Reading of flash memory is executed normally. Writing to flash memory requires the use of the utility ROM

routines.
• One page (byte access mode) or both pages (word access mode) of the flash memory can be accessed as data

with an offset of 0000h. For byte access mode, the page of flash accessed is determined by the CDA0 bit.

Figure 2-5 illustrates the mapping of the flash and utility ROM memory segments into data memory space when code is
executing from the SRAM memory segment.

2K * 16
SRAM

16K * 16
FLASH

(SEGMENT 0)

4K * 16
UTILITY ROM

PROGRAM
SPACE

16K * 16
FLASH

(SEGMENT 1)

0000h

3FFFh
4000h

7FFFh

8FFFh

A000h

A7FFh

FFFFh

8000h

32K * 8
LOWER HALF
(SEGMENT 0)

OF FLASH

DATA SPACE
(BYTE MODE,

CDA0 = 0)

0000h

FFFFh

8000h

32K * 8
UPPER HALF
(SEGMENT 1)

OF FLASH

0000h

FFFFh

DATA SPACE
(BYTE MODE,

CDA0 = 1)

EX
EC

U
TI

N
G

 F
R

O
M

32K * 16
FLASH

0000h

FFFFh

DATA SPACE
(WORD MODE)

8K * 8
UTILITY ROM

8K * 8
UTILITY ROM 4K * 16

UTILITY ROM

7FFFh
8000h
7FFFh

8000h
7FFFh

8FFFh

9FFFh 9FFFh

Figure 2-5: Memory Map When Executing from SRAM

DS4830A User’s Guide

 22

2.5 – Data Alignment
To support merged program and data memory operation while maintaining efficient memory space usage, the data
memory must be able to support both byte and word mode accessing. Data is aligned in data memory as words, but the
effective data address is resolved to bytes. This data alignment allows program instruction fetching in words while
maintaining data accessibility at the byte level. It is important to realize that this accessibility requires strict word
alignment. All executable or data words must align to an even address in byte mode. Care must be taken when updating
a code segment as misalignment of words will likely result in loss of program execution control.

Memory will always be read as a complete word, whether for program fetch or data access. The program decoder always
uses a full 16-bit word. The data access can utilize a word or an individual byte. Data memory is organized as two byte-
wide memory banks with common word address decode but two 8-bit data buses. In byte mode, data pointer hardware
reads out the full word containing the selected byte using the effective data word address pointer (the least significant bit
of the byte data pointer is not initially used). Then, the least significant data pointer bit functions as the byte select that is
used to place the correct byte on the data bus. For write access, data pointer hardware addresses a particular word using
the effective data word address while the least significant bit selects the corresponding data bank for write. The contents
of the other byte are left unaffected.

2.6 – Reset Conditions
The DS4830A has several possible sources of reset.

• Power-On/Brownout Reset
• Watchdog Timer Reset
• External Reset
• Internal System Reset
• Soft Reset

Once a reset condition has completed or been removed, code execution begins at the beginning of utility ROM, which is
address 8000h. The utility ROM code interrogates the I2C_SPE, JTAG_SPE, and PWL bits to determine if bootloading is
necessary. If bootloading is not required, execution will jump to the user code reset vector, which is at flash memory
address 0000h.

The RST pin is an input only.

2.6.1 – Power-On/Brownout Reset
The DS4830A provides a power-on reset (POR) circuit to ensure proper initialization of internal device states and analog
circuits. The POR voltage threshold range is between approximately 1.1V and 1.7V. When VDD is below the POR level,
the state of all the DS4830A pins (except DAC port pins), including RST, is weak pullup. The port pins having DAC
function are high impedance on POR.

The DS4830A also includes brownout detection capability. This is an on-chip precision reference and comparator that
monitors the supply voltage, VDD, to ensure that it is within acceptable limits. If VDD is below the brownout level (VBO), the
power monitor generates a reset. This can occur when:

• The DS4830A is being powered up and VDD is above the POR level but still less than VBO.
• VDD drops from an acceptable level to less than VBO.

Once VDD exceeds VBO, the DS4830A exits the reset condition and the internal oscillator starts up. After approximately
1ms the DS4830A performs the following tasks.

• All registers and circuits enter their reset state
• The POR flag in the Watchdog Control Register is set to indicate the source of the reset
• The DS4830A begins normal operation (CPU State)
• Code execution begins at utility ROM location 8000h

The transition between POR, Brownout, and normal operation is detailed in Figure 2-6: DS4830A State Diagram.

Note: If VDD is below VBO, there is a chance that the SRAM gets corrupted. If the POR flag in WDCN is set, all data in
SRAM should be re-initialized.

DS4830A User’s Guide

 23

BROWNOUT STATE

CPU DISABLED
ANALOG ACTIVE

SYSTEM CLOCK
STARTUP DELAY

CPU MODE

DIGITAL CORE ON
ANALOG ON

CODE EXECUTION

VDD > VBO

VDD < VBO

POR

VDD < VBO

Figure 2-6: DS4830A State Diagram

2.6.2 – Watchdog Timer Reset
The watchdog timer is a programmable hardware timer that can be used to reset the processor in case a software lockup
or other unrecoverable error occurs. Once the watchdog is enabled, software must reset the watchdog timer periodically.
If the processor does not reset the watchdog timer before it elapses, the watchdog can initiate a reset.

If the watchdog resets the processor, the DS4830A will remain in reset for 12 clock cycles. When a reset occurs due to a
watchdog timeout, the Watchdog Timer Reset Flag (WTRF) in the WDCN register is set to indicate the source of the
reset.

2.6.3 – External Reset
During normal operation, the DS4830A is placed into external reset when the RST pin is held at logic 0 for at least four
clock cycles. Once the DS4830A enters reset mode, it remains in reset as long as the RST pin is held at logic 0. After the
RST pin returns to logic 1, the processor exits reset within 12 clock cycles.

An external reset pulse on the RST pin will reset the DS4830A and return to normal CPU mode operation within 10 clock
cycles.

DS4830A User’s Guide

 24

2.6.4 – Internal System Resets
There are two possible sources of internal system resets. An internal reset will hold the DS4830A in reset mode for 12
clock cycles.

1. When data BBh is written to the special I2C slave address 34h.
2. When in-system programming is complete and the ROD bit is set to 1.

2.6.5 – Software Reset
The device UROM provides option to soft reset through the application program. The application program jumps to UROM
code which generates the internal system reset. UROM location 8854h has code when executed generates internal reset.
Application program can jump to this location to generate software reset.

asm (“LJUMP #8854h”)

2.7 – Clock Generation
The DS4830A generates its 20MHz peripheral clock using an internal oscillator and generates 10MHz instruction clock
using divide by 2 circuit. This oscillator starts up when VDD exceeds the brownout voltage level, VBO. There is a delay of
approximately 1ms in the oscillator start up and beginning of clock. This delay ensures that the clock is stable prior to
beginning normal operation.

DS4830A User’s Guide

 25

SECTION 3 – SYSTEM REGISTER DESCRIPTIONS
Most functions of the DS4830A are controlled by sets of registers. These registers provide a working space for memory
operations as well as configuring and addressing peripheral registers on the device. Registers are divided into two major
types: system registers and peripheral registers. The common register set, also known as the system registers, includes
ALU access and control registers, accumulator registers, data pointers, interrupt vectors and control, and stack pointer.
The peripheral registers define additional functionality and the functionality is broken up into discrete modules.

This section describes the DS4830A’s system registers. Table 3-1 shows the DS4830A system register map. Table 3-2
explains system register bit functions. This is followed by a detailed bit description.

Table 3-1: System Register Map

REGISTER
INDEX

REGISTER MODULE
AP (08h) A (09h) PFX (0Bh) IP (0Ch) SP (0Dh) DPC (0Eh) DP (0Fh)

00h AP A[0] PFX[0] IP
01h APC A[1] PFX[1] SP
02h A[2] PFX[2] IV
03h A[3] PFX[3] OFFS DP[0]
04h PSF A[4] PFX[4] DPC
05h IC A[5] PFX[5] GR
06h IMR A[6] PFX[6] LC[0] GRL
07h A[7] PFX[7] LC[1] BP DP[1]
08h SC A[8] GRS
09h A[9] GRH
0Ah A[10] GRXL
0Bh IIR A[11] FP
0Ch A[12]
0Dh A[13]
0Eh A[14]
0Fh WDCN A[15]

DS4830A User’s Guide

 26

Table 3-2. System Register Bit Functions

REGISTER
REGISTER BIT NUMBER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
AP — — — — AP (4 bits)

APC CLR IDS — — — MOD2 MOD1 MOD0
PSF Z S — GPF1 GPF0 OV C E
IC — — — — — — INS IGE

IMR IMS — IM5 IM4 IM3 IM2 IM1 IM0
SC TAP — — CDA0 — ROD PWL —
IIR IIS — II5 II4 II3 II2 II1 II0

WDCN POR EWDI WD1 WD0 WDIF WTRF EWT RWT
A[n] (n=15:0) A[n] (16 bits)
PFX[n] (n=7:0) PFX[n] (16 bits)

IP IP (16 bits)
SP — — — — — — — — — — — SP (5 bits)
IV IV (16 bits)

LC[0] LC[0] (16 bits)
LC[1] LC[1] (16 bits)
OFFS OFFS (8 bits)
DPC — — — — — — — — — — — WBS2 WBS1 WBS0 SDPS1 SDPS0
GR GR (16 bits)
GRL GRL (8 bits)
BP BP (16 bits)

GRS GRS (16 bits) = (GRL : GRH)
GRH GRH (8 bits)
GRXL GRXL (16 bits) = (GRL.7, 8 bits) : (GRL, 8 bits)

FP FP = BP[OFFS] (16 bits)
DP[0] DP[0] (16 bits)
DP[1] DP[1] (16 bits)

DS4830A User’s Guide

 27

3.1 – Accumulator Pointer Register (AP, 08h[00h])
Initialization: This register is cleared to 00h on all forms of reset.
Access: Unrestricted direct read/write access.
Bit Name Function
7:4 Reserved Reserved. All reads return 0.

3:0 AP[3:0]

Active Accumulator Select. These bits select which of the 16 accumulator registers are used for
arithmetic and logical operations. If the APC register has been set to perform automatic
increment/decrement of the active accumulator, this setting will be automatically changed after each
arithmetic or logical operation. If a ‘MOVE AP, Acc’ instruction is executed, any enabled AP
inc/dec/modulo control will take precedence over the transfer of Acc data into AP.

3.2 – Accumulator Pointer Control Register (APC, 08h[01h])
Initialization: This register is cleared to 00h on all forms of reset.
Access: Unrestricted direct read/write access.
Bit Name Function

7 CLR

AP Clear. Writing this bit to 1 clears the accumulator pointer AP to 0. Once set, this bit will
automatically be reset to 0 by hardware. If a ‘MOVE APC, Acc’ instruction is executed requesting that
AP be set to 0 (i.e., CLR = 1), the AP clear function overrides any enabled inc/dec/modulo control. All
reads from this bit return 0.

6 IDS

Increment/Decrement Select. If this bit is set to 0, the accumulator pointer AP is incremented following
each arithmetic or logical operation according to MOD[2:0]. If this bit is set to 1, the accumulator
pointer AP is decremented following each arithmetic or logical operation according to MOD[2:0]. If
MOD[2:0] is set to 000, the setting of this bit is ignored.

5:3 Reserved Reserved. All reads return 0.

2:0 MOD[2:0]

Accumulator Pointer Auto Increment/Decrement Modulus. If these bits are set to a nonzero value, the
accumulator pointer (AP[3:0]) will be automatically incremented or decremented following each
arithmetic or logical operation. The mode for the auto-increment/ decrement is determined as follows:

MOD[2:0] AUTO INCREMENT/DECREMENT MODE
000 No auto-increment/decrement (default)
001 Increment/decrement AP[0] modulo 2
010 Increment/decrement AP[1:0] modulo 4
011 Increment/decrement AP[2:0] modulo 8
100 Increment/decrement AP modulo 16
101 to 111 Reserved (modulo 16 when set)

3.3 – Processor Status Flags Register (PSF, 08h[04h])
Initialization: This register is cleared to 80h on all forms of reset.
Access: Bit 7 (Z), bit 6 (S), and bit 2 (OV) are read only. Bits [4:3] (GPF[1:0]), bit 1 (C), and bit 0 (E) are unrestricted
read/write.

Bit Name Function

7 Z Zero Flag. The value of this bit flag equals 1 whenever the active accumulator is equal to zero. This
bit equals 0 if the active accumulator is not equal to 0.

6 S Sign Flag. This bit flag mirrors the current value of the high bit of the active accumulator (Acc.15).
5 Reserved Reserved. All reads return 0.

4:3 GPF[1:0] General-Purpose Flags. These general-purpose flag bits are provided for user software control.

2 OV

Overflow Flag. This flag is set to 1 if there is a carry out of bit 14 but not out of bit 15, or a carry out of
bit 15 but not out of bit 14 from the last arithmetic operation, otherwise, the OV flag remains as 0. OV
indicates a negative number resulted as the sum of two positive operands, or a positive sum resulted
from two negative operands.

1 C

Carry Flag. This bit flag is set to 1 whenever an add or subtract operation (ADD, ADDC, SUB, SUBB)
returns a carry or borrow. This bit flag is cleared to 0 whenever an add or subtract operation does not
return a carry or borrow. Many other instructions potentially affect the carry bit. Reference the
instruction set documentation for details.

0 E Equals Flag. This bit flag is set to 1 whenever a compare operation (CMP) returns an equal result. If a
CMP operation returns not equal, this bit is cleared.

DS4830A User’s Guide

 28

3.4 – Interrupt and Control Register (IC, 08h[05h])
Initialization: This register is cleared to 00h on all forms of reset.
Access: Unrestricted direct read/write access.

Bit Name Function
7:2 Reserved Reserved. All reads return 0.

1 INS

Interrupt In Service. The INS is set by hardware automatically when an interrupt is acknowledged. No
further interrupts occur as long as the INS remains set. The interrupt service routine can clear the INS
bit to allow interrupt nesting. Otherwise, the INS bit is cleared by hardware upon execution of an RETI
or POPI instruction.

0 IGE Interrupt Global Enable. If this bit is set to 1, interrupts are globally enabled, but still must be locally
enabled to occur. If this bit is set to 0, all interrupts are disabled.

3.5 – Interrupt Mask Register (IMR, 08h[06h])
Initialization: This register is cleared to 00h on all forms of reset.
Access: Unrestricted read/write access.

Bit Name Function
7 IMS Interrupt Mask for System Modules
6 Reserved Reserved. All reads return 0.
5 IM5 Interrupt Mask for Register Module 5
4 IM4 Interrupt Mask for Register Module 4
3 IM3 Interrupt Mask for Register Module 3
2 IM2 Interrupt Mask for Register Module 2
1 IM1 Interrupt Mask for Register Module 1
0 IM0 Interrupt Mask for Register Module 0

The first six bits in this register are interrupt mask bits for modules 0 to 5, one bit per module. The eighth bit, IMS, serves
as a mask for any system module interrupt sources. Setting a mask bit allows the enabled interrupt sources for the
associated module or system (for the case of IMS) to generate interrupt requests. Clearing the mask bit effectively
disables all interrupt sources associated with that specific module or all system interrupt sources (for the case of IMS).
The interrupt mask register is intended to facilitate user-definable interrupt prioritization.

3.6 – System Control Register (SC, 08h[08h])
Initialization: This register is reset to 1000 00s0b on all reset. Bit 1 (PWL) is set to 1 on a power-on reset only.
Access: Unrestricted read/write access.

Bit Name Function

7 TAP
Test Access Port (JTAG) Enable. This bit controls whether the Test Access Port special-function pins
are enabled. The TAP defaults to being enabled. Clearing this bit to 0 disables the TAP special
function pins.

6:5 Reserved Reserved. All reads return 0.

4 CDA0

Code Data Access Bit 0.
The CDA0 bit is used to logically map the flash memory pages to the data space for read/write access.
The logical data memory addresses of the flash depend on whether execution is from Utility ROM or
SRAM. The CDA0 bit is not needed if data memory is accessed in word mode.

CDA0 Byte Mode Active Page Word Mode Active Page
0 P0 P0 and P1
1 P1 P0 and P1

3 Reserved Reserved. All reads return 0.

2 ROD

ROM Operation Done. This bit is used to signify completion of a ROM operation sequence to the
control units. This allows the Debug engine to determine the status of a ROM sequence. Setting this
bit to logic 1 causes an internal system reset if the JTAG SPE bit is also set. Setting the ROD bit will
clear the JTAG SPE and I2C_SPE bits if set. The ROD bit will be automatically cleared by hardware
once the control unit acknowledges the done indication.

1 PWL

Password Lock. This bit defaults to 1 on a power-on reset. When this bit is 1, it requires a 32-byte
password to be matched with the password in the program space before allowing access to the
password protected in-circuit debug or bootstrap loader ROM routines. Clearing this bit to 0 disables
the password protection for these ROM routines.

0 Reserved Reserved. All reads return 0.

DS4830A User’s Guide

 29

3.7 – Interrupt Identification Register (IIR, 08h[0Bh])
Initialization: This register is cleared to 00h on all forms of reset.
Access: Read only.

Bit Name Function
7 IIS Interrupt Identifier Flag for System Modules
6 Reserved Reserved. All reads return 0.
5 II5 Interrupt Identifier Flag for Register Module 5
4 II4 Interrupt Identifier Flag for Register Module 4
3 II3 Interrupt Identifier Flag for Register Module 3
2 II2 Interrupt Identifier Flag for Register Module 2
1 II1 Interrupt Identifier Flag for Register Module 1
0 II0 Interrupt Identifier Flag for Register Module 0

The first six bits in this register indicate interrupts pending in modules 0 to 5, one bit per module. The eighth bit, IIS,
indicates a pending system interrupt, such as from the watchdog timer. The interrupt pending flags will be set only for
enabled interrupt sources waiting for service. The interrupt pending flag will be cleared when the pending interrupt
sources within that module are disabled or when the interrupt flags are cleared by software

3.8 – Watchdog Control Register (WDCN, 08h[0Fh])
Initialization: Bits 5, 4, 3 and 0 are cleared to 0 on all forms of reset; for others, see individual bit descriptions.
Access: Unrestricted direct read/write access.

See the watchdog section for WDCN register description and further detail.

3.9 – Accumulator n Register (A[n], 09h[nh])
Initialization: These registers are cleared to 0000h on all forms of reset.
Access: Unrestricted direct read/write access.

BIT DESCRIPTION

A[n][15:0]
These registers (n=0 to 15) act as the accumulator for all ALU arithmetic and logical operations
when selected by the accumulator pointer (AP). They can also be used as a general-purpose
working register.

3.10 – Prefix Register (PFX[n], 0Bh[n])
Initialization: This register is cleared to 0000h on all forms of reset.
yAccess: Unrestricted direct read/write access.

BIT NAME DESCRIPTION

15:0 PFX[n][15:0]

The Prefix register provides a means of supplying an additional 8 bits of high-order data for use by
the succeeding instruction as well as providing additional indexing capabilities. This register will
only hold any data written to it for one execution cycle, after which it will revert to 0000h. Although
this is a 16-bit register, only the lower 8 bits are actually used for prefixing purposes by the next
instruction. Writing to or reading from any index in the Prefix module will select the same 16-bit
register. However, when the Prefix register is written, the index n used for the PFX[n] write also
determines the high-order bits for the register source and destination specified in the following
instruction.
The index selection reverts to 0 (default mode allowing selection of registers 0h to 7h for
destinations) after one cycle in the same manner as the contents of the Prefix register.

WRITE
TO

SOURCE REGISTER
RANGE

DESTINATION
REGISTER RANGE

PFX[0] 0h to Fh 0h to 7h
PFX[1] 10h to 1Fh 0h to 7h
PFX[2] 0h to Fh 8h to Fh
PFX[3] 10h to 1Fh 8h to Fh
PFX[4] 0h to Fh 10h to 17h
PFX[5] 10h to 1Fh 10h to 17h
PFX[6] 0h to Fh 18h to 1Fh
PFX[7] 10h to 1Fh 18h to 1Fh

DS4830A User’s Guide

 30

3.11 – Instruction Pointer Register (IP, 0Ch[00h])
Initialization: This register is cleared to 8000h on all forms of reset.
Access: Unrestricted direct read/write access.

BIT DESCRIPTION

15:0
This register contains the address of the next instruction to be executed and is automatically
incremented by 1 after each program fetch. Writing an address value to this register will cause
program flow to jump to that address. Reading from this register will not affect program flow.

3.12 – Stack Pointer Register (SP, 0Dh[01h])
Initialization: This register is cleared to 001Fh on all forms of reset.
Access: Unrestricted direct read/write access.

BIT DESCRIPTION
15:4 Reserved; all reads return 0.

4:0
These four bits indicate the current top of the hardware stack, from 0h to 1Fh. This pointer is
incremented after a value is pushed on the stack and decremented before a value is popped from
the stack.

3.13 – Interrupt Vector Register (IV, 0Dh[02h])
Initialization: This register is cleared to 0000h on all forms of reset.
Access: Unrestricted direct read/write access.

BIT DESCRIPTION

15:0 This register contains the address of the interrupt service routine. The interrupt handler will
generate a CALL to this address whenever an interrupt is acknowledged.

3.14 – Loop Counter 0 Register (LC[0], 0Dh[06h])
Initialization: This register is cleared to 0000h on all forms of reset.
Access: Unrestricted direct read/write access.

BIT DESCRIPTION

15:0
This register is used as the loop counter for the DJNZ LC[0], src operation. This operation
decrements LC[0] by one and then jumps to the address specified in the instruction by src if LC[0]
= 0.

3.15 – Loop Counter 1 Register (LC[1], 0Dh[07h])
Initialization: This register is cleared to 0000h on all forms of reset.
Access: Unrestricted direct read/write access.

BIT DESCRIPTION

15:0
This register is used as the loop counter for the DJNZ LC[1], src operation. This operation
decrements LC[1] by one and then jumps to the address specified in the instruction by src if LC[1]
= 0.

3.16 – Frame Pointer Offset Register (OFFS, 0Eh[03h])
Initialization: This register is cleared to 00h on all forms of reset.
Access: Unrestricted direct read/write access.

BIT DESCRIPTION

7:0

This 8-bit register provides the Frame Pointer (FP) offset from the base pointer (BP). The Frame
Pointer is formed by unsigned addition of Frame Pointer Base Register (BP) and Frame Pointer
Offset Register (Offs). The contents of this register can be post-incremented or post-decremented
when using the Frame Pointer for read operations and may be pre-incremented or pre-
decremented when using the Frame Pointer for write operations. A carry out or borrow resulting
from an increment/decrement operation has no effect on the Frame Pointer Base Register (BP).

DS4830A User’s Guide

 31

3.17 – Data Pointer Control Register (DPC, 0Eh[04h])
Initialization: This register is cleared to 001Ch on all forms of reset.
Access: Unrestricted direct read/write access.

BIT NAME DESCRIPTION
15:5 RESERVED Reserved. All reads return 0.

4 WBS2
Word/Byte Select 2. This bit selects access mode for BP[OFFS]. When WBS2 is set to logic 1, the
BP[Offs] is operated in word mode for data memory access; when WBS2 is cleared to logic 0,
BP[Offs] is operated in byte mode for data memory access.

3 WBS1
Word/Byte Select 1. This bit selects access mode for DP[1]. When WBS1 is set to logic 1, the
DP[1] is operated in word mode for data memory access; when WBS1 is cleared to logic 0, DP[1]
is operated in byte mode for data memory access.

2 WBS0
Word/Byte Select 0. This bit selects access mode for DP[0]. When WBS0 is set to logic 1, the
DP[0] is operated in word mode for data memory access; when WBS0 is cleared to logic 0, DP[0]
is operated in byte mode for data memory access.

1:0 SDPS[1:0]

Source Data Pointer Select Bits[1:0]. These bits select one of the three data pointers as the active
source pointer for the load operation. A new data pointer must be selected before being used to
read data memory:

SDPS1 SDPS0 SOURCE POINTER SELECTION
0 0 DP[0]
0 1 DP[1]
1 0 FP (BP[Offs])
1 1 Reserved (select FP if set)

These bits default to 00b but do not activate DP[0] as an active source pointer until the SDPS bits
are explicitly cleared to 00b or the DP[0] register is written by an instruction. Also, modifying the
register contents of a data/frame pointer register (DP[0], DP[1], BP or Offs) will change the setting
of the SDPS bits to reflect the active source pointer selection.

3.18 – General Register (GR, 0Eh[05h])
Initialization: This register is cleared to 0000h on all forms of reset.
Access: Unrestricted direct read/write access.

BIT DESCRIPTION

15:0
This register is intended primarily for supporting byte operations on 16-bit data. The 16-bit register
is byte-readable, byte-writeable through the corresponding GRL and GRH 8-bit registers and byte-
swappable through the GRS 16-bit register.

3.19 – General Register Low Byte (GRL, 0Eh[06h])
Initialization: This register is cleared to 00h on all forms of reset.
Access: Unrestricted direct read/write access.

BIT DESCRIPTION

7:0
This register reflects the low byte of the GR register and is intended primarily for supporting byte
operations on 16-bit data. Any data written to the GRL register will also be stored in the low byte of
the GR register.

3.20 – Frame Pointer Base Register (BP, 0Eh[07h])
Initialization: This register is cleared to 0000h on all forms of reset.
Access: Unrestricted direct read/write access.

BIT DESCRIPTION

15:0

This register serves as the base pointer for the Frame Pointer (FP). The Frame Pointer is formed
by unsigned addition of Frame Pointer Base Register (BP) and Frame Pointer Offset Register
(Offs). The content of this base pointer register is not affected by increment/decrement operations
performed on the offset (OFFS) register.

DS4830A User’s Guide

 32

3.21 – General Register Byte-Swapped (GRS, 0Eh[08h])
Initialization: This register is cleared to 0000h on all forms of reset
Access: Unrestricted read-only access.

BIT DESCRIPTION

15:0 This register is intended primarily for supporting byte operations on 16-bit data. This 16-bit read
only register returns the byte-swapped value for the data contained in the GR register.

3.22 – General Register High Byte (GRH, 0Eh[09h])
Initialization: This register is cleared to 00h on all forms of reset.
Access: Unrestricted direct read/write access.

BIT DESCRIPTION

7:0
This register reflects the high byte of the GR register and is intended primarily for supporting byte
operations on 16-bit data. Any data written to the GRH register will also be stored in the high byte
of the GR register.

3.23 – General Register Sign Extended Low Byte (GRXL, 0Eh[0Ah])
Initialization: This register is cleared to 0000h on all forms of reset.
Access: Unrestricted direct read-only access.

BIT DESCRIPTION
15:0 This register provides the sign extended low byte of GR as a 16-bit source.

3.24 – Frame Pointer Register (FP, 0Eh[0Bh])
Initialization: This register is cleared to 0000h on all forms of reset.
Access: Unrestricted direct read-only access.

BIT DESCRIPTION
15:0 This register provides the current value of the frame pointer (BP[Offs]).

3.25 – Data Pointer 0 Register (DP[0], 0Fh[03h])
Initialization: This register is cleared to 0000h on all forms of reset.
Access: Unrestricted direct read/write access.

BIT DESCRIPTION

15:0
This register is used as a pointer to access data memory. DP[0] can be automatically incremented
or decremented following each read operation or can be automatically incremented or
decremented before each write operation.

3.26 – Data Pointer 1 Register (DP[1], 0Fh[07h])
Initialization: This register is cleared to 0000h on all forms of reset.
Access: Unrestricted direct read/write access.

BIT DESCRIPTION

15:0
This register is used as a pointer to access data memory. DP[1] can be automatically incremented
or decremented following each read operation or can be automatically incremented or
decremented before each write operation.

DS4830A User’s Guide

 33

SECTION 4 – PERIPHERAL REGISTER DESCRIPTIONS
Reg M0 M1 M2 M3 M4 M5

0 PO2 I2CBUF_M I2CBUF_S MCNT ADCN QTDATA

1 PO1 I2CST_M I2CST_S MA SENR QTCN
2 PO0 I2CIE_M MPNTR MB ADST LTIL
3 EIF2 PO6 I2CTXFST MC2 ADST1 HTIL
4 EIF1 CRC8IN I2CTXFIE MC1 ADDATA SPIB_M
5 EIF0 MIIR1 I2CRXFST MC0 SPIB_S PWMDATA
6 GTV1 EIF6 I2CRXFIE GTCN2 DADDR PWMCN
7 GTCN1 EIE6 I2CST2_S SHFT MIIR4 PWMSYNC
8 PI2 PI6 RPNTR MC1R TEMPCN LTIH
9 PI1 SVM I2CCN_S MC0R SHCN HTIH

10 PI0 GTC2 QTLST
11 GTC1 GTV2 PINSEL
12 I2CCN_M I2CSLA_S GP_REG1 REFAVG
13 EIE2 I2CCK_M I2CSLA2_S GP_REG2
14 EIE1 I2CTO_M I2CSLA3_S MACSEL TWR MIIR5
15 EIE0 I2CSLA_M I2CSLA4_S USER_INT RPCFG

16 PD2 EIES6 I2CIE2_S GP_REG3 SPICN_S
17 PD1 PD6 MADDR GP_REG4 SPICF_S
18 PD0 MADDR2 GP_REG5 SPICK_S SPICN_M
19 EIES2 MADDR3 GP_REG6 I2C_SPB SPICF_M
20 EIES1 MADDR4 GP_REG7 DEV_NUM SPICK_M
21 EIES0 CRC8OUT CUR_SLA GP_REG8 DACD0
22 I2CIE_S GP_REG9 DACD1
23 ADCG1 GP_REG10 DACD2
24 ADCG2 ICDT0 GP_REG11 DACD3
25 ADVOFF ICDT1 GP_REG12 DACD4
26 ICDC GP_REG13 DACD5
27 ADCG3 ICDF GP_REG14 DACD6
28 ADCG4 ICDB GP_REG15 DACD7
29 CHIPREV ICDA GP_REG16 DACCFG
30 I2CSLA2_M ICDD ADADDR
31

The DS4830A has sixteen 16-bit general-purpose registers GP_REG1-16 for application usage.

DS4830A User’s Guide

 34

4.1 – Module 0 Peripheral Registers

MODULE 0
Register index 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PO2 00h PO2[7:0]

PO1 01h PO1[7:0]

PO0 02h PO0[7:0]

EIF2 03h IFP2[7:0]

EIF1 04h IFP1[7:0]

EIF0 05h IFP0[7:0]

GTV1 06h GTV1[15:0]

GTCN1 07h - - - GTR MODE CLK_SEL[1:0] GTIE - - - GTIF - GTPS[2:0]

PI2 08h PI2[7:0]

PI1 09h PI1[7:0]

PI0 0Ah PI0[7:0]

GTC1 0Bh GTC1[15:0]

EIE2 0Dh IEP2[7:0]

EIE1 0Eh IEP1[7:0]

EIE0 0Fh IEP0[7:0]

PD2 10h PD2[7:0]

PD1 11h PD1[7:0]

PD0 12h PD0[7:0]

EIES2 13h IESP2[7:0]

EIES1 14h IESP1[7:0]

EIES0 15h IESP0[7:0]

DS4830A User’s Guide

 35

4.2 – Module 1 Peripheral Registers
MODULE 1

Register index 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I2CBUF_M 00h D[15:0]

I2CST_M 01h I2CBUS I2CBUSY - I2CAMI2 I2CSPI I2CSCL I2CROI I2CGCI I2CNACKI - I2CAMI I2CTOI I2CSTRI I2CRXI I2CTXI I2CSRI

I2CIE_M 02h - - - - I2CSPIE I2CAMI2E I2CROIE I2CGCIE I2CNACKIE - I2CAMIE I2CTOIE I2CSTRIE I2CRXIE I2CTXIE I2CSRIE

PO6 03h - PO6[6:0]

CRC8IN 04h CRC8IN[7:0]

MIIR1 05h - - - - - - - I2CM SVM P6_6 P6_5 P6_4 P6_3 P6_2 P6_1 P6_0

EIF6 06h - IFP6[6:0]

EIE6 07h - IEP6[6:0]

PI6 08h - PI6[6:0]

SVM 09h - - - - SVMTH[3:0] - - - - SVMI SVMIE SVMRDY SVMEN

I2CCN_M 0Ch - - - I2CM_ALT ADD2EN SMB_MOD I2CSTREN I2CGCEN I2CSTOP I2CSTART I2CACK I2CSTRS - - I2CMST I2CEN

I2CCK_M 0Dh I2CCKH[7:0] I2CCKL[7:0]

I2CTO_M 0Eh I2CTO[7:0]

I2CSLA_M 0Fh SLAVE_ADDRESS[7:1] I2CMODE

EIES6 10h - IESP6[6:0]

PD6 11h - PD6[6:0]

CRC8OUT 15h - CRC8OUT[7:0]

ADCG1 17h ADC VOLTAGE SCALE TRIM FOR GAIN1[13:0] - -

ADCG2 18h ADC VOLTAGE SCALE TRIM FOR GAIN2[13:0] - -

ADVOFF 19h ADC VOLTAGE OFFSET [15:0]

ADCG3 1Bh ADC VOLTAGE SCALE TRIM FOR GAIN3[13:0] - -

ADCG4 1Ch ADC VOLTAGE SCALE TRIM FOR GAIN4[13:0] - -

CHIPREV 1Dh CHIPREV[15:0]

I2CSLA2_M 1Eh SLAVE_ADDRESS[7:1] I2CMODE

DS4830A User’s Guide

 36

4.3 – Module 2 Peripheral Registers
MODULE 2

Register index 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I2CBUF_S 00h D[15:0]

I2CST_S 01h I2CBUS I2CBUSY - - - I2CSCL I2CROI I2CGCI I2CNACKI - I2CAMI I2CTOI I2CSTRI I2CRXI I2CTXI I2CSRI

MPNTR 02h - - - - - PAGE[2:0] MEM_PNTR[7:0]

I2CTXFST 03h - - - - - - THSH -

I2CTXFIE 04h TXPG_EN - - - - - THSH -

I2CRXFST 05h - - - - FULL - THSH EMPTY

I2CRXFIE 06h RXFIFO_EN - - - FULL - THSH EMPTY

I2CST2_S 07h - - I2CSPI SADI MADI - I2CXFRON -

RPNTR 08h - - - - - PAGE[2:0] MEM_PNTR[7:0]

I2CCN_S 09h - - ADDR4EN ADDR3EN ADDR2EN SMB_MOD I2CSTREN I2CGCEN I2CSTOP I2CSTART I2CACK I2CSTRS - I2CMODE - I2CEN

I2CSLA_S 0Ch SLAVE_ADDRESS[7:1] I2CMODE

I2CSLA2_S 0Dh SLAVE_ADDRESS[7:1] I2CMODE

I2CSLA3_S 0Eh SLAVE_ADDRESS[7:1] I2CMODE

I2CSLA4_S 0Fh SLAVE_ADDRESS[7:1] I2CMODE

I2CIE2_S 10h - - I2CSPIE SADIE MADIE - - -

MADDR 11h - - - ROLLOVR - PAGE[2:0] MEM_ADDR[7:0]

MADDR2 12h - - - ROLLOVR - PAGE[2:0] MEM_ADDR[7:0]

MADDR3 13h - - - ROLLOVR - PAGE[2:0] MEM_ADDR[7:0]

MADDR4 14h - - - ROLLOVR - PAGE[2:0] MEM_ADDR[7:0]

CURR_SLA 15h MADR_EN4 MADR_EN3 MADR_EN2 MADR_EN1 SLA4 SLA3 SLA2 SLA1

I2CIE_S 16h - - - - - - I2CROIE I2CGCIE I2CNACKIE - I2CAMIE I2CTOIE I2CSTRIE I2CRXIE I2CTXIE I2CSRIE

ICDT0 18h ICDT0[15:0]

ICDT1 19h ICDT1[15:0]

ICDC 1Ah DME - REGE - CMD[3:0]

ICDF 1Bh - - - - PSS1 PSS0 JTAG_SPE TXC

ICDB 1Ch ICDB[7:0]

ICDA 1Dh ICDA[15:0]

ICDD 1Eh ICDD[15:0]

DS4830A User’s Guide

 37

4.4 – Module 3 Peripheral Registers
MODULE 3

Register index 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MCNT 00h OF MCW CLD SQU OPCS MSUB MMAC SUS

MA 01h MA[15:0]

MB 02h MB[15:0]

MC2 03h MC2[15:0]

MC1 04h MC1[15:0]

MC0 05h MC0[15:0]

GTCN2 06h - - - GTR MODE CLK_SEL[1:0] GTIE - - - GTIF - GTPS[2:0]

SHFT 07h SHC - - - - - SR SL

MC1R 08h MC1R[15:0]

MC0R 09h MC0R[15:0]

GTC2 0Ah GTC2[15:0]

GTV2 0Bh GTV2[15:0]

GP_REG1 0Ch GP_REG1[15:0]

GP_REG2 0Dh GP_REG2[15:0]

MACSEL 0Eh - - - - - - - MACRSEL

USER_INT 0Fh SW_F3 SW_F2 SW_F1 SW_F0 SW_INT3 SW_INT2 SW_INT1 SW_INT0

GP_REG3 10h GP_REG3[15:0]

GP_REG4 11h GP_REG4[15:0]

GP_REG5 12h GP_REG5[15:0]

GP_REG6 13h GP_REG6[15:0]

GP_REG7 14h GP_REG7[15:0]

GP_REG8 15h GP_REG8[15:0]

GP_REG9 16h GP_REG9[15:0]

GP_REG10 17h GP_REG10[15:0]

GP_REG11 18h GP_REG11[15:0]

GP_REG12 19h GP_REG12[15:0]

GP_REG13 1Ah GP_REG13[15:0]

GP_REG14 1Bh GP_REG14[15:0]

GP_REG15 1Ch GP_REG15[15:0]

GP_REG16 1Dh GP_REG16[15:0]

DS4830A User’s Guide

 38

4.5 – Module 4 Peripheral Registers
MODULE 4

Register index 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADCN 00h ADCCLK[2:0] NUM_SMP[4:0] ADDAINV ADCONT ADDAIE LOC_OVR ADACQ[3:0]

SENR 01h - - INT_TRIG_EN1 INT_TRIG1 - - INT_TRIG_EN0 INT_TRIG0

ADST 02h - - - - ENABLE_2X - - - ADCAVG ADCONV ADCFG ADIDX[4:0]

ADST1 03h - - SH1DAI SH0DAI INTDAI ADDAI

ADDATA 04h ADDATA[15:0], SEE ADC SECTION FOR DETAILS

SPIB_S 05h SPIB[15:0]

DADDR 06h ADDR[6:0] RWN DATA[7:0]

MIIR4 07h - - - - - SPI_S TWI ADC

TEMPCN 08h - - - - - INT_IEN - - - - - INT_ALIGN - - - INT_TEMP

SHCN 09h SSC[3:0] FAST_MODE PIN_DIS1 PIN_DIS0 SH_DUAL - SH1_ALGN SHDAI1_EN SMP_HLD1 CLK_SEL SH0_ALGN SHDAI0_EN SMP_HLD0

PINSEL 0Bh PINSEL[15:0]

REFAVG 0Ch - - - - - - REFOUT INTAVG - - INTAVG[1:0] SH1AVG[1:0] SH0AVG[1:0]

TWR 0Eh TWEN TWCP[2:0] TWIE TWCSDIS TWI BUSY

RPCFG 0Fh - - - - - - REFB_CFG REFA_CFG

SPICN_S 10h STBY SPIC ROVR WCOL MODF MODFE MSTM SPIEN

SPICF_S 11h ESPII SAS - - - CHR CKPHA CKPOL

SPICK_S 12h SPICK[7:0]

I2C_SPB 13h - - - - - - - I2C_SPE

DEV_NUM 14h BOOT_DIS DEVNUM[6:0]

DACD0 15h - - - - DACD0[11:0]

DACD1 16h - - - - DACD1[11:0]

DACD2 17h - - - - DACD2[11:0]

DACD3 18h - - - - DACD3[11:0]

DACD4 19h - - - - DACD4[11:0]

DACD5 1Ah - - - - DACD5[11:0]

DACD6 1Bh - - - - DACD6[11:0]

DACD7 1Ch - - - - DACD7[11:0]

DACCFG 1Dh DACCFG7[1:0] DACCFG6[1:0] DACCFG5[1:0] DACCFG4[1:0] DACCFG3[1:0] DACCFG2[1:0] DACCFG1[1:0] DACCFG0[1:0]

ADADDR 1Eh - - - ADSTART[4:0] - - - ADEND[4:0]

DS4830A User’s Guide

 39

4.6 – Module 5 Peripheral Registers
MODULE 5

Register index 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
QTDATA 00h QTDATA[15:0] SEE QUICK TRIP FOR DETAILS

QTCN 01h - - - QTEN - - - - RW_LST - - LTHT QTIDX[3:0]

LTIL 02h LTIE[7:0] LTIF[7:0]

HTIL 03h HTIE[7:0] HTIF[7:0]

SPIB_M 04h SPIB[15:0]

PWMDATA 05h PWMDATA[15:0] SEE PWM SECTION FOR DETAILS

PWMCN 06h - - - M_EN - - - UPDATE PWM_SEL[3:0] - - REG_SEL[1:0]

PWMSYNC 07h - - - - - - PWMSYNC[9:0]

LTIH 08h LTIE[15:8] LTIF[15:8]

HTIH 09h HTIE[15:8] HTIF[15:8]

QTLIST 0Ah - - - - - - - - QTSTART[3:0] QTSTOP[3:0]

MIIR5 0Eh - - - - - I2C_M QT SPI_M

SPICN_M 12h STBY SPIC ROVR WCOL MODF MODFE MSTM SPIEN

SPICF_M 13h ESPII SAS - - - CHR CKPHA CKPOL

SPICK_M 14h SPICK[7:0]

DS4830A User’s Guide

 40

SECTION 5 – INTERRUPTS
The DS4830A provides a single, programmable interrupt vector (IV) that can be used to handle internal and external
interrupts. Interrupts can be generated from system level sources (e.g., watchdog timer) or by sources associated
with the peripheral modules. Only one interrupt can be handled at a time, and all interrupts naturally have the same
priority. A programmable interrupt mask register allows software-controlled prioritization and nesting of high-priority
interrupts. igure 5-1 shows a diagram of the interrupt hierarchy.

System Module
WATCHDOG INTERRUPT

 WDCN.WDIF

 WDCN.EWDI
(local enable)

IMR.IMS
Module Enable

Module 0
GPIO INTERRUPTS

External Interrupt Pn.: EIFn.IFPn_m
Local Enable EIEn.IEPn_m

n can be 0,1 or 2 and m can be 0 to 7

TIMER1 INTERRUPT
Timer1 Flag GTIF

Timer Local Enable GTIE

IMR.IM0
Module0 Enable

IIR.IIS

IIR.II0

Module 3

IMR.IM3
Module3 Enable

IIR.II3

TIMER2 INTERRUPT

Timer Local Enable GTIE

External Interrupt P2.0: EIF2.IFP2_0
Local Enable EIE2.IEP2_0

Timer2 Flag GTIF

Note: Only a few of the DS4830A modules and interrupt sources are shown in this interrupt hierarchy
figure. Please refer to the corresponding sections of this user’s guide for more detailed information
about all of the possible interrupts.

Module 1

External Interrupt P6.m: EIF6.IFP6_m

Local Enable EIE6.IEP6_m
m can be 0 to 6

PORT6 GPIO INTERRUPTS

Master I2C START Interrupt
I2CST_M.I2CSRI

Local Enable I2CIE_M.I2CSRIE

Any I2C Interrupt I2CST_M.x

Local Enable I2CIE_M.x

SVM Interrupt SVM.SVMI

Local Enable SVM.SVMIE

MASTER I2C INTERRUPTS

SVM INTERRUPT

Module1 Enable

IIR.III1

JUMP TO
INTERRUPT

VECTOR

IC.INS
Interrupt is NOT

in Service

IC.IGE
Global Enable

IMR.IM1

SW Interrupt flag

Figure 5-1: Interrupt Hierarchy

DS4830A User’s Guide

 41

Note: Some of the DS4830A module and peripheral interrupts sources are shown in the Figure 5-1 interrupt
hierarchy diagram. See the corresponding sections of this user’s guide for more detailed information about all of the
possible interrupts.

5.1 – Servicing Interrupts
For the DS4830A to service an interrupt, interrupts must be enabled locally, modularly, and globally. The Interrupt
Global Enable (IGE) bit is located in the Interrupt Control (IC) register acts as a global interrupt mask. This bit
defaults to 0, and it must be set to 1 before any interrupt takes place.

The local interrupt-enable bit for a particular source is in one of the peripheral registers associated with that
peripheral module, or in a system register for any system interrupt source. Between the global and local enables are
intermediate per-module and system interrupt mask bits. These mask bits reside in the Interrupt Mask system
register. By implementing intermediate per-module masking capability in a single register, interrupt sources spanning
multiple modules can be selectively enabled/disabled in a single instruction. This promotes a simple, fast, and user-
definable interrupt prioritization scheme. The interrupt source-enable hierarchy is illustrated in Figure 5-1 as well as
Table 5-1.

Table 5-1: Interrupt Sources and Control Bits

INTERRUPT INTERRUPT FLAG LOCAL ENABLE BIT
MODULE

INTERRUPT
IDENTIFICATI

ON BIT

INTERRUPT
IDENTIFICATION

BIT

MODULE
ENABLE

BIT

External Interrupt Pp.n
(here p = 0,1,2 and n = 0 to 7) EIFp.IEn EIEp.EXn - IIR.II0 IMR.IM0
Timer1 Interrupt GTCN1.GTIF GTCN1.GTIE -
External Interrupt Pp.n
(here p = 6 and n = 0 to 6) EIFp.IEn EIEp.EXn MIIR1.Pp_n

IIR.II1 IMR.IM1

Supply Voltage Monitor Interrupt SVM.SVMI SVM.SVMIE MIIR1.SVM
I2C Master Start Interrupt I2CST_M.I2CSRI I2CIE_M.I2CSRIE

MIIR1.I2CM

I2C Master Transmit Complete
Interrupt I2CST_M.I2CTXI I2CIE_M.I2CTXIE

I2C Master Receive Ready Interrupt I2CST_M. I2CRXI I2CIE_M.I2CRXIE
I2C Master Clock Stretch Interrupt I2CST_M.I2CSTRI I2CIE_M.I2CSTRIE
I2C Master Timeout Interrupt I2CST_M.I2CTOI I2CIE_M.I2CTOIE
I2C Master NACK Interrupt I2CST_M.I2CNACKI I2CIE_M.I2CNACKIE
I2C Master Receiver Overrun Interrupt I2CST_M.I2CROI I2CIE_M.I2CROIE
I2C Master Stop Interrupt I2CST_M.I2CSPI I2CIE_M.I2CSPIE
I2C Slave Start Interrupt I2CST_S.I2CSRI I2CIE_S.I2CSRIE

- IIR.II2 IMR.IM2

I2C Slave Transmit Complete Interrupt I2CST_S.I2CTXI I2CIE_S.I2CTXIE
I2C Slave Receive Ready Interrupt I2CST_S. I2CRXI I2CIE_S.I2CRXIE
I2C Slave Clock Stretch Interrupt I2CST_S.I2CSTRI I2CIE_S.I2CSTRIE
I2C Slave Timeout Interrupt I2CST_S.I2CTOI I2CIE_S.I2CTOIE
I2C Slave Address Match Interrupt I2CST_S.I2CAMI I2CIE_S.I2CAMIE
I2C Slave NACK Interrupt I2CST_S.I2CNACKI I2CIE_S.I2CNACKIE
I2C Slave General Call Interrupt I2ST_S.I2CGCI I2CIE_S.I2CGCIE
I2C Slave Receiver Overrun Interrupt I2CST_S.I2CROI I2CIE_S.I2CROIE
I2C Slave Stop Interrupt I2CST2_S.I2CSPI I2CIE2_S.I2CSPIE
I2C Slave Start Address Interrupt I2CST2_S.SADI I2CIE2_S. SADIE
I2C Slave Memory Address Interrupt I2CST2_S.MADI I2CIE2_S. MADIE
I2C Slave Page Threshold Interrupt I2CTXFST.THSH I2CTXFIE.THSH
I2C Slave FIFO Threshold Interrupt I2CRXFST.THSH I2CRXFIE.THSH
Timer2 Interrupt GTCN1.GTIF GTCN1.GTIE -

IIR.II3 IMR.IM3 Software Interrupts SW.Fn
(n = 0,1,2,3) - -

ADC Data Available Interrupt ADST1.ADDAI ADCN.ADDAIE

MIIR4.ADC

 IIR.II4 IMR.IM4

Internal Temperature Interrupt ADST1.INTDAI TEMPCN.INT_IEN
Sample and Hold 0 Interrupt ADST1.SH0DAI SHCN.SHDAI0_EN

Sample and Hold 1 Interrupt ADST1.SH1DAI SHCN.SHDAI1_EN

3- Wire Interrupt TWR.TWI TWR.TWIE MIIR4.TW
SPI Slave Transfer Complete SPICN_S.SPIC

SPICF_S.ESPII

MIIR4.SPI_S SPI Slave Write Collision SPICN_S.WCOL
SPI Slave Receive Overrun SPICN_S.ROVR

DS4830A User’s Guide

 42

INTERRUPT INTERRUPT FLAG LOCAL ENABLE BIT
MODULE

INTERRUPT
IDENTIFICATI

ON BIT

INTERRUPT
IDENTIFICATION

BIT

MODULE
ENABLE

BIT

LT 0 Interrupt LTIL.IF0 LTIL.IE0

MIIR5.QT

IIR.II5 IMR.IM5

LT 1 Interrupt LTIL.IF1 LTIL.IE1
LT 2 Interrupt LTIL.IF2 LTIL.IE2
LT 3 Interrupt LTIL.IF3 LTIL.IE3
LT 4 Interrupt LTIL.IF4 LTIL.IE4
LT 5 Interrupt LTIL.IF5 LTIL.IE5
LT 6 Interrupt LTIL.IF6 LTIL.IE6
LT 7 Interrupt LTIL.IF7 LTIL.IE7
LT 8 Interrupt LTIH.IF8 LTIH.IE8
LT 9 Interrupt LTIH.IF9 LTIH.IE9
LT 10 Interrupt LTIH.IF10 LTIH.IE10
LT 11 Interrupt LTIH.IF11 LTIH.IE11
LT 12 Interrupt LTIH.IF12 LTIH.IE12
LT 13 Interrupt LTIH.IF13 LTIH.IE13
LT 14 Interrupt LTIH.IF14 LTIH.IE14
LT 15 Interrupt LTIH.IF15 LTIH.IE15
HT 0 Interrupt HTIL.IF0 HTIL.IE0
HT 1 Interrupt HTIL.IF1 HTIL.IE1
HT 2 Interrupt HTIL.IF2 HTIL.IE2
HT 3 Interrupt HTIL.IF3 HTIL.IE3
HT 4 Interrupt HTIL.IF4 HTIL.IE4
HT 5 Interrupt HTIL.IF5 HTIL.IE5
HT 6 Interrupt HTIL.IF6 HTIL.IE6
HT 7 Interrupt HTIL.IF7 HTIL.IE7
HT 8 Interrupt HTIH.IF8 HTIH.IE8
HT 9 Interrupt HTIH.IF9 HTIH.IE9
HT 10 Interrupt HTIH.IF10 HTIH.IE10
HT 11 Interrupt HTIH.IF11 HTIH.IE11
HT 12 Interrupt HTIH.IF12 HTIH.IE12
HT 13 Interrupt HTIH.IF13 HTIH.IE13
HT 14 Interrupt HTIH.IF14 HTIH.IE14
HT 15 Interrupt HTIH.IF15 HTIH.IE15
SPI Master Transfer Complete SPICN_M.SPIC

SPICF_M.ESPII MIIR5.SPI_M SPI Master Write Collision SPICN_M.WCOL
SPI Master Receive Overrun SPICN_M.ROVR
SPI Master Mode Fault SPICN_M.MODF SPICN_M.MODFE
Watchdog Interrupt WDCN.WDIF WDCN.EWDI N/A IIR.IIS IMR.IMS

When an interrupt condition occurs, its individual flag is set, even if the interrupt source is disabled at the local,
module, or global level. Interrupt flags must be cleared within the user interrupt routine to avoid repeated interrupts
from the same source. Since all interrupts vector to the address contained in the Interrupt Vector (IV) register, the
Interrupt Identification Register (IIR) may be used by the interrupt service routine to determine the module source of
an interrupt. The IIR contains a bit flag for each peripheral module and one flag associated with all system interrupts;
if the bit for a module is set, then an interrupt is pending that was initiated by that module.

In the DS4830A MIIR registers are defined for module 1, 4, and 5. In these modules the DS4830A provides two ways
to determine which block inside a module (for module 1, 4, and 5 only) caused an interrupt to occur. Module 1, 4
and 5 has Module Interrupt Identification Registers MIIR1, MIIR4 and MIIR5 respectively that indicate which of the
module’s interrupt sources has a pending interrupt. The peripheral register bits inside the module also provide a way
to differentiate among interrupt sources. Section 5.2 has more detail on the Module Interrupt Identification Registers.

The Interrupt Vector (IV) register provides the location of the interrupt service routine. It may be set to any location
within program memory. The IV register defaults to 0000h on reset or power-up, so if it is not changed to a different
address, the user program must determine whether a jump to 0000h came from a reset or interrupt source.

5.2 – Module Interrupt Identification Registers
The MIIR registers are implemented to indicate which particular function within a peripheral module has caused the
interrupt. The DS4830A has 6 peripheral modules, M0 through M5. MIIR registers are implemented in peripheral
module 1, 4 and 5. The MIIR registers are 16-bit read-only registers and all of them default to 0000h on system
reset.

Each defined bit in an MIIR register is the final interrupt from a specific function, i.e., the interrupt enable bit(s)
ANDed with the interrupt flag(s). A function can have multiple flags, but they all are ANDed with corresponding

DS4830A User’s Guide

 43

enable bits and combined to create a single interrupt identification bit for that specific function. For example, the I2C
master has several interrupt sources; however, they all are combined to form a single identification bit, MIIR1.I2CM.
The individual register bit functions are defined as follows.

Peripheral Module 1 Interrupt Identification Register (MIIR1)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - - - I2CM SVM P6_6 P6_5 P6_4 P6_3 P6_2 P6_1 P6_0
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r r r r r r r r r r r r

BIT NAME DESCRIPTION
15:9 Reserved Reserved. A read returns 0.
8 I2CM This bit is set when there is an interrupt from the I2C master block. The I2C interrupt is a

combination of all interrupts defined in the I2CST_M register for the I2C master block. The
Master I2C section has more detail on the individual interrupts.

7 SVM This bit is set when there is an interrupt from Supply Voltage Monitor (SVM).
6 P6_6 This bit is set when there is an External GPIO Interrupt at P6.6.
5 P6_5 This bit is set when there is an External Interrupt at P6_5.
4 P6_4 This bit is set when there is an External Interrupt at P6.4.
3 P6_3 This bit is set when there is an External Interrupt at P6.3.
2 P6_2 This bit is set when there is an External Interrupt at P6.2.
1 P6_1 This bit is set when there is an External Interrupt at P6.1.
0 P6_0 This bit is set when there is an External Interrupt at P6.0.

Peripheral Module 4 Interrupt Identification Register (MIIR4)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - - - - - - - - - I2CS TW ADC
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r r r r r r r r r r r r r

BIT NAME DESCRIPTION
15:3 Reserved Reserved. A read returns 0.
2 SPI_S This bit is set when there is an interrupt at SPI Slave.
1 TW This bit is set when there is an interrupt from the 3Wire Block.
0 ADC This bit is set when there is an Interrupt from the ADC.

Peripheral Module 5 Interrupt Identification Register (MIIR5)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - - - - - - - - - - QT SPI_M
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r r r r r r r r r r r r r

BIT NAME DESCRIPTION
15:2 Reserved Reserved. A read returns 0.
1 QT This bit is set when there is an interrupt from the fast comparator
0 SPI_M This bit is set when there is an interrupt at SPI Slave.

5.3 – Interrupt System Operation
The interrupt handler hardware responds to any interrupt event when it is enabled. An interrupt event occurs when
an interrupt flag is set. All interrupt requests are sampled at the rising edge of the clock and can be serviced by the
processor one clock cycle later, assuming the request does not hit the interrupt exception window. The one-cycle
stall between detection and acknowledgement/servicing is due to the fact that the current instruction may also be
accessing the stack. For this reason, the CPU must allow the current instruction to complete before pushing the
stack and vectoring to IV. If an interrupt exception window is generated by the currently executing instruction, the
following instruction must be executed, so the interrupt service routine will be delayed an additional cycle.

Interrupt operation in the DS4830A CPU is essentially a state machine generated long CALL instruction. When the
interrupt handler services an interrupt, it temporarily takes control of the CPU to perform the following sequence of
actions:

DS4830A User’s Guide

 44

1. The next instruction fetch from program memory is cancelled.
2. The return address is pushed on to the stack.
3. The INS bit is set to 1 to prevent recursive interrupt calls.
4. The instruction pointer is set to the location of the interrupt service routine (contained in the Interrupt Vector

register).
5. The CPU begins executing the interrupt service routine.

Once the interrupt service routine completes, it should use the RETI instruction to return to the main program.
Execution of RETI involves the following sequence of actions:

1. The return address is popped off the stack.
2. The INS bit is cleared to 0 to re-enable interrupt handling.
3. The instruction pointer is set to the return address that was popped off the stack.
4. The CPU continues execution of the main program.

Pending interrupt requests will not interrupt an RETI instruction; a new interrupt will be serviced after first being
acknowledged in the execution cycle which follows the RETI instruction and then after the standard one stall cycle of
interrupt latency. This means there will be at least two cycles between back-to-back interrupts.

5.3.1 – Synchronous vs. Asynchronous Interrupt Sources
Interrupt sources can be classified as either asynchronous or synchronous. All internal interrupts are synchronous
interrupts. An internal interrupt is directly routed to the interrupt handler that can be recognized in one cycle. All
external interrupts are asynchronous interrupts by nature. When the device is not in stop mode, asynchronous
interrupt sources are passed through a 3-clock sampling/glitch filter circuit before being routed to the interrupt
handler. The sampling/glitch filter circuit is running on the system clock. An interrupt request with a pulse width less
than three system clock cycles is not recognized. Note that the granularity of interrupt source is at module level.
Synchronous interrupts and sampled asynchronous interrupts assigned to the same module produce a single
interrupt to the interrupt handler.

5.3.2 – Interrupt Prioritization by Software
All interrupt sources of the DS4830A naturally have the same priority. However, when CPU operation vectors to the
programmed Interrupt Vector address, the order in which potential interrupt sources are interrogated is left entirely
up to the user, as this often depends upon the system design and application requirements. The Interrupt Mask
system register provides the ability to knowingly block interrupts from modules considered to be of lesser priority and
manually re-enable the interrupt servicing by the CPU (by setting INS = 0). Using this procedure, a given interrupt
service routine can continue executing, only to be interrupted by higher priority interrupts. An example demonstrating
this software prioritization is provided in the Handling Interrupts section of Section 19: Programming.

5.3.3 – Interrupt Exception Window
An interrupt exception window is a noninterruptible execution cycle. During this cycle, the interrupt handler does not
respond to any interrupt requests. All interrupts that would normally be serviced during an interrupt exception window
are delayed until the next execution cycle.

Interrupt exception windows are used when two or more instructions must be executed consecutively without any
delays in between. Currently, there is a single condition in the DS4830A that causes an interrupt exception window:
activation of the prefix (PFX) register.

When the prefix register is activated by writing a value to it, it retains that value only for the next clock cycle. For the
prefix value to be used properly by the next instruction, the instruction that sets the prefix value and the instruction
that uses it must always be executed back to back. Therefore, writing to the PFX register causes an interrupt
exception window on the next cycle. If an interrupt occurs during an interrupt exception window, an additional latency
of one cycle in the interrupt handling will be caused as the interrupt will not be serviced until the next cycle.

DS4830A User’s Guide

 45

SECTION 6 – DIGITAL-TO-ANALOG CONVERTER (DAC)
The DS4830A contains eight 12-bit digital-to-analog converters (DACs). Each DAC has a voltage output buffer.
Each DAC can independently select between a 2.5V internal reference and external reference at REFINA pin for
DAC0 to DAC3 and at REFINB pin for DAC4 to DAC7.

12-Bit
Decoder Data Bus

To DAC Switches
R

R

R

R

R

DAC Output

Internal
Reference

External
Reference

Ref Selection

4095

1

0

4094

4093

MUX

10b

01b

Output
Buffer

Figure 6-1: DAC Functional Diagram

6.1 – Detailed Description
The DS4830A DAC architecture consists of a resistor string with switches and decoder followed by a voltage buffer.
The DS4830A has eight independent DACs, each having the same architecture. As shown in Figure 6-1, each
DAC’s reference is software selectable. Each DAC is independently configurable using the DAC configuration and
DAC data registers. The DAC configuration register (DACCFG) provides the facility to enable or disable DACs
independently and select the reference. Each DAC can be configured for either an internal (2.5V) or an external
reference.

The DAC Data register programs the DAC for a particular voltage output depending on the value of this register and
the reference setting. The DAC outputs are voltage buffered and have the capability to sink or source current. Each
DAC output has output impedance which limits the DAC operating range if configured to sink current (refer to the

DS4830A User’s Guide

 46

DS4830A IC data sheet). The DAC output voltage is maintained during any type of reset except POR. All DACs,
REFINA and REFINB pins default to GPIO on reset.

6.1.1 – Reference Selection
Each DAC can be independently enabled with 2.5V internal reference or external reference. Each DAC has two bits
in the DAC configuration register (DACCFG) that are used to enable or disable the DAC with either an internal or an
external reference.

Any DAC can be enabled for using the internal reference by writing 10b at the corresponding location in the
DACCFG register. The internal reference automatically powers-down when none of the 8 DACs use it as a reference
source.

The external reference at REFINA (Port2.6) is selected by writing 01b at the corresponding location in the DACCFG
for DAC0-3. The REFINA automatically becomes GPIO when none of the lower 4 DACs (DAC0 to DAC3) use
REFINA as its reference. The external reference at REFINB (Port1.4) is selected by writing 01b at the corresponding
location in the DACCFG register for DAC4-7. The REFINB pin automatically becomes GPIO when none of the upper
4 DACs (DAC4 to DAC7) use REFINB as its reference. The DAC internal or external references can be measured at
the ADC. See ADC section for further detail information.

6.2 – DAC Register Descriptions
The DAC module has total 9 SFR registers. These are DAC Configuration register DACCFG and 8 DAC Data
registers DACDx (DACD0 to DACD7). The DACCFG configures all DACs and the data register DACDx (DACD0-
DACD7) controls the corresponding DAC output voltage. These SFRs are located in module 4.

6.2.1 – DAC Configuration Register (DACCFG)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name DACCFG7[1:0] DACCFG6[1:0] DACCFG5[1:0] DACCFG4[1:0] DACCFG3[1:0] DACCFG2[1:0] DACCFG1[1:0] DACCFG0[1:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:8 DACCFG7[1:0]

DACCFG6[1:0]
DACCFG5[1:0]
DACCFG4[1:0]

DAC Configuration: These bits configure DAC7-4 and select the DAC reference for
DAC7-4 when the corresponding DAC is enabled.

DACCFGx[1:0] DACx Control/Reference Select
00 DACx is Disabled and is in power down mode.

01 DACx is enabled and REFINB is selected as the external reference.
To use the external reference, the REFB_CFG bit in the RPCFG
register must be set to ‘1’.

10 DACx is enabled and the 2.5V Internal Reference is selected as the
DAC reference

11 Reserved. (User should not write this value+)
PIN 39 is REFINB (Port1.4).

7:0 DACCFG3[1:0]
DACCFG2[1:0]
DACCFG1[1:0]
DACCFG0[1:0]

DAC Configuration: These bits configure DAC3-0 and select the DAC reference for
DAC3-0 when DAC enabled.

DACCFGx[1:0] DACx Control/Reference Select
00 DACx is Disabled and is in power down mode.

01 DACx is enabled and REFINA is selected as the external reference.
To external reference, the REFA_CFG bit in the RPCFG register
must be set to ‘1’.

10 DACx is enabled and the 2.5V Internal Reference is selected as the
DAC reference

11 Reserved. (User should not write this value+)
PIN 31 is REFINA (Port2.6).

DS4830A User’s Guide

 47

6.2.2 – DAC Data Registers (DACD0-DACD7)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - DACDx[11:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r rw rw rw rw rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:12 - Reserved. The user should write zero to these bits.
11:0 DACDx*[11:0] DACDx: These bits set the DACx output voltage according to reference selection

and reference value.
DACx Output voltage (in Volts) = (DAC Count / 4095) * Reference Voltage (in Volts)

* ‘x’ = 0 to 7

6.2.3 – Reference Pin Configuration Register (RPCFG)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - - - - - - - - - - REFB_CFG REFA_CFG
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r r r r r r r r r r rw rw

BIT NAME DESCRIPTION
15:2 - Reserved. The user should not write to these bits.
1 REFB_CFG REFINB Pin Configuration: Setting this bit to ‘1’ configures the DAC external reference pin

for any DAC4-7 as analog input. PIN 39 is REFINB (Port1.4).
0 REFA_CFG REFINA Pin Configuration: Setting this bit to ‘1’ configures the DAC external reference pin

for any DAC0-3 as analog input. PIN 31 is REFINA (Port2.6).

6.3 – DAC Code Examples
6.3.1 – DAC0 Enabled with Internal Reference and Output Voltage Configured for 50% (1.25V) of Internal
Reference

RPCFG = 0x0000;
DACCFG = 0x0002; //Only DAC0 enabled and internal reference is selected
DACD0 = 0x0800; //DACD0 is set for 50%

6.3.2 – DAC2 Enabled with External Reference And Output Voltage Configured for 25% of External Reference
at REFINA Pin

RPCFG = 0x0001;
DACCFG = 0x0010; //Only DAC2 enabled and external reference is selected
DACD2 = 0x0400; //DACD2 is set for 25%

6.3.3 – DAC6 Enabled with External Reference and Output Voltage Configured for 25% of External Reference
at REFINB Pin

RPCFG = 0x0002;
DACCFG = 0x1000; //Only DAC6 enabled and external reference is selected
DACD6 = 0x0400; //DACD6 is set for 25%

DS4830A User’s Guide

 48

SECTION 7 – ANALOG-TO-DIGITAL CONVERTER (ADC)
The DS4830A provides a 13-bit analog-to-digital converter (ADC) with 26-input MUX. As shown in Figure 7-1, the
MUX selects the ADC input from 16 external channels, DAC external references at REFINA and REFINB, VDD, DAC
Internal Reference, Internal Die Temperature, Sample and Hold at GP2-GP3 and GP12-GP13 and ADC Internal
Offset. The ADC external channels can operate in differential voltage mode or in single-ended voltage mode. An
internal channel is used exclusively to measure the die temperature. The REFINA and REFINB pins can be used as
analog channel independent to the DAC reference.

13-BIT ADC CORE

ADC-S0
ADC-S1

ADC-S14
ADC-S15

A
N
A
L
O
G

M
U
X

VO
LT

A
G

E
O

FF
SE

T
(A

D
VO

FF
)

INTERNAL DIE TEMP

Current Source
For Temperature

Measurement

ADC SEQUENCER
A

D
S

TA
R

T

A
D

E
N

D

A
D

C
O

N
V

A
D

C
O

N
T

A
D

C
G

1

A
D

C
G

4
ADGAIN

IN
TE

R
N

A
L

R
EF

ER
EN

C
E

CONFIGURATION[0]

CONFIGURATION[19]

CONFIGURATION[1]

DATA BUFFER[0]

DATA BUFFER[24]

DATA BUFFER[1]

ADCFG=0
ADIDX[4:0]

READ
ADDATA

A
D

C
G

3
A

D
C

G
2

REFINA
REFINB

DAC INT REF
VDD

Reserved
Reserved

SH0
SH1

Internal Offset

N
U

M
_S

M
P

CONFIGURATION[23]

DIGITAL
READOUT

ADCFG=1
ADIDX[4:0]

ADCAVG=1
ADIDX[4:0]

W
R

IT
E

TO
 A

D
D

A
TA

ADC SEQ

ADC AVG

R
E

FA
V

G

Figure 7-1: ADC Functional Diagram

7.1 – Detailed Description
7.1.1 – ADC Controller
The ADC controller is the digital interface block between CPU and the ADC. It provides all necessary controls to the
ADC and the CPU interface. The ADC controller provides 25 buffers (0-24) for various configurations and data
buffers. By default, the ADC conversion result corresponding to each channel is placed in data buffers at the location
shown in Table 7-1. The user can override the default buffer locations and define alternate locations in the ADC Data
and Configuration register (ADDATA) during configuration by settling the LOC_OVR bit to ‘1’ in the ADC Control
register (ADCN). The internal temperature sensor and Sample and Hold (S/H) use fixed data buffer locations and
these locations should not be used for other channels if these peripherals are enabled. The ADC internal offset does
not have any data buffer and its measurement is performed with location override enable. Table 7-1 has the default
configuration and data buffer locations. The ADC controller provides various internal averaging options for individual
ADC channels, internal die temperature and S/H. See Section 7.1.9 for ADC Averaging.

DS4830A User’s Guide

 49

Table 7-1: ADC Configuration and Data Buffers
DATA BUFFER CONFIGURATION/DATA BUFFER SELECTION

0-15 External Channels (0-15 in single-ended or 0-7 in differential)
16 REFINA
17 REFINB
18 VDD (Supply Voltage)
19 DAC Internal Reference

20-21 Reserved, can be used with Location Override
22 Internal Die Temperature
23 Sample and Hold 0
24 Sample and Hold 1

0-24 (Any) ADC Internal Offset (with Location Override)

By default, the external channels GP0-15 are general-purpose inputs. The DS4830A has the Pin Select Register
(PINSEL) which is used to configure these external channels as analog pins for ADC or/and Quick Trip use. Each bit
location in this register corresponds to the ADC/QT input pin. The ADC controller uses a set of Special Function
Registers (SFRs) to configure the ADC for the desired mode of operation. The DS4830A ADC can operate in the
three modes mentioned below.

1. ADC Sequence Mode Conversions
2. Temperature Mode Conversions
3. Sample and Hold Mode Conversions

7.1.2 – ADC Conversion Sequencing
The DS4830A ADC controller performs a user defined sequence for up to 16 single-ended or 8 differential external
voltage channels. Additionally, the ADC controller allows the user to measure voltages of the DAC internal and
external references (REFINA and REFINB) and VDD . The REFINA and REFINB can be used as analog channels
independent of DAC operation. Thus the DS4830A provides 18 analog channels for application usage. The ADC
controller provides 24 ADC internal configuration and averaging configuration registers. The configuration registers
are accessed by writing to the ADDATA register when ADST.ADCFG = 1 and ADST.ADCAVG = 0. The averaging
configuration registers are accessed by writing to the ADDATA register when ADST.ADCAVG = 1 and
ADST.ADCFG = 0. Each conversion in a sequence is setup using one of the ADC configuration and averaging
configuration registers. The results from the ADC converter are located in the 25 data buffers. These are accessed
by reading from the ADDATA register when ADST.ADCFG = 0 and ADST.ADCAVG = 0. See Figure 7-2 for ADC
configurations and data buffers.

The configuration register pointed to by ADDATA is selected using the ADIDX bits in the ADST register when
ADCFG = 1 and ADCAVG = 0. The individual configuration registers allows each of the conversions in a sequence
to select from the following options.

• ADC channel selection
• Differential or single-ended conversion
• Full scale range
• Extended acquisition enable
• ADC conversion data alignment (left or right)
• Alternate location

For more information, see the configuration register description for the ADDATA register.

A sequence is setup in the ADC Address register (ADADDR) by defining the starting conversion configuration
address (ADSTART) and an ending conversion configuration address (ADEND). The configuration start address
designates the configuration register to be used for the first conversion in a sequence. The configuration end
address designates the configuration register used for the last conversion in a sequence. A single channel
conversion can be viewed as a special case for sequence conversion, where the starting and ending configuration
address is the same. The configuration registers can be viewed as a circular register array where ADSTART does
not have to be less than ADEND. For example, if ADSTART = 1 and ADEND = 5, then the sequence of conversions
would be configurations 1, 2, 3, 4, 5. If ADSTART = 5 and ADEND = 1, then the sequence of conversions would be
configurations 5, 6, 7 . . . 23 , 0, 1.
The ADC has two conversion sequence modes, single and continuous which are set by the ADCONT bit. When the
start conversion bit (ADCONV) is set to ‘1’, the ADC controller starts the ADC conversion sequence. In single
sequence mode (ADCONT=0), the ADCONV bit remains set until the ADC has finished the conversion of the last
channel in the sequence. In continuous mode (ADCONT=1), the ADCONV bit remains set until the continuous mode

DS4830A User’s Guide

 50

is stopped. Writing a ‘0’ to the ADCONV bit stops the ADC operation at the completion of the current ADC
conversion. Writing a ‘1’ to the ADCONV bit when ADCONV bit is already set to ‘1’ is ignored by the ADC controller.

ADCFG = 0
ADCAVG = 0

Data Buffer[0]

Data Buffer[23]

Data Buffer[1]

Data Buffer[24]

DATA BUFFERS

CONFIGURATION[0]

CONFIGURATION[22]

CONFIGURATION[1]

CONFIGURATION[23]

ADC CONFIGURATIONS

ADIDX[4:0]

ADCFG = 1
ADCAVG = 0 ADIDX[4:0]

CONFIGURATION[0]

CONFIGURATION[22]

CONFIGURATION[1]

CONFIGURATION[23]

ADC AVERAGE
CONFIGURATIONS

ADCAVG = 1
ADCFG = 0 ADIDX[4:0]

Figure 7-2: ADC Configurations and Data Buffers
Note: With location override enabled, a single channel can be added multiple times as demonstrated in Example
7.3.2.

7.1.3 – Internal Die Temperature Conversion
The DS4830A allows monitoring of internal die temperature. The internal temperature channel can be independently
enabled by writing a ‘1’ to the bit 0 in the Temperature Control register (TEMPCN). The internal die temperature has
a temperature conversion complete flag located in the ADST register. Data buffer 22 is reserved for the result of the
internal die temperature sensor. The TEMPCN register has separate bits for interrupt enable and data alignment.

A DS4830A temperature conversion provides 0.062 °C of resolution. The time required for a temperature conversion
is approximately 42µsec at the default ADC Clock. If temperature conversion is enabled simultaneously with voltage
conversions, the temperature conversion gets time slots at the end of ADC sequence. See Figure 7-3 ADC Frame
Sequence for more details.

Note: If only internal temperature conversions are being performed (no voltage or sample/hold conversions are
enabled), to disable the temperature conversion, a dummy ADC conversion must be performed by setting
ADCONV=1.

DS4830A User’s Guide

 51

7.1.4 – Sample and Hold Conversion
The DS4830A has two Sample and Hold (S/H) inputs at pins GP2-GP3 and GP12-GP13. These can be
independently enabled or disabled by writing to their corresponding bit locations in the Sample and Hold Control
register (SHCN). See the Sample and Hold description in Section 8. The Sample and Hold uses data buffer 23 and
24 for S/H0 and S/H1 respectively. The Sample and Hold conversion complete flags are located in the ADST
register. When enabled with voltage conversions, the sample and hold conversions get time slots in between each
voltage conversion. See Figure 7-3, ADC Frame Sequence for more details.

7.1.5 – ADC Frame Sequence
When all modes (voltage, temperature, and sample and hold) are used simultaneously, the ADC controller uses time
slicing. The ADC controller uses the ADC sequence of voltage conversions as “primary channels” and sample and
hold as secondary channels. The time slicing rules are

1. The primary channels (ADC voltage channels) have priority over the secondary channels (S/Hs).
2. S/H0 has priority over S/H1 if both S/Hs are ready for conversion. However, in next slot for S/H, the S/H1 will

get slot even if S/H0 is also ready.
3. The internal die temperature gets the conversion slots at the end of ADC sequence.

For example, if the ADC sequence mode conversion is enabled for channel 0, 4, 5, 6, both S/Hs and internal die
temperature are enabled and ready for conversion then the sequence of conversion is performed as shown in Figure
7-3.

CH0 CH4 S/H1 CH5 S/H0 CH6 Int
Temp CH0 S/H1 CH4 ……..……..

Every alternate
channel is primary

channel

Both S/H0 & S/H1
are ready. S/H0
gets priority over

S/H1

S/H1 gets
chance here
even if S/H0

is ready.

Sequence
keeps

repeating

SH0 or 1 if
triggered by
internal or
SHEN0/1l

S/H0

End of Sequence.
Internal

Temperature gets
chance here.

Figure 7-3: ADC Frame Sequence
Notes:

1. Both Sample and Hold channels can occur simultaneously as they have dedicated resources.
2. Averaging is disabled.

7.1.6 – ADC Reference
The ADC has a 1.2V internal reference that must be enabled before the start of ADC conversion sequence. The
ADC controller provides INT_REF bit in the REFAVG register to control the ADC internal reference. By setting this bit
to ‘1’, the internal reference is enabled. The ADC internal reference needs approximate 1ms of stabilization time. The
ADC conversion should be started only after this stabilization time.

The ADC controller provides an option to bring out the ADC internal reference at GP1 pin (PIN6, Port2.1). By setting
REF_OUT bit in the REFAVG register and the bit 1 of the PINSEL register, the ADC internal reference is brought out
at GP1 pin.

DS4830A User’s Guide

 52

7.1.7 – ADC Conversion Time
The ADC clock is derived from the system clock with a divide ratio defined by the ADC Clock Divider Bits ADCCLK
[2:0] in the ADC Control register (ADCN). Each sample takes 15 ADC clock cycles to complete. Two of the 15 ADC
clock cycles are used for sample acquisition, and the remaining 13 clocks are used for data conversion. The ADC
automatically reads each measurement twice and outputs the average of the two readings. This makes the resulting
time for one complete conversion to be 30 ADC clock cycles. Additionally, 4 core clocks are used in data processing
for each of the two readings.
Knowing this, it is possible to calculate the fastest ADC sample rate. The fastest ADC clock is:

ADC Clock = Core Clock / 8 = 10 MHz / 8 = 1250 kHz = 0.8 µs
One conversion requires 30 ADC Clocks + 8 Core Clocks

 Conversion Time = (30 ADC Clocks Time+ 8 Core Clocks Time)
 = 30 * 0.8 + 0.8 µs
 = 24.8 µs per ADC Conversion

Sample Rate = 40.3 ksps

The ADC has an internal power management system that automatically shuts down the ADC when conversions are
complete by clearing ADCONV to 0. After being shut down, the ADC begins conversions again when the ADCONV
bit is set to 1 again. After ADCONV is set to 1, the ADC requires 20 ADCCLK cycles to setup and power up prior to
beginning the first conversion of the sequence. So the first ADC conversion time is ~40µs at the fastest ADC Clock.
If the quick trip is also enabled and if the ADC controller and the quick trip are sampling the same channel, the ADC
sampling is delayed by two quick trip conversions (3.2µs) to prevent collision.

In applications where extending the acquisition time is desired, the user can make use of the ADC Acquisition
Extension Bits (ADACQ[3:0] in the ADCN register). When the ADC Acquisition Extension is enabled (ADACQEN=1),
the sample is acquired over a prolonged period during the sample acquisition. The extended acquisition time is
determined by ADACQ[3:0]. Table 7-2 shows the extended acquisition time in terms of core clocks at different
ADACQ[3:0] The total acquisition time, ACQ, is two ADC clocks plus the Extended Acquisition Time (ADACQ, as
listed in Table 7-2). Figure 7-4 shows the clocking required for one conversion.

Table 7-2: Extended Acquisition Time in Terms of Core Clock and Time (µs)

ADACQ[3:0] # of Core Clocks Time (µs)
0 2 0.2
1 6 0.6
2 14 1.4
3 30 3.0
4 62 6.2
5 126 12.6
6 254 25.4
7 520 52
8 1032 103.2
9 2056 205.6

10 4104 410.4
11 8190 819
12 16382 1638.2
13 32766 3276.6
14 65534 6553.4
15 131070 13107

DS4830A User’s Guide

 53

10 111 2 3 4 5 6 7 8 9 181615141312 28 2919 20 21 22 23 24 25 26 2717 30

...
1 19 20

ADACQ

SAMPLE 1 HOLD AND CONVERT SAMPLE 1 SAMPLE 2 HOLD AND CONVERT SAMPLE 2
ADC

STARTUP

ADC DATA
VALID

ADCCLK

ADCONV

ADDATA

Core Clock
delays

(ADACQ[3:0])

Figure 7-4: Extended Acquisition Time

7.1.8 – Location Override
By default, the ADC controller stores ADC conversion results in the ADC buffer location corresponding to the
channel number (as defined in Table 7.1). The ADC controller allows the user to override the default data buffer
location and store the ADC result at any of the buffer location (0-24). The location override is enabled by setting the
LOC_OVR bit to ‘1’ in the ADCN register. The user has to define the alternate location for storing the ADC
conversion result during ADC configuration (when ADST.ADCFG = 1). The alternate location is defined by
ADDATA[12:8] (ALT_LOC). Location override is demonstrated in Example 7.3.2,

Note: If the location override will be using the buffer locations designed for internal temperature or sample and hold,
these corresponding peripherals should be disabled (as mentioned in 7.1.1). Example, if the buffer location 22 is
used in the ADC sequence with the location override option, the internal die temperature should be disabled.

7.1. 9 – Averaging
The ADC controller supports various averaging options for each ADC channel, internal die temperature and S/Hs.
This averaging is performed automatically by the ADC controller which reduces application overheads. The ADC
controller has ADCAVG bit in the ADST register which is used to configure number of ADC samples to be averaged
for each channel. When the ADCFG bit is set to 0 and ADCAVG bit is set to ‘1’, writing to ADDATA [1:0] configures
the number of ADC samples to be averaged. User can write any value between 0-3 to select 1, 4, 8 or 16 ADC
samples averaged. See Section 7.1.2 for averaging configuration register and 7.3.3 for ADC averaging example
code.

The ADC controller has the REFAVG register to configure different averaging options for internal die temperature
and S/H. Each sample of the internal temperature is converted after the ADC sequence. See the REFAVG register
description for detailed information about averaging options for internal die temperature and sample and hold
channels.

When averaging configuration is enabled in the ADC sequence for ADC channels, internal die temperature and
S/Hs, the ADC frame sequence is changed and explained in Figure 7-5. The ADC and S/H samples are converted
back to back by the ADC controller and averaged values are reported in the data buffers. After every end of
sequence, the ADC controller converts a sample of internal die temperature.

DS4830A User’s Guide

 54

Figure 7-5 shows the ADC frame sequence for the following programmed sequence of ADC channels.
1. CH0: Average of 4 Samples
2. CH4: Average of 8 Samples
3. CH5: Average of 16 Samples
4. CH6: Average of 1 Sample
5. S/H0: Average of 2 Samples
6. S/H1: Average of 4 Samples
7. Internal Temperaute: Average of 16 Samples

CH0
(4)

CH4
(8)

S/H1
(4)

CH5
(16)

S/H0
(2)

CH6
(1)

Int
Temp

(1)
CH0
(4) ……..……..

Every alternate
channel is

primary channel

Both S/H0 & S/H1 are ready. S/
H0 samples will get converted
by ADC and average value is

reported.

S/H1 samples
will get

converted by
ADC.

Sequence
keeps repeating

SH0 or 1 if
triggered by
internal or
SHEN0/1l

S/H0
(2)

End of Sequence.
One Sample of

Internal Temperature
gets chance here.

CH0
samples get
converted
by ADC

t = 0 t = 144µs t = 216µs t = 504µs t = 648µs t = 1224µs t = 1338µst = 1296µs t = 1332µs t = 1512µs

Note: Conversion time is using the default clock.

Figure 7-5: ADC Frame Sequence with Averaging

7.1.10 – ADC Data Reading
The ADC has a circular data buffer that can hold the results from 25 conversions. When the location override
(LOC_OVR = 0) is disabled, the ADC controller writes the ADC conversion result at the data buffer location
corresponding to ADC channel number, see Table 7-1. When location override is enabled, the ADC controller writes
the result to the data buffer location configured in the ALT_LOC[4:0] bits in the ADDATA during ADC configuration
(ADST.ADCFG = 1). Using the location override feature, multiple conversions for a single channel can be stored to
data buffers as explained in example code 7.3.2. This buffer is accessed by reading the ADDATA register when
ADCFG is set to 0. The data buffer pointed to by ADST.ADIDX [4:0] is the buffer returned when ADDATA is read.
The ADIDX is automatically incremented following a read of ADDATA. This allows repeated reads of ADDATA to
return the results from multiple conversions. The ADC continues writing to the data buffer until the end of the buffer.
Once the end of the data buffer is reached, the ADC index rolls over and reading continues from data buffer 0.

7.1.11 – ADC Interrupts
The ADC Data Available Ready ADDAI bit in the ADST1 register is set when conversions are complete. This flag
generates an interrupt if enabled by setting the ADCN.ADDAIE interrupt enable bit. The condition that causes the
ADDAI flag to be set can be selected using the ADCN.ADDAINV bit.

Table 7-3: ADC Interrupt Intervals

ADDAINV SET ADDAI AFTER
0 End of Every Sequence (ADSTART to ADEND)

1 After End of Every Sequence (ADSTART to ADEND) and After
(NUM_SMP + 1) ADC Conversions

DS4830A User’s Guide

 55

For example, if ADSTART = 0, ADEND = 6 and NUM_SMP = 3 with ADDAINV = 1, then ADDAI is set to ‘1’ after
every (NUM_SMP + 1) ADC conversions and every End of Sequence. In the given example, ADDAI is set after
4,7,8,12,14… ADC Samples. Interrupts after 4, 8 and 12 ADC Samples are because of (NUM_SMP+1)
configurations and interrupts after 7 and 14 are because of “End of Sequence”. Figure 7-6 demonstrates above ADC
example sequence.

If ADC averaging is used, each of the converstions for an average is counted as a sample for interrupts. For
example, if four samples are being averaged for each channel and interrupts are set to trigger every four
converstions, then an interrupt will occur after each channel completes its four samples.

SAMPLE0 SAMPLE1 SAMPLE2 SAMPLE3 SAMPLE4 SAMPLE5 SAMPLE6 SAMPLE0 ……...

ADDAI Set
After

(NUM_SMP + 1)
ADC Samples

ADDAI Set
After END of
Sequence

4 ADC Samples 4 ADC Samples

ADDAI Set
After

(NUM_SMP + 1)
ADC Samples

ADC
SAMPLES

ADDAI
Flag

Figure 7-6: ADC Interrupt Intervals with NUM_SMP

The ADDAI flag is cleared by software by writing a ‘0’, or it is automatically cleared when a new conversion
sequence is started by setting the ADCONV bit to a ‘1’.

Note: The ADC controller processes ADC, internal die temperature and sample and holds conversions according to
ADC frame sequence and sets the corresponding flags in the ADST1 flag. The user should process and clear an
interrupt flag when it is set before another flag in the ADST1 is set by the ADC controller.

7.1.12 – ADC Internal Offset
The DS4830A ADC controller allows for ADC internal offset measurement. The ADC controller does not have a
dedicated buffer for the internal offset so it can only be accessed with location override enabled. For measurement of
ADC internal offset, the ADC controller connects internal ground to the ADC input and performs an ADC conversion.
Using this feature, software can calibrate the ADC internal offset.

Refer to Application Note 5321: Calibrating the ADC Internal Offset of the DS4830 Optical Microcontroller.

7.1.13 – DAC External Reference Pins (REFINA and REFINB) as ADC Channels
The DS4830A provides an option to measure the voltage applied to the DAC external reference pins REFINA and
REFINB without enabling any DACs. The ADC controller has RPCFG register to configure REFINA and REFINB as
analog pins. This allows flexibility to use the REFINA and REFINB pins as two additional analog input channels and
can also be used as DAC external reference.

7.1.14 – Fast Conversion Mode (ADST.ENABLE_2X)
The DS4830A ADC controller can be used in fast mode to reduce the sample conversion time. The Enable_2x bit in
ADST register has to be set to 1 to use the ADC in fast mode. In normal operating mode, the ADC reads two input
samples and outputs the average of the results of both the samples. In Fast conversion mode, the ADC reads only
one input sample and outputs the result as such. The ADC conversion time is reduced by half when operating in fast
mode.

http://www.maximintegrated.com/an5321

DS4830A User’s Guide

 56

7.2 – ADC Register Descriptions
The ADC is controlled by the ADC SFR registers. The PINSEL register is used to configure pins as analog pins for
ADC use. Six of the registers, ADST, ADST1, ADADDR, ADCN, RPCFG, REFAVG and ADDATA are used for
setup, control, and reading from the ADC. Registers ADCG1-4 and ADVOFF which are used to adjust the gains and
offsets applied to ADC results. To avoid undesired operations, the user should not write to bits labeled as
“Reserved”.
7.2.1 – ADC Control Register (ADCN)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name ADCCLK[2:0] NUM_SMP[4:0] ADDAINV ADCONT ADDAIE LOC_OVR ADACQ[3:0]
Reset 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw*
* Unrestricted read, but can only be written to when ADCONV = 0 except ADDAIE bit.

BIT NAME DESCRIPTION
15:13 ADCCLK[2:0] ADC Clock Divider. These bits select the ADC conversion clock in relationship to the

Core Clock.
ADCCLK[2:0] ADC Clock

000 System Clock/8

001 System Clock/10

010 System Clock/12

011 System Clock/14

100 System Clock/16

101 System Clock/18

110 System Clock/20

111 System Clock/40

12:8 NUM_SMP[4:0] Interrupt After Number of Sample. These bits define the Number of ADC samples
required for an ADC interrupt when ADDAINV = 1. If ADDAINV is set to ‘1’, then ADC
Interrupt occurs after (NUM_SMP + 1) ADC samples and End of Sequence.

7 ADDAINV ADC Data Available Interrupt Interval. This bit selects the condition for setting the
data available interrupt flag (ADDAI).
When ADDAINV = 0, ADDAI is set after End of Sequence.
When ADDAINV = 1, ADDAI is set after End of Sequence and after ADC Samples =
(NUM_SMP + 1).

6 ADCONT ADC Continuous Sequence Mode. Setting this bit to ‘1’ enables the continuous
sequence mode. Clearing this bit to ‘0’ disables the continuous sequence mode. In
single sequence mode, the ADC conversion is stopped after the end of the sequence.
The user should set this bit to ‘1’, when temperature and sample and hold are also
enabled.

5 ADDAIE ADC Data Available Interrupt Enable. Setting the ADDAIE bit to ‘1’ enables an
interrupt to be generated when the ADDAI=1. Clearing this bit to ‘0’ disables an
interrupt from generating when ADDAI=1. This bit is unconditional writable.

4 LOC_OVR Location override bit. Setting this bit to ‘1’ enables the user to select an alternate
location for storing ADC conversion results. The alternate location is defined by
ADDATA[12:8] (ALT_LOC). By default, the ADC conversion results are stored in ADC
buffer location corresponding to channel number. See Table 7-1.

3:0 ADACQ[3:0] ADC Acquisition Extension Bits [3:0]. These bits are used to extend sample
acquisition time if the corresponding ADC Acquisition Extension is enabled
(ADDATA.ADACQEN =1 when ADST.ADCFG is set to ‘1’). See ADC Conversion Time
Section for details. The ADC acquisition extension should not be used when the fast
comparator is used for the same channel.

DS4830A User’s Guide

 57

7.2.2 – ADC Status Register (ADST)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - ENALE_2X - - - ADCAVG ADCONV ADCFG ADIDX[4:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r rw r r r rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:12 - Reserved. The user should not write to these bits.
11 ENABLE_2X ADC Fast Conversion Mode. When ADST.ENABLE_2X = 1, the ADC operates in the

fast mode. If reset to 0, normal conversion mode is used.
7 ADCAVG ADC Average Configuration Register Select.

When ADCAVG = 1 and ADCFG = 0, the ADDATA register points to the ADC Channel
averaging configuration registers which allow configuration of averaging for each ADC
channel. See 7.2.6.2 for ADC sample average configurations.

6 ADCONV ADC Start Conversion. Setting this bit to ‘1’ starts the ADC conversion process. This
bit remains set until the ADC conversion process is finished. In single sequence mode,
this bit is cleared to ‘0’ when the ADC conversion sequence is finished. In continuous
sequence mode, this bit remains set until the ADC conversion is stopped. To stop ADC
conversion at any time, write ‘0’ to this bit. The ADC stops acquiring data after the
current conversion is finished or if the ADC is waiting during extended acquisition time,
the ADC stops immediately.

5 ADCFG ADC Conversion Configuration Register Select.
ADCFG = 0: The ADDATA register points to the data buffers. The ADIDX[4:0] bits
determine which data buffer is currently being accessed. When ADCFG=0 and
ADCAVG = 0, ADDATA is read only.
ADCFG = 1: The ADDATA register points to the ADC sequence configuration registers.
The ADIDX[4:0] bits determine which configuration register is currently being accessed.
When ADCFG=1, ADDATA has read/write access.

4:0 ADIDX[4:0] ADC Register Index Bits [4:0]. These bits together with ADCFG and ADCAVG select
the source / destination for ADDATA access. This register value is auto-incremented on
successive access (read/write) of ADDATA register. When ADCFG=1, ADIDX [4:0] are
used to address one of 24 configuration registers. When ADCFG=0, ADIDX [4:0] are
used to select one of 25 data buffers.
ADCFG=1, ADCAVG=0: ADIDX[4:0] used to address one of 24 configuration registers
ADCFG=0, ADCAVG=1: ADIDX[4:0] used to address one of 24 average configurations
ADCFG=0, ADCAVG=0: ADIDX[4:0] used to select one of 25 data buffers.

7.2.3 – PIN Select Register (PINSEL)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name PINSEL[15:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Each bit in this register corresponds to an ADC input pin. When these bits are set the corresponding pins are
dedicated for ADC use. On POR, the pin selection register is 0000h which corresponds to GP0 to GP15 being GPIO.
For using these pins as ADC input, Sample and Hold or Quick Trip inputs the corresponding PINSEL bit should be
set to ‘1’.

DS4830A User’s Guide

 58

7.2.4 – ADC Status Register (ADST1)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - - - - - SH1DAI SH0DAI - - INTDAI ADDAI
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r r r r r r rw rw r r rw rw

BIT NAME DESCRIPTION
15:6 - Reserved. The user should not write to these bits.
5 SH1DAI Sample and Hold 1 Data Available Interrupt Flag. This bit is set to ‘1’ when Sample

and Hold is completed on GP12-GP13 in dual mode and data is ready at buffer location
24. This flag causes an interrupt if the SH1DAI_EN (SHCN.5) is set to ‘1’. This bit is
cleared by software writing a ‘0’.

4 SH0DAI Sample and Hold 0 Data Available Interrupt Flag. This bit is set to ‘1’ when Sample
and Hold is completed on GP2-GP3 if only S/H0 is used or after completion of S/H1
conversion on GP12-GP13 when both are used in single mode. The S/H0 and S/H1 data
is ready at buffer location 23 and 24 respectively. This flag causes an interrupt if the
SH0DAI_EN (SHCN.1) is set to ‘1’. This bit is cleared by software writing a ‘0’.

3:2 - Reserved. The user should not write to these bits.
1 INTDAI Internal Temperature Data Available Interrupt Flag. This bit is set to ‘1’ when an

internal temperature conversion is complete and data is ready in buffer location 22. This
flag causes an interrupt if the INT_IEN (TEMPCN.10) is enabled. This bit is cleared by
software writing a ‘0’.

0 ADDAI ADC Data Available Interrupt Flag. This bit is set to ‘1’ when the condition matching
ADDAINV bit is met. This flag causes an interrupt if the ADDAIE bit is set. This bit is
cleared by software writing a ‘0’ or when software changes ADCONV bit from '0' to ‘1’.

7.2.5 – ADC Address Register (ADADDR)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - ADSTART[4:0] - - - ADEND[4:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r rw* rw* rw* rw* rw* r r r rw* rw* rw* rw* rw*
* Unrestricted read, but can only be written to when ADCONV = 0.

BIT NAME DESCRIPTION
15:13 - Reserved. The user should not write to these bits.
12:8 ADSTART[4:0] ADC Conversion Configuration Start Address Bits [4:0]. These bits select the first

conversion configuration register.

7:5 - Reserved. The user should not write to these bits.
4:0 ADEND[4:0] ADC Conversion Configuration Ending Address Bits [4:0]. These bits select the

last conversion configuration register. This register is inclusive when defining the
sequence.

7.2.6 – ADC Data and Configuration Register (ADDATA)
The ADDATA register is used to setup the ADC sequence configurations and also to read the results of the ADC
conversions. If the ADST.ADCFG bit is set to a 1 and ADST.ADCAVG = 0, writing to ADDATA writes to one of the
configuration registers. If ADST.ADCFG is set to 0 and ADST.ADCAVG is set to 1, writing to ADDATA writes to one
of the averaging configuration registers. If ADST.ADCFG and ADST.ADCAVG is set to 0, reading from ADDATA
reads one of the conversion results.

DS4830A User’s Guide

 59

7.2.6.1 – ADC Configuration Register (ADDATA when ADCFG = 1 and ADCAVG = 0)
When ADCFG = 1 and ADCAVG = 0, writing to the ADDATA register writes to one of the configuration registers.
The configuration register written to is selected by the ADIDX[4:0] bits. The ADIDX[4:0] bits are automatically
incremented after a write to ADDATA. This allows consecutive writes of ADDATA to setup consecutive configuration
registers. The configuration registers are reset to ‘0’ on all forms of reset.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - ADGAIN[1:0] ALT_LOC[4:0] ADACQEN ADALIGN ADDIFF ADCH[4:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw* rw*

* When ADCFG = 1, unrestricted read, but can only be written to when ADCONV = 0.

BIT NAME DESCRIPTION
15 - Reserved. The user should not write to this bit.
14:13 ADGAIN[1:0] ADC Gain Select. This bit selects the ADC scale factor.

ADGAIN[1:0] ADC SCALE Full Scale (typ)
00 ADCG1 1.2V
01 ADCG2 0.6V
10 ADCG3 2.4V
11 ADCG4 6.55*

* When the ADCG4 select, the ADC input should not be above 3.6V. It is limited by VDD
operating range.

12:8 ALT_LOC[4:0] Alternate location for conversion result. These bits specify the alternate location for
storing the ADC conversion result when LOC_OVR bit in the ADCN register is set to ‘1’.

7 ADACQEN ADC Acquisition Extension Enable. Setting this bit to ‘1’ enables additional acquisition
time to be inserted prior to this conversion. Clearing this bit to ‘0’ disables the extended
acquisition time.

6 ADALIGN ADC Data Alignment Select. This bit selects the ADC data alignment mode. Setting this
bit to ‘1’ returns ADC data left aligned in ADDATA [15:2] with ADDATA[1:0] zero padded.
Clearing this bit to ‘0’ returns ADC data in right aligned format in ADDATA[13:0] with
ADDATA[15:14] sign-extended by ADDATA[13].

5 ADDIFF ADC Differential Mode Select. This bit selects the ADC conversion mode. When this bit
is set to ‘1’, the ADC conversion is in differential mode. When this bit is cleared to ‘0’, the
ADC conversion is performed in single-ended mode. In single-ended mode, the sample is
measured between the ADC Channel and ground.

4:0 ADCH[4:0] ADC Channel Select. These bits select the input channel source for configuration of ADC
conversion.

ADCH [4:0] ADDIFF = 0 ADDIFF=1
00000 ADC-S0 ADC-D0P- ADC-D0N
00001 ADC-S1 ADC-D1P- ADC-D1N
00010 ADC-S2 ADC-D2P- ADC-D2N
00011 ADC-S3 ADC-D3P- ADC-D3N
00100 ADC-S4 ADC-D4P- ADC-D4N
00101 ADC-S5 ADC-D5P- ADC-D5N
00110 ADC-S6 ADC-D6P- ADC-D6N
00111 ADC-S7 ADC-D7P- ADC-D7N
01000 ADC-S8 NOT VALID
01001 ADC-S9 NOT VALID
01010 ADC-S10 NOT VALID
01011 ADC-S11 NOT VALID
01100 ADC-S12 NOT VALID
01101 ADC-S13 NOT VALID
01110 ADC-S14 NOT VALID
01111 ADC-S15 NOT VALID
10000 ADC-REFINA ADC-REFINA
10001 ADC-REFINB ADC-REFINB
10010 VDD VDD
10011 DAC_INT_REF DAC_INT_REF

10100- 11000 NOT VALID NOT VALID
11001 ADC OFFSET ADC OFFSET

DS4830A User’s Guide

 60

7.2.6.2 – ADC Average Register (ADDATA when ADCAVG = 1 and ADCFG = 0)
When ADCAVG = 1 and ADCFG = 0, writing to the ADDATA register writes to one of the averaging configuration
registers. The averaging configuration register written to is selected by the ADIDX[1:0] bits. The ADIDX[1:0] bits are
automatically incremented after a write to ADDATA. This allows consecutive writes of ADDATA to setup consecutive
average registers. The average registers are reset to ‘0’ on all forms of reset.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - - - - - - - - - - AVG[1:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r r r r r r r r r r rw* rw*
* When ADCAFG = 1, unrestricted read, but can only be written to when ADCONV = 0.

BIT NAME DESCRIPTION
15:2 - Reserved. The user should not write to these bits.
1:0 AVG[1:0] ADC Average Select: These bits select number of ADC samples to be averaged by the

ADC controller.
AVG[1:0] Samples Average

00 1
01 4
10 8
11 16

7.2.6.3 – ADC Data Buffer (ADDATA when ADCFG = 0 and ADCAVG = 0)
When ADCFG = 0 and ADCAVG = 0, reading from the ADDATA register reads the ADC results stored in one of the
25 data buffers. The ADIDX[4:0] bits point to the data buffer to be read. Reading ADDATA register returns the 14-bits
(13 bits plus a sign bit) of ADC conversion data from the selected data buffer memory. The ADIDX[4:0] bits are
automatically incremented after a read of ADDATA. This allows multiple reads of ADDATA to access consecutive
data buffer locations without needing to change the ADIDX[4:0] bits. The data buffers are reset to 0 on all forms of
reset and are not writable by the user.

The data that is read from the ADC Buffer may be from either a temperature or voltage conversion. Also, the data
may be right or left aligned. Table 7-4 shows the returned bit weighting for each type of conversion.

Table 7-4: Voltage Data (ADC and Sample and Hold) and Temperature Bit Weighting with Alignment Option
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Temperature Right Aligned S S S 28 27 26 25 24 23 22 21 20 2-1 2-2 2-3 2-4
Temperature Left Aligned S 28 27 26 25 24 23 22 21 20 2-1 2-2 2-3 2-4 0 0
Voltage Right Aligned S S S 212 211 210 29 28 27 26 25 24 23 22 21 20
Voltage Left Aligned S 212 211 210 29 28 27 26 25 24 23 22 21 20 0 0

The ADC controller produces temperature, sample and hold and ADC data reading in the 2’s complement format.

7.2.7 – Reference Pin Configuration Register (RPCFG)
See Section 6.2.3 – Reference Pin Configuration Register (RPCFG) for detailed information about RPCFG SFR.

DS4830A User’s Guide

 61

7.2.8 – Temperature Control Register (TEMPCN)
The Temperature Control register TEMPCN configures and enables internal die temperature. The Internal
Temperature has a dedicated data buffer at address 22. The DS4830A ADC controller forces current into the internal
diode and integrates voltage across diode. After integration the voltage is measured at ADC and the voltage is
converted into temperature.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - INT_IEN - - - - - INT_ALIGN - - - INT_TEMP
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r rw r r r r r rw r r r rw

BIT NAME DESCRIPTION
15:11 - Reserved. The user should not write to these bits.
10 INT_IEN Internal Temperature Interrupt Enable: Setting this bit to ‘1’ enables an interrupt

generation on completion of an internal temperature conversion.
9:5 - Reserved. The user should not write to these bits.
4 INT_ALIGN Internal Temperature Data Align. Setting this bit to ‘1’ configures internal temperature

conversion data in left aligned mode. Setting this bit to ‘0’ configures internal temperature
conversion data in right aligned mode.

3:1 - Reserved. The user should not write to these bits.
0 INT_TEMP Internal Temperature Enable. Setting this bit to ‘1’ initiates internal temperature

conversion. The internal temperature typical conversion time is 42µs for default ADC clock.
After internal temperature conversion, result is available in data buffer 22.

7.2.9 – Average and Reference Control Register (REFAVG)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - - REFOUT INTAVG - - INTAVG[1:0] SH1AVG[1:0] SH0AVG[1:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r r rw rw r r rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:10 - Reserved. The user should not write to these bits.
9 REFOUT Internal Reference Control: Setting this bit to ‘1’ outputs the ADC internal reference at

GP1 (Pin no 6, Port2.1).
8 INTREF Internal Reference Control: Setting this bit to ‘1’ enables the ADC internal reference and

setting this bit to ‘0’ disables the ADC internal reference.
7:6 - Reserved. The user should not write to these bits.
5:4 INTAVG Internal Die Temperature Sample Average Control Register: These bits configure the

number of Internal Die Temperature samples to be averaged.
Internal Die Temperature Number of Samples for Averaging

00b 1
01b 8
10b 16
11b 32

3:2 SH1AVG[1:0] SH1 Sample Average Control Register: These bits configure the number of SH1 samples
to be averaged.

SH1AVG Number of Samples for Averaging
00b 1
01b 2
10b 4
11b 8

1:0 SH0AVG[1:0] SH0 Sample Average Control Register: These bits configure the number of SH0 samples
to be averaged.

SH0AVG Number of Samples for Averaging
00b 1
01b 2
10b 4
11b 8

DS4830A User’s Guide

 62

7.2.10 – ADC Voltage Offset Register (ADVOFF)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name S S S 212 211 210 29 28 27 26 25 24 23 22 21 20
Reset s s s s s s s s s s s s s s s s
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
s = special, initial value is dependent on trim settings

This register contains the ADC voltage offset for the voltage mode. This is calibrated for ADCG1 at the factory to
cancel out any offset that may be present in the ADC. The user can add or subtract any offset that they desire by
altering this register. This offset is applied to the raw data from the ADC prior to the value being stored into the data
buffer. The value stored in the data buffer will be raw_adc + ADVOFF, where raw_adc is the converted voltage
without any offset compensation.

7.2.11 – ADC Voltage Scale Trim Registers (ADCG1, ADCG2, ADCG3 and ADCG4)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name ADCG[15:0]
Reset s s s s s s s s s s s s s s s s
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
s = special, initial value is dependent on trim settings

These registers are used to adjust the ADC full scale by changing the gain applied to the ADC reference (internal).
These registers are set at the factory to work with the internal reference. The internal reference voltage is set to
1.2V and cannot be changed by the user.

These gain registers are provided so the ADC full scale can be adjusted to meet the needs of the targeted
application. Only bits ADCG[15:2] are used to adjust the full scale level. Some approximate settings are:

• ADCGx = 32A8h: The full scale is ~1X the reference level
• ADCGx = 1960h: The full scale is ~2X the reference level
• ADCGx = 0B90h: The full scale is ~4X the reference level
• ADCGx = 0328h: The full scale is ~6X the reference level

It is not recommended that a gain other than 1X, 2X, 4X or 6X be used. This is because the weightings of the
ADCGx [15:0] bits are non-linear. An application specific program needs to be developed that tests the ADC full
scale for each possible code setting until the proper full scale is achieved. It is recommended that the user should
not change ADCG1. The ADC controller uses ADCG1 (not user selectable) for Sample and Hold.

DS4830A User’s Guide

 63

7.3 – ADC Code Examples
7.3.1 – One Sequence of 4 Voltage Conversions for Ch0 (Diff), Ch1 (Diff), Ch14 (Single), and Ch15 (Single)

PINSEL = 0xC00F; //Configure Pin as ADC Ch0 (Diff), Ch1 (Diff), Ch14 (Single) and Ch15(Single)

REFAVG_bit.INTREF = 1; //Enable ADC internal reference

 for(iCounter = 0; iCounter < 1000; iCounter++); //Wait ~1ms to settle ADC internal reference

ADCN_bit.ADCONT = 0; //run a single conversion sequence

ADST_bit.ADCFG = 1; //set ADDATA for configuration (ADCFG)
ADST_bit.ADIDX = 0; //ADIDX = 0, set to ADCFG [0]

ADDATA = 0x0020; //ADCFG [0]: Differential voltage, CH0, 1.2V FS, Right Aligned
ADDATA = 0x2021; //ADCFG [1]: Differential voltage, CH1, 0.6V FS, Right Aligned
ADDATA = 0x400E; //ADCFG [2]: Single voltage, CH14, 2.4V FS, Right Aligned
ADDATA = 0x600F; //ADCFG [3]: Single voltage, CH15, 6.55V FS, Right Aligned

ADST_bit.ADCFG = 0; //set ADDATA to data buffer

ADADDR_bit.ADSTART = 0; //start sequence with ADCFG [0]
ADADDR_bit.ADEND = 3; //end sequence with ADCFG [3]

 ADST_bit.ADCONV = 1; //start the conversions

while (!ADST_bit.ADDAI); //wait for conversions to complete

ADST_bit.ADDAI = 0; //Clear ADDAI flag

ADST_bit.ADIDX = 0; //set ADDATA to data buffer [0]

ch0_volt = ADDATA; //read and store ch0 voltage to variable
ch1_volt = ADDATA; //read and store ch1 voltage to variable

ADST_bit.ADIDX = 14; //set ADDATA to data buffer [14] (according to channel number)

ch14_volt = ADDATA; //read and store ch14 voltage to variable
ch15_volt = ADDATA; //read and store ch15 voltage to variable

7.3.2 – Continuous Conversion of 16 Samples of Ch0 with Location Override

PINSEL = 0x0003; //Configure Pins as ADC Ch0 (Diff)

REFAVG_bit.INTREF = 1; //Enable ADC internal reference

 for(iCounter = 0; iCounter < 1000; iCounter++); //Wait ~1ms to settle ADC internal reference

ADCN_bit.ADCONT = 1; //run a continuous conversion sequence
ADCN_bit.LOC_OVR = 1; //location override enable

ADST_bit.ADCFG = 1; //set ADDATA as configuration (ADCFG)
ADST_bit.ADIDX = 0; //ADIDX = 0, set to ADCFG [0]

ADDATA = 0x0020; //ADCFG [0]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 0
ADDATA = 0x0120; //ADCFG [1]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 1
ADDATA = 0x0220; //ADCFG [2]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 2
ADDATA = 0x0320; //ADCFG [3]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 3

ADDATA = 0x0420; //ADCFG [4]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 4
ADDATA = 0x0520; //ADCFG [5]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 5
ADDATA = 0x0620; //ADCFG [6]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 6
ADDATA = 0x0720; //ADCFG [7]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 7

ADDATA = 0x0820; //ADCFG [8]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 8
ADDATA = 0x0920; //ADCFG [9]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 9
ADDATA = 0x0A20; //ADCFG [10]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 10
ADDATA = 0x0B20; //ADCFG [11]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 11

ADDATA = 0x0C20; //ADCFG [12]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 12
ADDATA = 0x0D20; //ADCFG [13]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 13
ADDATA = 0x0E20; //ADCFG [14]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 14
ADDATA = 0x0F20; //ADCFG [15]: Differential voltage, CH0, 1.2 V FS, Right Aligned and Location override 15

DS4830A User’s Guide

 64

ADST_bit.ADCFG = 0; //set ADDATA to data buffer

ADADDR_bit.ADSTART = 0; //start sequence with ADCFG [0]
ADADDR_bit.ADEND = 15; //end sequence with ADCFG [15]

ADST_bit.ADCONV = 1; //start the conversions

while (1)
{
 while (!ADST_bit.ADDAI); //wait for conversions to complete

 ADST_bit.ADDAI = 0;

 ADST_bit.ADIDX = 0; //set ADDATA to data buffer [0]

 for (iCount = 0; iCount < 16; iCount++)
 ch0 [iCount]= ADDATA; //read and store ch0 voltage to variable
 }

7.3.3 – Continuous Conversion of 16 Samples of Ch0 Using ADC Averaging

PINSEL = 0x0003; //Configure Pins as ADC Ch0 (Diff)

REFAVG_bit.INTREF = 1; //Enable ADC internal reference

for(iCounter = 0; iCounter < 1000; iCounter++); //Wait ~1ms to settle ADC internal reference

ADCN_bit.ADCONT = 1; //run a continuous conversion sequence

ADST_bit.ADCFG = 1; //set ADDATA as configuration (ADCFG)
ADST_bit.ADIDX = 0; //ADIDX = 0, set to ADCFG [0]

ADDATA = 0x0020; //ADCFG [0]: Differential voltage, CH0, 1.2 V FS, Right Aligned

ADST_bit.ADCFG = 0; //set ADDATA to data buffer

ADST_bit.ADCAVG = 1; //set ADDATA to data buffer
ADDATA = 0x0003; // Average of 16 samples of Ch0
ADST_bit.ADCAVG = 0;

ADADDR_bit.ADSTART = 0; //start sequence with ADCFG[0]
ADADDR_bit.ADEND = 0; //end sequence with ADCFG[0]

ADST_bit.ADCONV = 1; //start the conversions

while (1)
{
 while (!ADST1_bit.ADDAI); //wait for conversions to complete

 ADST_bit.ADIDX = 0; //set ADDATA to data buffer [0]

 ch0 = ADDATA; //read and store ch0 voltage to variable

 ADST1_bit.ADDAI = 0; //clear ADDAI flag
}

DS4830A User’s Guide

 65

SECTION 8 – SAMPLE AND HOLD
The DS4830A has two independent, but identical, Sample and Hold differential channels. Sample and Hold 0 (S/H0)
is on GP2-GP3 and Sample and Hold 1 (S/H1) is on GP12-GP13. The sample and hold function can be configured
for internal or external triggering. Each sample and hold has a dedicated pin for external trigger.

Sampling
Control

A
N

A
LO

G

M
U

XInput

Discharge
Control

S/H Circuit

Current
Source

SHEN*

ADC

Ex
te

rn
al

C

lo
ck

Pe
rip

he
ra

l
C

lo
ck

Cs

Cs

*SHEN can be internal or external (SHEN0 or SHEN1)

SHP

SHN

Cp

Cp

Figure 8-1: Sample and Hold Functional Block Diagram

8.1 – Detailed Description
As shown in Figure 8-1, each Sample and Hold consists of fully differential sampling capacitors (Cs), control logic
and a differential output buffer. The sample and hold also contains a charge injection nulling circuit. Additionally, it
has a discharge circuit to discharge parasitic capacitance on the input node and the sample capacitor before it starts
sampling. The input voltage is sampled using 5pF capacitor on the positive input and another 5pF capacitor on the
negative input. The negative input pin is used to reduce ground offset and noise. The capacitors are connected to
the input pins when sample trigger signal SHEN (either internal or external) is high. During high period of sample
pulse, the sample and hold performs sampling which ends at negative edge of the sample pulse SHEN. In addition to
the sampling capacitors, the input pins also have parasitic capacitance. When the sample and hold is configured for
internal triggering, the sample pulse is internally generated by the sample and hold hardware.

8.1.1 – Operation
When the SHEN signal goes high, the sample-and-hold capacitors are connected to the sample-and-hold input pins
(GPx) for sampling of the input signal. The minimum sample time should be 300ns for proper sampling. When the
SHEN signal goes low, the sampling is stopped and voltage stored at sampling capacitors are converted by the ADC
controller. See Figure 8-2 for Sample and Hold Timings. Each Sample and Hold can be independently enabled by
setting their respective enable bit in the Sample and Hold Control Register (SHCN). The sample and hold has two
modes of operation “Single Mode” and “Dual Mode”.

DS4830A User’s Guide

 66

For proper first sample capturing on power up, the sample and hold should be initialized as explained below.
1. Enable sample and hold for internal sample
2. Apply internal pulse for few µs
3. Wait for conversion to complete, clear the flags and discard the result.
4. Configure S/H according to application requirement without disabling the S/H.

Sample Time
(min 300nSec)

Conversion Time
Depends upon ADC

Sequencing

Sample and Hold Sample and Conversion Timings

Sample Pulse
Internal or External

Min 125uSec in Fast Mode or 250uSec in Normal Mode

Pin Discharge, if
Enabled

SH Sample &
Conversion Timings

Figure 8-2: Sample and Hold Conversion Timings without Averaging

8.1.1.1 – Single Mode Operation
During the single mode operation, the SHEN signal (either internal trigger or external trigger at SHEN0) acts as a
sample pulse for both sample and hold 0 and 1. The SH0DAI bit in the ADST register is set to ‘1’, after conversion of
both sample and holds by the ADC and an interrupt is generated if enabled. The results are available at data buffer
locations 23 and 24 respectively for both sample and holds after the ADC conversion is complete.

In the single mode operation the SH0DAI bit is set to ‘1’

a. At the completion of both sample and hold channels ADC conversion, if both sample and holds are enabled.
b. At the completion of only enabled sample and hold channel if any one sample and hold enabled.

The sample and hold interrupt for both sample and hold circuits can be enabled by the setting the SHDAI0_EN bit in
the SHCN register. In single mode operation, the SENR[1:0] register bits control the SHEN source for both of the
sample and holds.

8.1.1.2 – Dual Mode Operation
Dual mode operation is selected when SH_DUAL bit in the SHCN register is set to ‘1’. In this mode of operation, both
the sample and hold circuits work independently. Each sample and hold can have separate internal or external
triggers. The SHEN0 and SHEN1 provide sample pulses to Sample and Hold 0 and Sample and Hold 1 respectively
for external trigger. The Sample and Hold Internal Trigger Enable Register (SENR) has bits to enable the internal
trigger for both sample and hold circuits individually. In the dual mode operation each sample and hold generates its
own Sample and Hold Data Available Interrupt Flag (SH0DAI and SH1DAI) in the ADST register. Each of these flags
can generate an interrupt if enabled. The results are available in ADC data buffer (ADDATA, see the ADC SFR
description for detail) 23 and 24, respectively.

8.1.2 – Fast Mode Operation
The DS4830A Sample and Hold provides a special “Fast Mode” feature which gives priority to a sample and hold
conversion over an ADC voltage conversion. The “Fast Mode” is enabled by setting the FAST_MODE bit to ‘1’ in the
SHCN register. This mode is useful when only Sample and Hold 0 is used. In fast mode operation the Sample and
Hold 0 is guaranteed to get a conversion slot in the ADC conversion sequence every 125µs (If averaging is not
enabled). In this mode, the user is allowed to issue SHEN pulses (either internal of external pulse) at every 125µs
interval. This bit should be used with care, as it creates priority for the Sample and Hold0 over other sequence mode

DS4830A User’s Guide

 67

channels and hence their ADC conversion will be delayed. When the FAST_MODE bit is set to ‘0’, the user can
issue SHEN pulse every 250µs time interval.

Note: When averaging is used for ADC channels or S/H’s, the S/H conversion time slot changes as shown in Figure
7-5 and cannot be guaranteed to get conversion slot in 125µs or 250µs. The S/H conversion time depends upon
number of ADC samples to be averaged.

8.1.3 – Sampling Control
The sample and hold circuitry provides the option to select the internal peripheral clock or the external clock. When
the clock select bit CLK_SEL (located in the SHCN register) is set to ‘0’, the peripheral clock is used for the sample
and hold circuit. When the clock select bit CLK_SEL is set to ‘1’, the external clock (CLKIN on the DACPW2 pin) is
used for the sample and hold circuit.

Sample
Pulse

External
Trigger

Internal
Trigger

0

1

Mux

INTTRIG_EN

0

Non-
Zero

Mux

SSC

SHEN OUT { SHEN OUT when SSC=0

Sampling Pulse depends
upon SSC Value

Figure 8-3: Sample Pulse

The end of the sample and hold sample time is controlled by the Sampling Stop Control bits SSC[3:0] in the SHCN
register. These bits are used along with the CLK_SEL bit to determine the length of the sample pulse. When the
SSC[3:0] bits have non-zero values and the CLK_SEL bit is set to ‘1’, the stop sampling depends upon the number
of external clock cycles. When the SSC[3:0] bits have non-zero values and the CLK_SEL bit is ‘0’, the stop sampling
depends upon the time from the rising edge of SHEN0/1 (See Figure 8-3 for Sample Pulse). See SSC[3:0] bit
description for stop sampling timings.

Falling edge (Sample stop) depends
upon SSC[3:0]

SHEN0/1
or

INT_REIG0/1

Sample
Pulse

Sample Pulse Width with peripheral clock

300ns
min

SSC[3:0] = 0

Figure 8-4: Sample Pulse Width with the Peripheral Clock

As shown in Figure 8-4, the sample pulse width time depends upon the SSC bits value when the peripheral clock is
selected (CLK_SEL = 0).

DS4830A User’s Guide

 68

SHEN0/1
or

INT_REIG0/1

Sample Pulse

Sample Pulse Width with external clock

CLKIN ….

Falling edge (Sample stop) depends
upon SSC[3:0]

300ns
min

…. ….

SSC[3:0] = 0

Figure 8-5: Sample Pulse Width with the External Clock

As shown in Figure 8-5, the sample pulse width time depends upon the SSC bits value when the external clock is
selected (CLK_SEL = 1).

8.1.4 – Pin Capacitance Discharge
Before the sample and hold circuitry start sampling, the DS4830A has an option to discharge pin capacitance. The
SHCN register has PIN_DIS0 and PIN_DIS1 bits to enable the pin discharge function before sampling begins. This
is an optional feature, which generates a discharge pulse that discharges the pin or PCB capacitance for the sample
and hold channels. The discharge pulse is active after the corresponding sample and hold channel’s conversion is
complete and goes inactive on the rising edge of SHEN0 or SHEN1 pulse. See pin discharge timing is shown in
Figure 8-6.

Sample Time
(min 300nSec)

Conversion Time

Pin discharge function

Pin Discharge
Pulse

Min 125uSec in Fast Mode or 250uSec in Normal Mode

Pin Discharge

SHEN0/1
or

INT_TRIG0/1
Pulse

Figure 8-6: Pin Discharge Operation

DS4830A User’s Guide

 69

8.1.5 – Sample and Hold Data Reading
Each sample and hold has defined data buffer locations where the ADC controller writes sample and hold results
after the ADC conversion. The data buffer location 23 and 24 are reserved for Sample and Hold 0 and 1 respectively.
The ADC controller uses ADCG1 (1.2V full scale) for ADC conversion of the sampled signal of both sample and
holds.

8.1.6 – Sample and Hold Interrupts
The DS4830A sample and hold has two interrupt flags SH0DAI and SH1DAI in the ADST register. The SH1DAI bit is
used only when both Sample and Hold are enabled in the dual mode operation. In single mode operation, SH0ADI is
set only when:

1. Both sample and holds are enabled, then after the ADC conversion of both samples.
2. If only one sample and hold is enabled, then after the ADC conversion of the enabled sample and hold.

DS4830A User’s Guide

 70

8.2 – Sample and Hold Register Descriptions
The sample and hold has two SFRs. These are Sample and Hold Control Register (SHCN) and Sample and Hold
Internal Trigger Enable register (SENR). The SHCN register controls both sample and holds. The SENR controls
the internal sample pulse for both sample and holds. The sample and hold SFRs are located in module 4.

8.2.1 – Sample and Hold Control Register (SHCN)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name SSC[3:0] FAST_MODE PIN_DIS1 PIN_DIS0 SH_DUAL - SH1_ALIGN SHDAI1_EN SMP_HLD1 CLK_SEL SH0_ALIGN SHDAI0_EN SMP_HLD0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw r rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:12 SSC[3:0]

STOP Sample Control. These bits control the end of the sample and hold sampling
relative to the SHEN0 and SHEN1 pulse.

CLK_SEL = 0
SSC[3:0] STOP Sampling

0000 Falling Edge of SHEN0/SHEN1
0001 Reserved
0010 Reserved
0011 Reserved
0100 300ns after rising edge of SHEN0/SHEN1
0101 350ns after rising edge of SHEN0/SHEN1
0110 450ns after rising edge of SHEN0/SHEN1
0111 550ns after rising edge of SHEN0/SHEN1
1000 750ns after rising edge of SHEN0/SHEN1
1001 1us after rising edge of SHEN0/SHEN1
1010 1.5us after rising edge of SHEN0/SHEN1
1011 1.75us after rising edge of SHEN0/SHEN1
1100 2us after rising edge of SHEN0/SHEN1
1101 2.5us after rising edge of SHEN0/SHEN1
1110 4us after rising edge of SHEN0/SHEN1
1111 5us after rising edge of SHEN0/SHEN1

CLK_SEL = 1

SSC[3:0] STOP Sampling
0000 Falling Edge of SHEN0/SHEN1
0001 21 ext-clock after rising edge of SHEN0/SHEN1
0010 22 ext-clock after rising edge of SHEN0/SHEN1
0011 23 ext-clock after rising edge of SHEN0/SHEN1
0100 24 ext-clock after rising edge of SHEN0/SHEN1
0101 25 ext-clock after rising edge of SHEN0/SHEN1
0110 26 ext-clock after rising edge of SHEN0/SHEN1
0111 27 ext-clock after rising edge of SHEN0/SHEN1
1000 28 ext-clock after rising edge of SHEN0/SHEN1
1001 29 ext-clock after rising edge of SHEN0/SHEN1
1010 30 ext-clock after rising edge of SHEN0/SHEN1
1011 31 ext-clock after rising edge of SHEN0/SHEN1
1100 32 ext-clock after rising edge of SHEN0/SHEN1
1101 33 ext-clock after rising edge of SHEN0/SHEN1
1110 34 ext-clock after rising edge of SHEN0/SHEN1
1111 35 ext-clock after rising edge of SHEN0/SHEN1

Note: A minimum sample time of 300nSec must be used when external clock is
used to guarantee accurate results.

11 FAST_MODE Fast Mode Enable. Setting this bit to ‘1’ enables the fast operation for Sample and Hold
0. In this mode, Sample and Hold 0 is guaranteed to get a conversion slot in the ADC
conversion sequence every 125µs and the user can issue sample pulses at an interval
of 125µs. During fast mode, the sample and hold conversion priority is increased over
voltage channels in the sequence and the voltage conversions will be delayed. When

DS4830A User’s Guide

 71

this bit is ‘0’, Sample and Hold 0 acts in the normal mode in which Sample and Hold 0
gets a conversion slot in the ADC sequence every 250µs.

10 PIN_DIS1 Pin Discharge Enable 1. Setting this bit to ‘1’ enables the pin discharge function for
Sample and Hold 1. The discharge function discharges pin capacitances (GP12-GP13)
after the Sample and Hold 1 ADC conversion.

9 PIN_DIS0 Pin Discharge Enable 0. Setting this bit to ‘1’ enables pin discharge function at Sample
and Hold 0. The discharge function discharges pin capacitances (GP2-GP3) after the
Sample and Hold 0 ADC conversion.

8 SH_DUAL Sample and Hold Dual Mode. Setting this bit to ‘1’ configures in “Dual Mode” Sample
and Hold operation. In dual mode, both sample and holds act independently and use
different sample trigger input signals. SHEN0 (pin 23) acts as the sample trigger input
signal for Sample and Hold 0. SHEN1 (pin 21) acts as the sample trigger input signal
for Sample and Hold 1. In single mode operation both sample and hold circuits are
triggered by the SHEN0 signal.

7 - Reserved. The user should write 0 to this bit.
6 SH1_ALGN Sample and Hold 1 Data Alignment Select. This bit selects the Sample and Hold 1

data alignment mode. Setting this bit to ‘1’ returns data left aligned in ADDATA[15:2]
with ADDATA[1:0] zero padded. Clearing this bit to ‘0’ returns data in right aligned
format in ADDATA[13:0] with ADDATA[15:14] sign-extended by ADDATA[13].

5 SHDAI1_EN Sample and Hold 1 Interrupt Enable. Setting this bit to ‘1’ enables interrupt generation
on the completion of Sample and Hold 1 ADC conversion in the dual mode.

4 SMP_HLD1 Sample and Hold 1 Enable. Setting this bit to ‘1’ enables Sample and Hold 1 operation
on GP12-GP13 input pins. The conversion results are available in ADC data buffer
location 24.

3 CLK_SEL Clock Select for Sample and Holds Trigger delayed rising edge control. This bit
selects the clock used to stop sampling when operating in SSC mode. During this mode
SSC[3:0] bits controls the delay from the start to stop of sampling..
When this bit is set to ‘0’, the peripheral clock is used for generating the SHEN pulse.
When this bit is set to ‘1’, the External Clock (CLKIN pin) is used for generating the
SHEN pulse.
See the SSC[3:0] bit description to see the effect of CLK_SEL on the SHEN0/SHEN1
pulse generation.

2 SH0_ALGN Sample and Hold 0 Data Alignment Select. This bit selects the Sample and Hold 0
data alignment mode. Setting this bit to ‘1’ returns data left aligned in ADDATA[15:2]
with ADDATA[1:0] zero padded. Clearing this bit to ‘0’ returns data in right aligned
format in ADDATA[13:0] with ADDATA[15:14] sign-extended by ADDATA[13].

1 SHDAI0_EN Sample and Hold 0 Interrupt Enable. Setting this bit to ‘1’ enables interrupt generation
on the completion of Sample and Hold 0 ADC conversion when operating in dual mode
operation. In the single mode operation, this bit is set at the completion of both sample
and hold conversions.

0 SMP_HLD0 Sample and Hold 0 Enable. Setting this bit to ‘1’ enables Sample and Hold 0 operation
on GP2-GP3 input pins. The conversion results are available in ADC data buffer
location 23.

DS4830A User’s Guide

 72

8.2.2 – Sample and Hold Internal Trigger Enable Register (SENR)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name INT_TRIG_EN1 INT_TRIG1 - - INT_TRIG_EN0 INT_TRIG0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r r r r r r r rw rw r r rw rw

BIT NAME DESCRIPTION
15:6 - Reserved. The user should write 0 to these bits.
5 INT_TRIG_EN1 Sample and Hold 1 Internal Trigger Enable. Setting this bit to ‘1’ enables internal

trigger mode for Sample and Hold 1. When this bit is set to ‘1’, writing a ‘1’ to
INT_TRIG1 starts an internal sample pulse for Sample and Hold 1. When this bit is
‘1’, sample pulses on SHEN1 are igonred.
Setting this bit to ‘0’ configures Sample and Hold 1 for external sample pulse.
This bit is used in the dual mode operation only.

4 INT_TRIG1 Sample and Hold 1 Internal Trigger. This bit is used when INT_TRIG_EN1 is set to
‘1’. Setting this bit to ‘1’ starts internal sample pulse for Sample and Hold 1. The
sample pulse will end when this bit is set back to 0 if SSC[3:0] = 0, or after the time
defined by SSC[3:0] if these bits are not equal to 0. This bit is used in the dual mode
operation only.

3:2 - Reserved. The user should write 0 to these bits.
1 INT_TRIG_EN0 Sample and Hold Internal Trigger Enable. Setting this bit to ‘1’ enables internal

trigger mode for Sample and Hold 0. When this bit is set to ‘1’, writing a ‘1’ to
INT_TRIG0 starts an internal sample pulse for Sample and Hold 0. When this bit is
‘1’, sample pulses on SHEN0 are igonred.
Setting this bit to ‘0’ configures Sample and Hold 0 for external sample pulse.
In the single mode operation, this bit is used for both sample and holds.

0 INT_TRIG0 Sample and Hold0 Internal Trigger. This bit is used when the INT_TRIG_EN0 is set
to ‘1’. Setting this bit to ‘1’ starts internal sample pulse for Sample and Hold 0. The
sample pulse will end when this bit is set back to 0 if SSC[3:0] = 0, or after the time
defined by SSC[3:0] if these bits are not equal to 0.In the single mode operation, this
bit is used for both sample and holds.

8.2.3 – Sample and Hold Interrupt flag
See ADST1 description for Sample and Hold interrupts flags SH0DAI and SH1DAI descriptions.

8.2.4 – Sample and Hold Averaging
See REFAVG description in ADC section for sample and hold averaging options.

DS4830A User’s Guide

 73

SECTION 9 – QUICK TRIP (FAST COMPARATOR)
The DS4830A has 10-bit quick trips with a 16-input analog MUX (Figure 9-1). The MUX selects the quick trip analog
input from 16 external channels. The quick trip external channels can be configured to operate as eight fully
differential inputs or sixteen single-ended inputs. The quick trip monitors all configured quick trip channels in a round
robin sequence.

 QT CONFIGURATIONS

ADC-S0

ADC-S1

ADC-S14

ADC-S15

A
N
A
L
O
G

M
U
X

QT SEQUENCER

Q
TS

TA
R

T

Q
TE

N
D

Q
TE

N

QT HIGH
THRESHOLD

QT LOW
THRESHOLD

CHSEL[3:0]DIFF

Digital MUX

10-Bit
Internal

DAC

HT Register[0]

HT Register[14]

HT Register[1]

HT Register[15]

16 High Threshold
Registers

LT Register[0]

LT Register[14]

LT Register[1]

LT Register[15]

16 Low Threshold
Registers

LIST REGISTER[0]

LIST REGISTER[14]

LIST REGISTER[1]

LIST REGISTER[15]

16 List Configurations
5 bit Each

LTI / HTILTIE / HTIE

Interrupt

Q
T

C
LO

C
K

QTDATA[15:0]

Comparator

QT- 2.42V
Internal

Reference

.

.

.

RW_LST = 0

LTHT = 0

RW_LST = 1

.

.

.

.

.

.

RW_LST = 0

LTHT = 1

Figure 9-1: Quick Trip Functional Diagram

9.1 – Detailed Description
As shown in Figure 9-1, the DS4830A Quick Trip (QT) controller has a 16-input analog MUX and Quick Trip
Sequencer. The QT sequencer creates a list of configurations and sets user defined low and high threshold for
external channels. The quick trip controller has 16 low trip threshold and 16 high trip threshold internal registers.

The Quick Trip Control Register (QTCN) has two bits RW_LST and LTHT which are used to configure thresholds
and list creation. The QTIDX[3:0] bits (located in the QTCN register) together with LTHT and RW_LST bits select the
source or destination address for the QTDATA register access. Figure 9-1 illustrates the threshold configuration and
list creation.

DS4830A User’s Guide

 74

By default, the external channels GP0-15 are general-purpose input. The DS4830A has the Pin Select Register
(PINSEL). The PINSEL register is used to configure the external channels as an analog pin for ADC or/and Quick
Trip use. Each bit location in this register corresponds to the ADC/Quick Trip input pin.

Table 9-1: Low and High Thresholds Configuration and List Creation

RW_LST LTHT QTIDX REGISTER SELECTED
0 0 N(0 to 15) Low threshold configuration for the channel defined in list N
0 1 N(0 to 15) High threshold configuration for the channel defined in list N
1 X N(0 to 15) Nth register of list configuration

Thresholds Configuration
Each configuration has two threshold registers to configure low and high threshold. Each threshold register is
addressed by the QTIDX[3:0] bits. These bits are auto incremented on any read or write operation to the QTDATA
register. The low trip thresholds are configured by writing to the QTDATA register when the RW_LST and LTHT bits
are set to ‘0’. The high trip thresholds are configured by writing to the QTDATA register when the RW_LST bit is set
to ‘0’ and LTHT bit is set to ‘1’.

List Creation
As shown in Figure 9-1, the quick trip controller has 16 list registers. These are configured by writing to the QTDATA
register when the RW_LST bit is set to ‘1’. The list address is addressed by the QTIDX[3:0] bits. Each list register
uses only lower 5 bits. The first 4 lower bits CHSEL [3:0] specifies the quick trip input channel. The DIFF bit selects
between single-ended mode (when DIFF bit is set to ‘0’) and differential mode (when DIFF bit is set to ‘1’) quick trip
comparison. The start and stop addresses of the list are provided by the Quick Trip List Register (QTLST). Any
channel can be used multiple times at any location in the list.

See Section 9.2 - Quick Trip Register Descriptions for details.

As shown in Figure 9-1, the quick trip sequencer selects a channel from 16 external channels. The quick trip
controller has an internal 10-bit DAC which generates voltage for low and high threshold comparisons with the
external channel input. The quick trip is also called a “Fast Comparator” as it compares the input with threshold using
the fast comparator. The conversion time is 1.6µs for each threshold; so each channel’s thresholds are compared in
3.2µs (1.6µs for low trip threshold + 1.6µs for high trip threshold).

9.1.1 – Quick Trip List Sequencing
The DS4830A quick trip controller performs the user defined sequence of up to 16 single-ended or 8 differential
external channels conversions.

A sequence is setup in the QTLST register by defining the starting conversion configuration address (QTSTART) and
an ending conversion configuration address (QTEND). The configuration start address designates the configuration
register to be used for the first conversion in a sequence. The configuration end address designates the
configuration register used for the last conversion in a sequence. A single channel conversion can be viewed as a
special case for sequence conversion, where the starting and ending configuration address is the same. The
configuration registers can be viewed as a circular register array where QTSTART does not have to be less than
QTEND. For example, if QTSTART = 1 and QTEND = 5, then the sequence of conversions would be configurations
1, 2, 3, 4, 5. If QTSTART = 5 and QTEND = 1, then the sequence of conversions would be configurations 5, 6, 7 . . .
15, 0, 1.

9.1.2 – Operation
The quick trip is enabled by setting the Quick Trip Enable (QTEN) bit to ‘1’ in the QTCN register. The Quick Trip
Controller takes ~120 core clocks to wake up after enable and then starts scanning through the list of channels
specified in the channel list register QTLST continuously in the round robin sequence. The quick trip sequence reads
the list, selects the input channel and reads the low trip threshold and performs 10-bit comparison, then reads the
high trip threshold and again performs 10-bit comparison. The quick trip has separate interrupt flag registers for the
low and high trip threshold. The low trip interrupt flag is set when the input voltage is less than the configured low
threshold. Similarly, the high trip interrupt flag is set when the input voltage is greater than the configured high
threshold. The interrupt can be generated if enabled.

The channel list can be filled up using the QTDATA register by setting the RW_LST bit to ‘1’ in the QTCN register.
For example to scan channels S5, S6 and S14-15 having configurations for channels 5 & 6 in the single-ended
mode, channel 7 (S14-S15) in the differential mode and channel 6 again (any channel can be configured multiple

DS4830A User’s Guide

 75

times in the QT list). The quick trip list can be filled sequentially with data 05h (channel 5 + single-ended), 06h
(channel 6 + single-ended), 17h (channel 7 + differential mode) and 06h (channel 6 + single-ended). See Table 9-2
for the quick trip list configurations.

To scan these list registers shown in Table 9-2, the QTSTART bits are set to 0 (0000b) and the QTSTOP bits are
set to 3 (0011b). Each channel is compared twice (see Figure 9-2). First the low trip threshold (LT) is compared and
then the high trip threshold (HT). The sequence of comparisions is shown is Figure 9-2.

Table 9-2: Quick Trip List Configuration

Quick Trip Start address (QTSTART) = 0
Quick Trip Stop address (QTEND) = 3

Channel 5

LT HT

Channel 6

LT HT

Channel 7

LT HT
……….

Channel 5

LT HT

Channel 6

LT HT

Channel 7

LT HT
……….

Channel 6*

LT HT

Channel 6*

LT HT

* Note: Channels can be defined multiple times in the list.

Figure 9-2: Quick Trip Operation

9.1.3 – Setting Quick Trip Thresholds

The quick trip threshold can be calculated by using the following formula.

Table 9-3 demonstrates Quick Trip low and high threshold configuration.

Table 9-3: Quick Trip Low Threshold Configuration

QTCN = 0x0000; //Low Threshold Configuration Register, Index = 0
QTDATA = 0x00FE; //0.6V Low Threshold Configuration for List0 Configuration
QTDATA = 0x0153; //0.8V Low Threshold Configuration for List1 Configuration
QTDATA = 0x01A7; //1.0V Low Threshold Configuration for List2 Configuration
QTDATA = 0x01D1; //1.1V Low Threshold Configuration for List3 Configuration

QT LIST
NUMBER QTDATA DESCRIPTION LIST REGISTERS USED FOR

COMPARISON
0 05h Channel 5 (S5) in single-ended mode LT0 and HT0
1 06h Channel 6 (S6) in single-ended mode LT1 and HT1
2 17h Channel 7(S14-S15) in differential mode LT2 and HT2
3 06h Channel 6 (S6) in single-ended mode LT3 and HT3

QT LIST NUMBER LOW THRESHOLD VALUE (AS EXAMPLE) QTDATA
0 0.6V 0x00FE
1 0.8V 0x0153
2 1.0V 0x01A7
3 1.1V 0x01D1

DS4830A User’s Guide

 76

Table 9-4: Quick Trip High Threshold Configuration

QTCN = 0x0010; //High Threshold Configuration Register, Index = 0
QTDATA = 0x03A3; //2.2V High Threshold Configuration for List0 Configuration
QTDATA = 0x034E; //2.0V High Threshold Configuration for List1 Configuration
QTDATA = 0x02FA; //1.8V High Threshold Configuration for List2 Configuration
QTDATA = 0x02A5; //1.6V High Threshold Configuration for List3 Configuration

9.1.4 – Quick Trip Interrupts
The DS4830A quick trip has four interrupt flag registers the Low Trip Interrupt Lower Flag Register (LTIL), High Trip
interrupt Lower Flag Register (HTIL), Low Trip Interrupt High Register and High Trip Interrupt High Register. See the
register descriptions for the quick trip interrupt operation.

QT LIST NUMBER HIGH THRESHOLD VALUE (AS EXAMPLE) QTDATA
0 2.2V 0x03A3
1 2.0V 0x034E
2 1.8V 0x02FA
3 1.6V 0x02A5

DS4830A User’s Guide

 77

9.2 – Quick Trip Register Descriptions
The quick trip has 7 SFRs. These are the Quick Trip Control Register (QTCN), Quick Trip List Register (QTLST),
Quick Trip Data Register (QTDATA), Low Trip Interrupt Lower Flag Register (LTIL), High Trip Interrupt Lower Flag
Register (HTIL), Low Trip Interrupt High Register (LTIH) and High Trip Interrupt High Register (HTIH). The QTCN
register controls the quick trip operation. The QTLIST register defines the list for the quick trip controller. The
QTDATA register is used to read and write list and threshold (high and low threshold) registers. The LTIL and HTIL
are interrupt flag registers for high and low threshold. The LTIH and HTIH are the interrupt enable registers. The
Quick Trip SFRs are located in module 5.

9.2.1 – Quick Trip Control Register (QTCN)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - QTEN - - - - RW_LST - - LTHT QTIDX[3:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r rw r r r r rw r r rw rw rw rw rw

BIT NAME DESCRIPTION
15:13 - Reserved. The user should write these bits to ‘0’.
12 QTEN Quick Trip Enable. When this bit is set to ‘1’, it enables the quick trip operation. After

setting the QTEN bit to ‘1’, there is an initial delay for 120 core clock to wake up the
quick trip circuitry. When this bit is set to ‘0’, it disables the quick trip operation.

11:8 - Reserved. The user should write these bits to ‘0’.
7 RW_LST Read List Register: When this bit is set to ‘1’, it selects one of the sixteen list register

(addressed by QTIDX[3:0], see below) in the list configuration. When this bit is set to ‘0’,
the low or high threshold register (depends upon the LTHT bit) are configured.

6:5 - Reserved. The user should write these bits to ‘0’.
4 LTHT Low or High Threshold Select: This bit is used only when RW_LST is set to ‘0’. This

bit is used to select low or high threshold read or write. When the LTHT bit is set to ‘0’, it
points to the low threshold configuration register list. When this bit is set to ‘1’, it points to
the high threshold configuration register list. The address of low or high threshold
configuration is addressed by QTIDX[3:0] bits.

3:0 QTIDX[3:0] Quick Trip Index Select. These bits together with LTHT and RW_LST bits select the
source or destination address for the QTDATA register access.

When the RW_LST and LTHT bits are set to ‘0’, the QTIDX[3:0] bits address to one of
the sixteen low threshold register for read or write. When RW_LST = 0 and LTHT = 1,
the QTIDX[3:0] bits address one of the sixteen high threshold register for read or write.

When RW_LST = 1 (irrespective of LTHT bit), the QTDATA register selects the list
register addressed by QTIDX[3:0] bits for read and write operation. A read or write
operation on the QTDATA register reads or writes to the list register addressed by
QTIDX[3:0].

These bits are auto incremented on any read or write operation to the QTDATA register.

9.2.2 Quick Trip Data Register (QTDATA)

The Quick Trip Data register is used with LTHT, RW_LST and QTIDX[3:0] bits to configure thresholds and list
configurations. The QTDATA register selects the list register and threshold registers addressed by QTIDX[3:0] bits
for read and write operation.

Threshold registers are selected when the bit RW_LST is set to ‘0’. List registers are selected when the bit RW_LST
is set to ‘1’. See the following tables for RW_LST = 0 and RW_LST = 1.

DS4830A User’s Guide

 78

QTDATA Register map when RW_LST = 0 (in the QTCN Register)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - LOW or HIGH THRESHOLD
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r r rw rw rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:10 - Reserved. The user should write these bits to ‘0’.
9:0 QTDATA[9:0] a. Low Threshold Configuration (When the LTHT bit in the QTCN register is set to ‘0’)

The QTDATA register selects low threshold register addressed by QTIDX[3:0] bits in
the QTCN register for read and write operation. The low threshold registers are 10-bit
wide and the upper QTDATA [15:10] bits are ignored and return 0.

b. High Threshold Configuration (When the LTHT bit in the QTCN register is set to ‘1’)
The QTDATA selects high threshold register addressed by QTIDX[3:0] bits in the
QTCN register for read and write operation. The high threshold registers are 10-bit
wide and upper QTDATA [15:10] bits are ignored and return 0.

QTDATA Register map when RW_LST = 1 (in the QTCN Register)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - - - - - - - DIFF CHSEL[3:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r r r r r r r rw rw rw rw rw

BIT NAME DESCRIPTION
15:5 - Reserved. The user should write these bits to ‘0’.
4 DIFF Mode Selection (DIFF): This bit selects the Quick trip input channel source either as

single-ended or differential mode. When this bit is set to ‘0’, quick trip channel
(addressed by CHSEL[3:0]) is selected as “single-ended” input. When this bit is set to
‘1’, quick trip channel (addressed by CHSEL[3:0]) is selected as “Differential Mode”
input. See the below table for various quick trip input channel configuration in single-
ended as well as differential mode.

3:0 CHSEL [3:0] QT Channel Select (CHSEL [3:0]): These bits select the Quick trip input channel
source for the quick trip list configuration.

CHSEL[3:0] DIFF = 0
Channel Selected

Single-Ended

DIFF = 1
Channel Selected
Differential Mode

0000 ADC-S0 ADC-D0P – ADC-D0N
0001 ADC-S1 ADC-D1P – ADC-D1N
0010 ADC-S2 ADC-D2P – ADC-D2N
0011 ADC-S3 ADC-D3P – ADC-D3N
0100 ADC-S4 ADC-D4P – ADC-D4N
0101 ADC-S5 ADC-D5P – ADC-D5N
0110 ADC-S6 ADC-D6P – ADC-D6N
0111 ADC-S7 ADC-D7P – ADC-D7N
1000 ADC-S8 NOT VALID
1001 ADC-S9 NOT VALID
1010 ADC-S10 NOT VALID
1011 ADC-S11 NOT VALID
1100 ADC-S12 NOT VALID
1101 ADC-S13 NOT VALID
1110 ADC-S14 NOT VALID
1111 ADC-S15 NOT VALID

DS4830A User’s Guide

 79

9.2.3 Low Trip Interrupt Lower Register (LTIL)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name IE[7:0] IF[7:0]
Reset
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:8 IE[7:0] Low Trip Interrupt Enable. This register is used to enable/mask the corresponding

LTIL register interrupts. For Example, if LTIL = 0x0100 then Quick Trip list 0 can
generate an interrupt when LTIL LSB is set to ‘1’ and all other interrupts from LTIL are
ignored. Similarly, if LTIL = 0xFF00, then all 8 interrupts from LTIL generate interrupts.

7:0 IF[7:0] Low Trip Interrupt Flag. The corresponding bit of the Low Trip Interrupt register is set
when a low threshold trip is occurred on a channel list register. In other words, when
voltage across channel is less than the low threshold configuration for the channel.
For example, if a low trip occurs on the list register 0 then LTIL is set to 0x0001. If the
corresponding IE bit is also ‘1’, and then this generates an interrupt. Software should
clear the Low Trip Interrupt Flag once it is set by hardware. Setting this bit to ‘1’ by
software generates an interrupt if enabled.

9.2.4 High Trip Interrupt Lower Register (HTIL)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name IE[7:0] IF[7:0]
Reset
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:8 IE[7:0] High Trip Interrupt Enable. This register is used to enable/mask the corresponding

HTIL register interrupts. For example, if HTIL = 0x0100 then Quick Trip list 0 can
generate an interrupt when HTIL LSB is set to ‘1’ and all other interrupts from HTIL are
ignored. Similarly, if HTIL = 0xFF00, then all 8 flags from HTIL generate interrupts.

7:0 IF[7:0] High Trip Interrupt Flag. The corresponding bit of the High Trip Interrupt register is
set when a high threshold trip is occurred on a channel list register. In other words,
when voltage across channel is greater than the high threshold configuration for the
channel.
For example, if a high trip occurs on the list register 0 then HTIL is be set to 0x0001. If
the corresponding IE bit is also ‘1’, and then this generates an interrupt. Software
should clear the how trip interrupt flag once it is set by hardware. Setting this bit to ‘1’
by software generates an interrupt if enabled.

DS4830A User’s Guide

 80

9.2.5 Low Trip Interrupt High Register (LTIH)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name IE[15:8] IF[15:8]
Reset
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:8 IE[15:8] Low Trip Interrupt Enable. This register is used to enable/mask the corresponding

LTIH register interrupts for upper 8 comparisions. For example, if LTIH = 0x0100 then
Quick Trip list 8 can generate an interrupt when LTIH LSB is set to ‘1’ and all other
interrupts from LTIH are ignored. Similarly, if LTIH = 0xFF00, then all 8 flags from LTIH
generate interrupts.

7:0 IF[15:8] Low Trip Interrupt Flag. The corresponding bit of the low trip interrupt register is set
when a low threshold trip is occurred on a channel list register. In other words, when
voltage across channel is less than the low threshold configuration for the channel.
For example, if a low trip occurs on the list register 8 then LTHI is set to 0x0001. If the
corresponding IE bit is also ‘1’, and then this generates an interrupt. Software should
clear the Low Trip Interrupt Flag once it is set by hardware. Setting this bit to ‘1’ by
software generates an interrupt if enabled.

9.2.6 High Trip Interrupt High Register (HTIH)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name IE[15:8] IF[15:8]
Reset
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:8 IE[15:8] High Trip Interrupt Enable. This register is used to enable/mask the corresponding

HTIH register interrupts for the upper 8 comparisons. For Example, if HTIH = 0x0100
then Quick Trip list 8 can generate an interrupt when HTIH LSB is set to ‘1’ and all
other interrupts from HTIH are ignored. Similarly, if HTIH = 0xFF00, then all 8 flags
from HTIH generate interrupts.

7:0 IF[15:8] High Trip Interrupt Flag. The corresponding bit of the High Trip Interrupt register is
set when a high threshold trip is occurred on a channel list register. In other words,
when voltage across channel is more than the high threshold configuration for the
channel.
For example, if a high trip occurs on the list register 8 then HTIH is set to 0x0001. If
the corresponding IE bit is also ‘1’, and then this generates an interrupt. Software
should clear the High Trip Interrupt Flag once it is set by hardware. Setting this bit to
‘1’ by software generates an interrupt if enabled.

9.2.7 – Quick Trip List Register (QTLST)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - QTSTART[3:0] - - - - QTEND[3:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r rw rw rw rw r r r r rw rw rw rw

BIT NAME DESCRIPTION
15:12 - Reserved. The user should write these bits to ‘0’.
11:8 QTSTART[3:0] Quick Trip Configuration Start Address Bits [3:0]. These bits select the start

address of quick trip channel list.

7:4 - Reserved. The user should write these bits to ‘0’.
3:0 QTEND[3:0] Quick Trip Configuration Ending Address Bits [3:0]. These bits select the stop

address of quick trip channel list.

DS4830A User’s Guide

 81

SECTION 10 – I2C-COMPATIBLE MASTER INTERFACE

The DS4830A provides an I2C-compatible master controller that allows the DS4830A to communicate with a slave
device. The I2C master interface can be setup to provide system interrupts after each I2C event.

10.1 – Detailed Description
10.1.1 – Description of Master I2C Interface
The master I2C interface uses the MSDA and MSCL pins. These pins are the master I2C controller’s connection to
the SDA and SCL pins of an I2C bus. In addition to driving these pins, the I2C master port also senses the state of
both MSDA and MSCL. This allows the I2C master port to offer bus error detection and allows a slave device to clock
stretch.
Unless explicitly stated, all references to SDA and SCL in this section refer to the SDA and SCL lines of the I2C bus,
not the DS4830A’s I2C slave interface SDA and SCL pins.

10.1.2 – Default Operation
The I2C master controller is disabled by default. The I2C master controller is enabled by setting the I2CEN and
I2CMST bits in the I2CCN_M register to a 1. Prior to the I2C master controller being used for communication, some
software setup is required. This setup includes setting the clock rate, timeout period, and which I2C events should
generate interrupts. The DS4830A master I2C controller is not intended to be used on an I2C bus that has multiple
masters connected to the bus.

10.1.3 – I2C Clock Generation
In an I2C system, the master is responsible for generating the SCL signal. The DS4830A I2C Master Controller
provides complete control over the clock rate and duty cycle. The I2C Master Controller generates SCL from the
system clock. The bit rate is controlled by the I2C Clock Control Register (I2CCK_M).

The high period of SCL clock is defined by the high byte of the I2C Clock Control register (I2CCKH) whereas
the low period of SCL is defined by the low byte (I2CCKL). The minimum clock high period is three system clocks
while the minimum low period has to be at least five system clock periods. The I2C clock characteristics can be
defined by the following equations:

• SCL Low Time = System Clock Period x (I2CCKL[7:0] + 1)
• SCL High Time = System Clock Period x (I2CCKH[7:0] + 1)
• I2C Clock Rate = System Clock Frequency/(I2CCLK[7:0] + I2CCKH[7:0] + 2)

One feature of the master I2C controller is that it also monitors SCL while the clock is being output. This allows the
controller to ensure that the SCL level is at the desired level prior to beginning the count for SCL Low or High Time.
Figure 10-1 illustrates the SCL sampling performed by the master I2C controller. When SCL is released by the
master I2C controller, the rise time is determined by the capacitive loading and pullup resistance on the SCL line.
When the controller senses the SCL line has reached a high logic level, the count for SCL High Time is started. The
same is true for a falling edge. The SCL Low Time is only started after the controller senses the SCL line at a low
logic level.

Figure 10-1 also illustrates that the calculated I2C clock period is not exactly accurate because the rise and fall time
of SCL is not taken into consideration. The actual clock period will be the period set by the I2CCK_M register plus
any rise and fall time.

DS4830A User’s Guide

 82

Figure 10-1: I2C Clock Generation

The master I2C controller’s ability to monitor the state of SCL allows the master to operate with slave devices that
stretch the clock. A slave device may clock stretch, or hold SCL low, while it is busy or processing data. The master
I2C controller will always release SCL after holding it low for the SCL Low Time duration. By monitoring the state of
SCL, the master I2C controller realizes that SCL has not been released and does not begin the SCL High Time
count. Only after the master controller detects a high state on SCL will begin the I2CCKH count. This is illustrated in
Figure 10-2.

Figure 10-2: Master I2C Clock Generation During Slave Clock Stretching

10.1.4 – Timeout
The Master I2C Controller has a programmable timeout function that allows the controller to recover from a bus
error. The timeout period is determined by the setting of the I2C Master Timeout Register (I2CTO_M) using the
following equation:

Timeout Period = I2C Bit Rate x (I2CTO[7:0]+1)

where I2C Bit Rate is determined by the setting of the I2CCK_M register. The timeout can be disabled by clearing the
I2CTO_M register to 0. The I2C timeout timer starts counting:

• When the I2CSTART bit is set to 1. The I2C controller will monitor the bus status until it can generate a
START condition. The I2C bus is considered busy if another master has generated a START condition
and no corresponding STOP has been detected (the I2CBUS bit is set to 1) or the SCL line is low. If the
bus remains busy for a period longer than specified in the timeout register, the I2C controller concludes
that there is a bus error and will set the I2CTOI flag.

If the I2C Controller has started a transfer (after the first bit rising edge), it will wait for the current byte
transfer to finish (after the 9th bit (acknowledge) has been transmit) before generating the START
condition. In this case, the timeout timer will start counting after the end of the 9th bit low time.

• After the master I2C controller attempts to generate a STOP condition. If a STOP is not detected (I2CSPI =
1) during the timeout period, the I2CTOI flag will be set.

If the I2C Controller has started a transfer (after the first bit rising edge), it will wait for the current byte transfer to
finish (after the 9th bit (acknowledge) has been transmit) before generating the STOP condition. In this case,
the timeout timer will start counting after the end of the 9th bit low time.

• Whenever SCL goes low. If the SCL line is low for a period longer than specified in the timeout register, the

I2C controller concludes that there is a bus error and will set the I2CTOI flag.

DS4830A User’s Guide

 83

For all of these cases, when the I2C timeout period is reached, the I2CTOI flag will be set. The setting of I2CTOI can
generate an interrupt if enabled. If the master I2C controller is in the process of transferring data when the timeout
occurs, the controller will abort the current transfer and clear the I2CBUSY flag. The I2CBUS flag will continue to be set
until a STOP condition is detected or I2CEN is set to 0.

10.1.5 – Generating a START
To initiate a data transfer, the I2C master controller must first issue a START command. The master I2C controller’s
flow when attempting to issue a START command is shown in Figure 10-3. A START command is generated by
setting the I2CSTART bit to 1. The I2C controller will then determine the state of the I2C bus. If the bus is busy
(I2CBUS = 1), the controller will not generate a START until the bus is available. The I2C bus is considered busy if
another master has generated a START condition and no corresponding STOP has been detected (the I2CBUS
bit is set to 1) or SCL is being held low.

If the bus is not busy, the I2C master controller will attempt to generate a START. Because the SDA line is
feedback into the device, when the master generates a START, it can also detect the START condition. When a
START condition is detected, the I2C START interrupt flag (I2CSRI) will be set and an interrupt will be generated if
enabled. The I2CBUS bit will be set to indicate that the I2C bus is now in use and the I2CSTART bit will be
cleared.

When the I2CSTART bit is set to a 1, the I2C controller will start its timeout timer if enabled (I2CTO_M ≠ 0). If
the timer expires before the START can be generated, t he I2C timeout interrupt flag (I2CTOI) will be set and an
interrupt is generated if enabled. If a timeout occurs, the I2C master controller will reset to an idle state and the
I2CSTART bit will be cleared.

If the I2CSTART bit is set when the I2C Controller is in the middle of a byte transfer (after the first bit rising edge),
the controller will wait for the current byte transfer to finish (after the 9th bit) before generating the START
condition. In this case, the timeout timer will not start counting until after the end of the 9th bit low time.

DS4830A User’s Guide

 84

Timeout
?

I2CTOI=1

N

Y

N

Y

Generate
START

I2CSTART=1

I2CSTART=0
I2CBUSY=0

I2CBUSY=1

Repeated
Start

?
I2CBUS = 1

N

Y

START
Detected?

I2CSRI=1
I2CBUS=1

Timeout
?

N

Y

N

Y

Generate
STOP

I2CSPI=1
I2CBUS=0

I2CSTOP=1

I2CSTOP=0
I2CBUSY=0

I2CBUSY=1

STOP
Detected?

I2CTOI=1

Timeout
?

N

Y

N

Y

Transferring
Byte?

Y

N

Transfering
Byte

?

Y

N

START Generation STOP Generation

Figure 10-3: Master I2C-Generated START and STOP

DS4830A User’s Guide

 85

10.1.6 – Generating a STOP
To end an I2C transfer, a STOP must be transmitted. A STOP is generated by setting the I2CSTOP bit. The
master I2C controller’s flow when attempting to issue a STOP command is shown in Figure 10-3.

If the I2CSTOP bit is set when the I2C Controller is in the middle of a byte transfer (after the first bit rising edge), it will
wait for the current byte transfer to finish (after the 9th bit) before generating the STOP condition.

Because the SDA line is feedback into the device, when the master generates a STOP, it will also detect the
STOP condition. When a STOP condition is detected, the I2C STOP interrupt flag (I2CSPI) will be set and an
interrupt will be generated enabled. The I2CBUS bit will be cleared to indicate that the I2C bus is now idle and the
I2CSTOP bit will be cleared.

When the master I2C controller attempts to generate the STOP condition, it will also start the timeout timer if this
feature is enabled. If a timeout is generated before the STOP condition is detected, a timeout will occur. When a
timeout occurs, the I2CTOI bit will be set, which can generate an interrupt if enabled, and the I2CSTOP bit will also
be cleared to 0.

10.1.7 – Transmitting a Slave Address
The first byte after an I2C START or restart condition is the slave address byte. This byte, which is transmitted by the
master, contains seven bits of slave address followed by the R/W bit. The transmission of the slave address begins
with writing 7-bit slave address + the R/W bit to I2CBUF_M.

Figure 10-4 shows the format for slave address 36h in write mode. The address bits A[6:0], which is the slave
address the R/W bit is written to I2CBUF_M[6:0]. Bit 0 of I2CBUF_M is copied to bit 0 I2CMODE of the I2CSLA_M
register. When bit 0 is ‘1’, the I2C master is operating in receiver mode (data read from slave). When bit 0 is ‘0’, the
I2C master is operating in transmitter mode (data write to slave).

Figure 10-4: Slave Address Format

After the slave address has been written to I2CBUF_M, the I2C master controller will set the I2CBUSY bit to indicate
the controller is actively participating in a transaction. The eight bits in I2CBUF_M[7:0] will be transmitted on SDA.
The data for the 8th bit transmit, which is the R/W bit, is copied in the I2CMODE bit of the I2CSLA_M register. The
I2C master then issues the 9th clock, which is for the acknowledge bit, and reads SDA for an acknowledgment from a
slave device. The I2C master controller then performs the following steps. This is illustrated in Figure 10-5.

• Set the I2CNACKI bit with the value of the received acknowledgement.
• The I2CTXI bit will then be set to indicate a byte was transmit.
• Clear the I2CBUSY flag.

Upon transmitting the slave data byte (7 bits of slave address + R/W bit + acknowledge), the I2C master controller
will enter one of the three states.

• Data Transmit: The I2CMODE (R/W) bit was set to a 0, indicating that the master will be writing data to a
slave device. The DS4830A will retain control of the SDA line.

• Data Receive: The I2CMODE (R/W) bit was set to a 1, indicating that the master will be receiving data from
a slave. The DS4830A releases control of SDA to allow a slave device to output data. The DS4830A
Master I2C controller automatically begins clocking bytes of data from the slave.

• The slave address was NACKed. The master I2C controller will retain control of SDA and is able to transmit
data.

10.1.8 – Transmitting Data
The DS4830A I2C Master Controller enters into data transmission mode after transmitting a slave address with the
R/W bit (I2CMODE) set to a 0. The steps of data transmission are shown in Figure 10-5. Data transmission is
started by software loading a byte of data into the I2CBUF_M register. Loading I2CBUF_M causes the I2CBUSY bit

DS4830A User’s Guide

 86

to be set. Once set, writes to I2CBUF_M will be ignored. The first bit of data (most significant bit) will be shifted to
SDA when SCL is low. Each of the next seven bits will then be shifted following high to low transitions of SCL.

Following the 8th bit of data (least significant bit) being shifted to SDA, the SDA line will be released by the DS4830A
master controller. This allows the slave to signal an ACK or NACK during the 9th clock cycle. The DS4830A I2C
master controller samples the acknowledge bit following the 9th SCL rising edge. After the acknowledge bit is
sampled, the DS4830A I2C master controller will perform the following tasks:

• Set or clear the I2CNACKI flag to reflect the received acknowledge bit. The setting of I2CNACKI can
generate an interrupt if enabled.

• Set the I2CTXI flag to indicate that the I2C master controller transmit a complete byte. This can generate an
interrupt if enabled.

• Clear the I2CBUSY flag to indicate that the I2C master controller is not actively participating in the transfer of
data.

I2CNACKI =
ACKNOWLEDGE

Transmit I2CBUF_M[7:0]
I2CBUF_M[0] I2CMODE

I2CBUSY=1

I2CTXI=1
I2CBUSY=0

Write to
I2CBUF_M

RECEIVE
ACKNOWLEDGE

Transmitting
Byte

Receiving
Byte

I2CNACKI =
ACKNOWLEDGE

Transmit Shift
Register Byte,

MSB First

N

Y

I2CBUSY=1

8 Bits
Transmit?

I2CTXI=1
I2CBUSY=0

Write to
I2CBUF_M

Receive a Bit into
Shift Register

MSB first

N

Y

I2CBUSY=1

8 Bits
Received?

Load Shift
Register into
I2CBUF_M
I2CRXI=1

Send
I2CACK

Y

N

I2CROI=1Receiver
Full

?

First SCL
Rising Edge
Generated

I2CBUSY=0

RECEIVE
ACKNOWLEDGE

Transmitting
Slave Address

Figure 10-5: Master I2C Data Flow

DS4830A User’s Guide

 87

10.1.9 – Receiving Data
The DS4830A I2C Master Controller enters data reception mode after transmitting a slave address with the R/W bit
(I2CMODE) set to a 1. The steps of data reception are shown in Figure 10-5. After transmitting the slave address,
the master controller will switch to receiver mode and automatically begin outputting SCL clock pulses and shifting in
data from SDA.

When receiving data, the DS4830A I2C master controller uses a double buffer consisting of the I2CBUF_M register
and the shift register. This allows the I2C module to continue receiving data while the previous data byte is being
processed. When a full byte of data (8 bits) has been received by the I2C master controller, the master must send an
acknowledgement to the slave. This occurs during the 9th clock cycle when the value in I2CACK is transmitted to the
slave.

After a complete byte (8 bits) of data is received, the I2C master controller will attempt to copy the received data from
the shift register to I2CBUF_M. There are two possible results from the I2C master controller’s attempt to copy the
shift register to I2CBUF_M.

1. If I2CBUF_M is empty, the I2C master controller will copy the data from the shift register into I2CBUF_M.
The I2CRXI flag will be set to indicate a received byte is ready to be read. The setting of I2CRXI can
generate an interrupt if enabled.

2. If I2CBUF_M is full, the data in the shift register cannot be copied into I2CBUF_M. This causes a receive
overrun condition. The receive overrun flag, I2CROI, will be set which can generate an interrupt if enabled.
I2CBUF_M will be full if it was not read by software following the reception of a previous byte.

After receiving a byte of data and the I2CRXI flag being set, it is up to software to read I2CBUF_M prior to a second
byte being received. Reading the I2CBUF_M register returns the received data and also clears I2CBUF_M. As long
as the previous byte of data is read from I2CBUF_M before the next byte has completed, receive overrun will not
occur.

When receive overrun is detected and I2CROI bit is set, the DS4830A master I2C controller will stop outputting SCL
clocks and not clock the acknowledge bit until the receive overrun condition is cleared. The receive overrun condition
and the I2CROI flag can only be cleared by software reading the first byte received from I2CBUF_M. When the
receive overrun condition is cleared, the I2C master controller will copy the second byte that was received into
I2CBUF_M, and again set I2CRXI to indicate a byte of data was received. The I2C master controller will resume
clocking SCL after satisfying SCL low time requirements.

The master I2C controller will continue to automatically clock bytes of data until any of the following conditions occur.

1) A receive overrun condition occurs.
2) A STOP command is issued (I2CSTOP=1) prior to the master I2C controller beginning to clock a new byte.
3) The master I2C controller has clock stretching enabled and the clock is currently being held low by the

master.

DS4830A User’s Guide

 88

10.1.10 – I2C Master Clock Stretching
The Master I2C Controller is capable of clock stretching at the end of each transfer cycle. Clock stretching is when
SCL is held low. If the I2C Clock Stretch Enable bit (I2CSTREN) is set to a 1, the I2C controller will hold SCL low
after the clock pulse defined by the I2C Clock Stretch Select bit (I2CSTRS). If I2CSTRS=0, the I2C controller will hold
SCL low after the falling edge of the 9th clock pulse. If I2CSTRS=1, the I2C controller will hold SCL low after the
falling edge of the 8th clock pulse. When the I2C controller is holding SCL low, the I2C Clock Stretch Interrupt flag
(I2CSTRI) will be set, which can generate an interrupt if enabled. The I2C slave controller will hold SCL low until
I2CSTRI is cleared to 0 by software.

If clock stretching is enabled after the 8th clock pulse, the master I2C controller will continue outputting the value of
the I2CACK bit until clock stretching is released by clearing I2CSTRI. This allows software time to examine the data
that was received prior to sending an ACK or NACK to the slave. The continuous output of I2CACK will occur even if
the master I2C controller is transmitting data. In this mode, the slave should be sending the acknowledgement. To
allow the slave to send the proper acknowledgement, the I2CACK bit should be set to a 1, which prompts the master
I2C controller to release SDA.

The Master I2C Controller may need to use clock stretching when receiving data from a slave. When receiving data,
the master I2C controller automatically generates clock pulses. Without using clock stretching, this automatic clock
generation is only halted when a STOP command is issued or a receive overrun occurs. If clock stretching is
enabled, software can control when each byte of data is clocked from the slave device.

10.1.11 – Resetting the I2C Master Controller
The I2C master controller can be reset by disabling the I2C master controller by writing ‘0’ at I2CEN = 0 in the I2CCN
I2CCN_M register. A reset will force the master I2C controller to release both MSDA and MSCL if they are being held
low by the I2C master controller. A reset may reset few or all bits of I2CCN, I2CST and I2CBUF I2C registers, and
reset the I2C master controller’s internal state machine. Following a reset, the I2C master controller must be re-
initialized before it can be used again.

After a reset, the master I2C controller will be in a known state but the slave devices may be in an unknown state. It
is recommended that the master I2C controller attempts to reset the slave devices prior to beginning communication.
A reset of slave devices can be performed by outputting at least 9 clock pulses on the MSCL line while MSDA is
high. This easiest way to achieve this is to use MSDA and MSCL as GPIO pins (see the GPIO section) while the
master I2C controller is disabled (I2CEN=0). After the 9 clock pulses, a STOP command should be generated. This
can be done either using GPIO, or by enabling the master I2C controller and generating a STOP.

DS4830A User’s Guide

 89

10.1.12 – Alternate Location
The DS4830A has 3-Wire, SPI and I2C Master on the same pins and some application may need the I2C Master and
3-Wire or SPI interfaces. To support such applications, the DS4830A provides an I2C Master alternate location.
When I2CCN_M bit 12 is set to ‘1’, the DACPW4 and DACPW5 pins are used as I2C SDA and I2C SCL pins as I2C
Master alternate locations.

10.1.13 – Operation as a Slave
The DS4830A contains two I2C interfaces, the master (MSDA and MSCL) and slave (DS4830A SDA and SCL pins).
These are two totally separate blocks within the DS4830A. However, both of the blocks are identical. Because of
this, it is possible to operate the master as a slave and also operate the slave as a master.

To operate the master (MSDA and MSCL) as a slave I2C interface, the I2CMST bit in I2CCN_M needs to be set to a
0. When the master is operating as a slave, it will use the same registers (I2CCN_M, I2CST_M, etc.) that it uses for
master operation. However, the bits in these registers will have different functionality, as described in the I2C Slave
Interface Section. The I2CCN_M.SMB_MOD bit only affects the interface when it is operating as a slave. See the
I2C Slave Interface section for details on initializing and using a slave I2C interface. The I2C Master can be used in
the slave mode and allows two user programmable slave addresses using I2CSLA_M and I2CSLA2_M slave
address register. The I2CSLA2_M can be enabled by setting ADD2EN bit in the I2CCN_S register. When I2C Master
Interface is used as the I2C slave mode, it does not have any TX Page or Receive FIFO which are available in the
I2C slave interface (Section 11) only.

10.1.14 – GPIO
When the I2C master controller is disabled (I2CEN=0), the MSDA and MSCL pins can be used as GPIO pins. The
MSDA pin is mapped to GPIO port P1.0 and MSCL is mapped to GPIO port P1.1. When used as GPIO outputs, the
MSDA and MSCL pins are push pull outputs. See the General-Purpose I/O Section for more information on using
MSDA and MSCL as GPIO pins.

DS4830A User’s Guide

 90

10.2 – I2C Master Controller Register Description
Following are the registers that are used to control the I2C Master Interface, which is the MSDA and MSCL pins.
These registers are used to control the I2C master interface if it is operating as either a master or slave. The bit
descriptions below detail how to use these registers when operating in master mode. When operating in slave mode,
some of the bits and registers have different functionality. See the I2C Slave Interface for more information on how to
control the I2C Master Interface when it is operating as a slave.

10.2.1 – I2C Master Control Register (I2CCN_M)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - I2CM_ALT ADD2EN SMB_MOD I2CSTREN I2CGCEN I2CSTOP I2CSTART I2CACK I2CSTRS - - I2CMST I2CEN
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
Access r r r rw rw rw rw rw rw rw rw rw r r rw* rw*
* Unrestricted Read. Unrestricted write access when I2CBUSY=0. Writes to I2CEN are disabled when I2CBUSY=1.

BIT NAME DESCRIPTION
15:11 Reserved Reserved. The user should write 0 to these bits.
12 I2CM_ALT I2C Master Alternate Location: When this bit is set to ‘1’, the DACPW4 and DACPW5

will be used as SDA and SCL respectively as I2C Master alternative location.
11 ADD2EN Slave Address2 Enable: This bit has no function in master mode. In the slave mode,

setting this bit to ‘1’, enables I2CSLA2_M slave address.
10 SMB_MOD SMBus Mode Enable. This bit enables the SMBUS timeout feature only when the master

I2C interface (MSDA and MSCL) is enabled to be a slave interface. See the Operation as
a Slave section for more details.

9 I2CSTREN I2C Master Clock Stretch Enable. Setting this bit to ‘1’ will stretch the clock (hold SCL
low) at the end of the clock cycle specified by I2CSTRS. Clearing this bit disables clock
stretching.

8 I2CGCEN I2C General Call Enable. This bit has no function when operating in master mode.
7 I2CSTOP I2C STOP Enable. Setting this bit to ‘1’ generates a STOP condition. This bit is

automatically cleared to ‘0’ after the STOP condition has been generated.
The setting of I2CSTOP will start the timeout timer if enabled. If the timeout timer expires
before the STOP condition is generated, the I2CTOI flag is set, which can generate an
interrupt if enabled. A timeout will also clear the I2CSTOP bit.

6 I2CSTART I2C START Enable. Setting this bit to ‘1’ generates a START or repeated START
condition. This bit is automatically cleared to ‘0’ after the START condition has been
generated.
The setting of I2CSTART will start the timeout timer if enabled. If the timeout timer
expires before the START condition is generated, the I2CTOI flag is set, which can
generate an interrupt if enabled. A timeout will also clear the I2CSTART bit.

5 I2CACK I2C Master Data Acknowledge Bit. This bit selects the acknowledge bit returned by the
master I2C controller while acting as a receiver. Setting this bit to ‘1’ will generate a NACK
(leaving SDA high). Clearing the I2CACK bit to ‘0’ will generate an ACK (pulling SDA
LOW) during the acknowledgement cycle. This bit will retain its value unless changed by
software or hardware.

4 I2CSTRS I2C Master Clock Stretch Select. Setting this bit to ‘1’ will enable clock stretching after
the falling edge of the 8th clock cycle. Clearing this bit to ‘0’ will enable clock stretching
after the falling edge of the 9th clock cycle. This bit has no effect when clock stretching is
disabled (I2CSTREN=0).

3:2 Reserved Reserved. The user should write 0 to these bits.
1 I2CMST I2C Master Mode Enable. Setting this bit to ‘1’ will enable I2C master functionality on the

MSDA and MSCL pins. Setting this bit to ‘0’ enables I2C slave functionality. See the I2C
Slave Interface section for more details.

0 I2CEN I2C Enable. This bit enables the I2C Master interface. When set to ‘1’, the I2C Master
Interface is enabled. When cleared to ‘0’, the I2C function is disabled.

Notes: The I2CSTART and I2CSTOP are mutually exclusive. If both bits are set at the same time, it is considered an
invalid operation and the I2C controller ignores the request and resets both bits to 0. Setting the I2CSTART bit to 1
while I2CSTOP = 1 is an invalid operation and is ignored, leaving the I2CSTART bit cleared to 0.

DS4830A User’s Guide

 91

10.2.2 – I2C Master Status Register (I2CST_M)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name I2CBUS I2CBUSY - I2CAMI2 I2CSPI I2CSCL I2CROI I2CGCI I2CNACKI - I2CAMI I2CTOI I2CSTRI I2CRXI I2CTXI I2CSRI
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r* r* r rw rw r* rw rw rw* r rw rw rw* rw* rw rw
* Set by hardware only.

BIT NAME DESCRIPTION
15 I2CBUS I2C Master Bus Busy. This bit is set to ‘1’ when a START/repeated START condition is

detected and cleared to 0 when the STOP condition is detected. This bit is reset to ‘0’ when
I2CEN=0. This bit is controlled by hardware and is read only.

14 I2CBUSY I2C Master Busy. This bit is used to indicate the current status of the I2C controller. The
I2CBUSY is set to ‘1’ when the I2C controller is actively participating in a transaction. This bit
is controlled by hardware and is read only.

13 Reserved Reserved. The user should write 0 to this bit.
12 I2CAMI2 I2C Address Match2 Interrupt Flag. This bit has no function when operating in master

mode. In the slave mode, this bit is set when I2CSLA2_M address is matched. This bit must
be cleared to ‘0’ by software once set.

11 I2CSPI I2C Master STOP Interrupt Flag. This bit is set to ‘1’ when a STOP condition is detected.
This bit must be cleared to ‘0’ by software once set. Setting this bit to ‘1’ by software will
cause an interrupt if enabled.

10 I2CSCL I2C Master SCL Status. This bit reflects the logic state of the SCL signal. This bit is set to ‘1’
when SCL is at a high logic level and cleared to ‘0’ when SCL is at a low logic level. This bit is
controlled by hardware and is read only.

9 I2CROI I2C Master Receiver Overrun Flag. This bit indicates a receive overrun when set to ‘1’. This
bit is set to ‘1’ if the receiver has received two bytes since the last software reading of
I2CBUF_M. This bit can only be cleared to ‘0’ by software reading I2CBUF_M. Setting this bit
to ‘1’ by software will cause an interrupt if enabled.

8 I2CGCI I2C General Call Interrupt Flag. This bit has no function when operating in master mode.
7 I2CNACKI I2C Master NACK Interrupt Flag. This bit is set by hardware to ‘1’ if a NACK was received

from a slave or a 0 if an ACK was received from a slave. The setting of this bit to ‘1’ will
cause an interrupt if enabled. This bit can be cleared to ‘0’ by software once set. This bit is
set by hardware only.

6 Reserved Reserved. The user should write 0 to this bit.
5 I2CAMI I2C Address Match Interrupt Flag. This bit has no function when operating in master mode

and is set when I2CSLA_M address matched in the slave mode.
4 I2CTOI I2C Master Timeout Interrupt Flag. This bit is set to ‘1’ if the I2C controller cannot generate a

START or STOP condition or the SCL low time is greater than the timeout value specified in
the I2CTO_M register. This bit must be cleared to ‘0’ by software once set. Setting this bit to
‘1’ by software causes an interrupt if enabled.

3 I2CSTRI I2C Master Clock Stretch Interrupt Flag. This bit is set to ‘1’ to indicate that the I2C master
controller is operating with clock stretching enabled and is currently holding the SCL clock
signal low. The I2C controller will release SCL after this bit has been cleared to ‘0’. This bit
must be cleared to ‘0’ by software once set. This bit is set by hardware only.

2 I2CRXI I2C Master Receive Ready Interrupt Flag. This bit is set to ‘1’ to indicate that a data byte
has been received in I2CBUF_M. This bit must be cleared to ‘0’ by software once set. This
bit is set by hardware only.

1 I2CTXI I2C Master Transmit Complete Interrupt Flag. This bit is set to ‘1’ to indicate that an
address or a data byte has been successfully shifted out and the I2C controller has received
an acknowledgment from the receiver (ACK or NACK). This bit must be cleared to ‘0’ by
software once set. Setting this bit to ‘1’ by software will cause an interrupt if enabled.

0 I2CSRI I2C Master START Interrupt Flag. This bit is set to ‘1’ when a START condition (or restart) is
detected. This bit must be cleared to ‘0’ by software once set. Setting this bit to ‘1’ by
software will cause an interrupt if enabled.

DS4830A User’s Guide

 92

10.2.3 – I2C Master Interrupt Enable Register (I2CIE_M)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - I2CSPIE I2CAMI2IE I2CROIE I2CGCIE I2CNACKIE - I2CAMIE I2CTOIE I2CSTRIE I2CRXIE I2CTXIE I2CSRIE
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r rw rw rw rw rw r rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:12 Reserved Reserved. The user should write 0 to these bits.
11 I2CSPIE I2C Master STOP Interrupt Enable. Setting this bit to ‘1’ will enable an interrupt when a

STOP condition is detected (I2CSPI=1). Clearing this bit to ‘0’ will disable the STOP
detection interrupt.

10 I2CAMI2IE I2C Address Match2 Interrupt Enable. This bit has no function when operating in master
mode and is used in slave mode for interrupt enable for I2CSLA2_M slave address.

9 I2CROIE I2C Master Receiver Overrun Interrupt Enable. Setting this bit to ‘1’ will enable an
interrupt when a receiver overrun condition is detected (I2ROI=1). Clearing this bit to ‘0’ will
disable the receiver overrun detection interrupt.

8 I2CGCIE I2C General Call Interrupt Enable. This bit has no function when operating in master
mode.

7 I2CNACKIE I2C Master NACK Interrupt Enable. Setting this bit to ‘1’ will enable an interrupt when a
NACK is detected (I2CNACKI=1). Clearing this bit to ‘0’ will disable the NACK detection
interrupt.

6 Reserved Reserved. The user should write 0 to this bit.
5 I2CAMIE I2C Address Match Interrupt Enable. This bit has no function when operating in master

mode and used in slave mode for interrupt enable for I2CSLA_M slave register.
4 I2CTOIE I2C Master Timeout Interrupt Enable. Setting this bit to ‘1’ will enable an interrupt when a

timeout condition is detected (I2CTOI=1). Clearing this bit to ‘0’ will disable the timeout
interrupt.

3 I2CSTRIE I2C Master Clock Stretch Interrupt Enable. Setting this bit to ‘1’ will enable an interrupt
when the clock stretch interrupt flag is set (I2CSTRI=1). Clearing this bit will disable the
clock stretch interrupt.

2 I2CRXIE I2C Master Receive Ready Interrupt Enable. Setting this bit to ‘1’ will enable an interrupt
when receive ready interrupt flag is set (I2CRXI=1). Clearing this bit to ‘0’ will disable the
receive ready interrupt.

1 I2CTXIE I2C Master Transmit Complete Interrupt Enable. Setting this bit to ‘1’ will enable an
interrupt when transmit complete interrupt flag is set (I2CTXI=1). Clearing this bit to ‘0’
disables transmit complete interrupt.

0 I2CSRIE I2C Master START Interrupt Enable. Setting this bit to ‘1’ will enable an interrupt when a
START condition is detected (I2CSRI=1). Clearing this bit to ‘0’ will disable the START
detection interrupt.

10.2.4 – I2C Master Data Buffer Register (I2CBUF_M)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - - - - D7 D6 D5 D4 D3 D2 D1 D0
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r r r r rw* rw* rw* rw* rw* rw* rw* rw*
* Unrestricted read access. This register can be written to only when I2CBUSY = 0.

BIT NAME DESCRIPTION
15:8 Reserved Reserved. The user should write 0 to these bits.
7:0 D[7:0] Data for I2C transfer is read from or written to this location. The I2C transmit and receive buffers are

separate but both are addressed at this location.

DS4830A User’s Guide

 93

10.2.5 – I2C Master Clock Control Register (I2CCK_M)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name I2CCKH[7:0] I2CCKL[7:0]
Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:8 I2CCKH[7:0] I2C Clock High Period. These bits define the high period of the I2C clock. This period is defined

by the number of system clocks. The high time duration is calculated using the following equation:
I2C High Time Period = System Clock Period x (I2CCKH[7:0] + 1)

I2CCKH[7:0] must be set to a minimum value of 2 to ensure proper operation. Any value less than 2
is set to 2.

7:0 I2CCKL[7:0] I2C Clock Low Period. These bits define the low period of the I2C clock. This period is defined by
the number of system clocks. The low time duration is calculated using the following equation:

I2C Low Time Period = System Clock Period x (I2CCKL[7:0] + 1)
I2CCKL[7:0] must be set to a minimum value of 4 to ensure proper operation. Any value less than 4
is set to 4.

10.2.6 – I2C Master Timeout Register (I2CTO_M)

Bit 7 6 5 4 3 2 1 0
Name I2CTO7 I2CTO6 I2CTO5 I2CTO4 I2CTO3 I2CTO2 I2CTO1 I2CTO0
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

The I2CTO_M register determines the length of the timeout interval. The timeout interval is defined by the number of I2C bit
periods (SCL high + SCL low). When cleared to 00h, the timeout function is disabled. When set to any other value, the I2C
controller waits until the timeout expires and sets the I2CTOI flag. The timeout period is:

I2C Timeout = I2C Bit Rate x (I2CTO[7:0] + 1)
The timeout timer resets to 0 and starts to count after each of the following events.

• The I2CSTART bit is set.
• The I2CSTOP bit is set.
• Any time that SCL goes low.

10.2.7 – I2C Slave Address Register (I2CSLA_M and I2CSLA2_M)

 Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - - - - A6 A5 A4 A3 A2 A1 A0 I2CMODE
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r r r r rw rw rw rw rw rw rw rw

These register have no function when operating in master mode and are used in slave mode to program the slave
address.

DS4830A User’s Guide

 94

SECTION 11 – I2C-COMPATIBLE SLAVE INTERFACE
The DS4830A provides an I2C-compatible slave controller that allows communication with a host device and
supports four user-programmable slave addresses. The DS4830A I2C slave controller can support 400kHz I2C
operation with a host without clock stretching. The DS4830A I2C slave interface also has a dedicated 8-byte transmit
page for each slave and 8-byte receive FIFO (shared between all four slaves). The DS4830A can also have flash
programming using I2C bootloading functionality provided by the slave controller. This interface can be set up to
provide system interrupts after each I2C event. Figure 11-1 shows the basic operation flow of the I2C slave controller.
The blocks in Figure 11-1 that are shaded are shown in more detail in Figure 11-2.

Figure 11-1: Slave I2C Flow

DS4830A User’s Guide

 95

11.1 – Detailed Description
The I2C slave controller has two different modes that can be used to transmit and receive data. The first option
transmits and received data one byte at a time. An advanced mode uses 8-byte buffers for transmiting and receiving
data, which is enabled by setting the TXPG_EN bit in the I2CTXFIE and the FIFO_EN bit in the I2CRXFIE registers.
Using this advanced mode of operation, the DS4830A can support 400kHz I2C operation without clock stretching.

11.1.1 – Default Operation
The I2C slave controller is enabled (I2CCN_S.I2CEN=1) by default. As long as the I2C slave controller is enabled, the
DS4830A I2C bootloader can operate. This allows bootloading of blank devices without any setup of the I2C slave
controller. Prior to the I2C slave controller being used for normal data communication, the I2C SFRs should be
configured for necessary I2C communication. These configurations include setting an I2C slave address and enabling
the slave controller to generate interrupts during I2C events. This controller can also operate as an SMBUS slave.

11.1.2 – Slave Addresses
Prior to communication, an I2C slave address may need to be selected. By default, the I2C slave controller normally
responds to two slave addresses. The I2C bootloader uses address 34h. This bootloader address cannot be changed
and should not be used as the device slave address for normal communication. The second slave address (default
address 36h) is the address used for communication with the host. This slave address can be programmed by
writing the desired slave address to the I2CSLA_S register. The address contained in the I2CSLA_S register is the
address with the R/W bit. If an address other than 36h is desired, the I2CSLA_S register can be programmed with
this new address.

The DS4830A has three more user-programmable slave addresses that can be programmable using the
I2CSLA2_S, I2CSLA3_S, and I2CSLA4_S registers, respectively. By default, these slave addresses are disabled
and can be individually enabled by writing ‘1’ to the ADDR2EN, ADDR3EN, and ADDR4EN bits, which are defined in
the I2CCN_S register.

The I2C slave controller supports the General Call Address, which is 00h with the I2CSLA_S slave register. This
feature can be enabled by setting the I2CCN_S.I2CGCEN bit to a 1.

11.1.3 – I2C START Detection
The I2C Slave Controller always monitors the I2C bus for an I2C START, which is a high to low transition on SDA
while SCL is held high. If an I2C START (or restart) condition is detected, the I2C slave sets the I2CSRI bit in the
I2CST_S register, which can cause an interrupt if enabled. The detection of a START brings the I2C controller out of
its idle state. Following a START, the I2C controller begins to monitor data on the I2C bus and the I2CBUSY bit is set
to a 1. The I2CBUS bit is also set to a 1 to indicate that the I2C bus is currently busy.

11.1.4 – I2C STOP Detection
The I2C Slave Controller also always monitors the I2C bus for an I2C STOP, which is a low to high transition on SDA
while SCL is held high. If an I2C STOP condition is detected, the I2C slave controller sets the I2CSPI bit in the
I2CST_S register, which can cause an interrupt if enabled. The I2CBUS bit is cleared to 0 following a STOP to
indicate that the I2C bus is no longer busy.

11.1.5 – Slave Address Matching
Following an I2C START or restart, the I2C slave controller knows that the next byte of data to be transmitted by the
host should be the slave address. The I2C slave automatically monitors for the slave address without any software
interaction. The I2C slave controller compares the first 7 bits received to the slave address programmed in the
I2CSLA_S register. It also compares the first 7 bits received to the slave addresses programmed in the I2CSLA2_S,
I2CSLA3_S, and I2CSLA4_S registers, if they are enabled. If the received slave address matches with one of
enabled I2C Slave addresses, the I2C slave controller does the following steps. This is illustrated in Figure 11-2
(without RX FIFO and TX Pages) and Figure 11-4 (with RX FIFO and TX Pages).

• Transmit an ACK or NACK on the 9th clock based upon the setting of the I2CCN_S.I2CACK bit.
• Set the matched slave address I2CMODE bit with the value of the received R/W bit. This bit can be used by

software to determine if the I2C slave controller should receive or transmit data.
• Sets the I2CST_S.I2CAMI bit to indicate that a slave address match was made. The setting of this bit can

generate an interrupt if enabled. Additionally, the I2C slave controller sets following values in SLA [3:0] bits in
CUR_SLA register according to the matched slave address.

DS4830A User’s Guide

 96

Matched Slave Address CUR_SLA.SLA[3:0]
I2CSLA_S 1

I2CSLA2_S 2
I2CSLA3_S 4
I2CSLA4_S 8

• Clears the I2CBUSY flag.

Upon completion of the slave data byte (7 bits of slave address + R/W bit + ACK/NACK), the I2C slave controller
enters one of the following three states.

• Data Transmit: The slave address matched and the R/W bit is ‘1’. The host is now expecting data from the
DS4830A. The I2C slave controller retains control of the SDA line so data can be transmitted to the host. The
host can start clocking data from the slave at any time.

• Data Receive: The slave address is matched and the R/W bit is ‘0’. The host wants to write data to the I2C
slave. After sending the ACK/NACK bit, the DS4830A releases SDA and is ready to receive a byte of data.

• Wait for START/STOP: The received slave address did not match any enabled slave addresses. The I2C
controller enters idle state and waits for the next START or STOP condition.

Transmitting

Byte
Receiving

Byte

Y

Receive

Addr[6:0] + R/W

Match
I2CSLA_S[7:1]

?

Transmit
I2CACK

I2CBUSY=0

N

I2CAMI=1

Set
I2CMODE

According to R/W

Detect START
I2CSRI=1
I2CBUS=1

I2CBUSY=1

I2CNACKI =
ACKNOWLEDGE

Transmit Shift
Register Byte,

MSB First

N

Y

I2CBUSY=1

8 Bits
Transmit

?

I2CTXI=1
I2CBUSY=0

Write to
I2CBUF_S

Receive a Bit into
Shift Register, MSB first

N

Y

I2CBUSY=1

8 Bits
Received

?

Load Shift
Register into
I2CBUF_S
I2CRXI=1

Send
I2CACK

Y

N

I2CROI=1Receiver
Full
?

Detect 1st SCL
Rising Edge

I2CBUSY=0

Receiving Slave
Address

RECEIVE
ACKNOWLEDGE

Figure 11-2: Slave I2C Data Flow

DS4830A User’s Guide

 97

11.1.6 – Advanced Mode Operation RX FIFO and TX Pages
The DS4830A I2C slave controller has a few features that make 400kHz I2C communication without clock stretching
possible.

Shift Register

Address Match

I2CSLA4_S

I2CSLA3_S

I2CSLA2_S

I2CSLA_S

8-Byte
Receive FIFO

MUX

TX0 4 WORDS PAGE
TX2 4 WORDS PAGE
TX3 4 WORDS PAGE
TX4 4 WORDS PAGE

SLA[3:0]

SDA

SCL

SLA[3:0]

Write through
I2CBUF_S

Read through
I2CBUF_S

Figure 11-3: I2C Slave Block Diagram with RX FIFO and TX Pages

The I2C controller allows the user to define a memory map structure in the user SRAM for each individual slave
address. This is done using the MEM_ADDR[7:0] and PAGE[2:0] bits in the MADDR, MADDR2, MADDR3, and
MADDR4 registers. These register bits 10:0 are used to define start address (SRAM Address) of the memory map
structure and bit 12 is used to define memory rollover boundary between 128 and 256. The I2C controller maintains
the memory address of the individual slave address in the read memory address pointer RPNTR register. Each slave
address has dedicated RPNTR, which is selected based on the SLA[3:0] bits. The read address (maintained by
RPNTR) is automatically incremented by 1 word after every write to the I2CBUF_S. The I2C controller handles 128 or
256 boundary rollover internally on the read memory address.

11.1.6.1 – RX FIFO
The DS4830A I2C controller has an 8-byte receive FIFO. This FIFO is shared among the enabled slave addresses.
The receive FIFO is controlled using the I2CRXFIE (I2C Receive FIFO Interrupt Enable) and I2CRXST (I2C Receive
FIFO Status Flags) registers and is read from the I2CBUF_S register. See the individual bit description in I2C Slave
Controller Register Description section. This FIFO is shown in Figure 11-3.

11.1.6.2 – Transmit Pages
The I2C controller has four Transmit (TX) pages, each dedicated to a specific slave address. Each of the TX pages
holds 4 16-bit words. When transmitting data, the controller automatically selects one of the TX pages based upon
the SLA[3:0] bits in the CUR_SLA (Current Slave Address) which is set during a successful slave address match
event. The TX Pages are filled by first setting the SLA[3:0] bits, then writing data to the I2CBUF_S register. I2C
transmission using the TX Pages is controlled using the I2CTXFIE (I2C Transmit Interrupt Enable) and I2XTXFST
(I2C Transmit Page Status Flags) registers. See the individual bit description in I2C Slave Controller Register
Description section. The TX pages are shown in Figure 11-3.

11.1.6.3 Advanced Mode Memory Address Detection
The I2C Slave Controller provides an option to automaticcaly detect the memory address being accessed by the
host. The MADDR_EN bits in the CUR_SLA register enable the memory address to be automatically captured by the
I2C controller. Following an address match with I2CMODE = 0 (Write), the I2C slave controller knows that the next
byte of data to be received is the memory address of the memory map and copies the received byte into the
MEM_ADDR[7:0] bits in the MPNTR (Memory address pointer) register with PAGE[2:0] from active slave address.
When the memory address is captured, the MADI bit in the I2CST2_S register will be set, which can generate an
interrupt if enabled. The MPNTR shows the current memory address of the active slave address. To enable memory
address dection, the proper MADDR_EN bit must be set and the RX FIFO must be enabled.

DS4830A User’s Guide

 98

Detect I2C Start
I2CSRI = 1
I2CBUS = 1

I2CBUSY = 1

Receive
Addr[6:0] + /R\W

Matched
Enabled Slave

Addresses

Transmit
I2CACK

Set I2CMODE bit
according to /R\W

I2CAMI = 1 and set
CUR_SLA according

to Matched Slave
address

I2CBUSY = 0

No

Yes

Receiving Slave
Address

Transmitting
Data

Update Transmit
Pages at the I2C

Start Interrupt

Is Active
Transmit Page

Generated
Threshold
Interrupt

Transmit Shift
Register Byte, MSB

First

8 Bits
Transmit

?

Receive Acknowledge and
set I2CNACKI accordingly

Yes

I2CTXI = 1
I2CBUSY = 0

No

Update Transmit
page with new
transmit data

Receiving Data

Detect 1st SCL Rising
Edge

I2CBUSY = 1

Receive a Bit into
Shift Register MSB

first

8 Bits
Received

?

No

RX FIFO
FULL

?

Set FULL bit
and set

I2CACK = 1

Yes

No

Yes

Load Shift Register
into RX FIFO

Send I2CACK

I2CBUSY = 0

Figure 11-4: Slave I2C Data Flow Using 8-Byte Transmit Page and 8-Byte Receive FIFO

11.1.7 – Transmitting Data
The DS4830A I2C Slave Controller enters into data transmission mode after receiving a matching slave address with
the R/W bit set to 1.

11.1.7.1 – Normal Mode Data Transmission
The steps of data transmission are shown in Figure 11-2. Data transmission is started by software loading data into
the I2CBUF_S register. Loading I2CBUF_S causes the I2CBUSY bit in I2CST_S to be set. Once I2CBUSY bit is set,
a write to I2CBUF_S is ignored. The first bit of data (most significant bit) is shifted to SDA when SCL is low. Each of
the next seven bits is then shifted following high to low transitions of SCL.

Following the 8th bit data (least significant bit) being shifted to SDA, the SDA line is released by the slave controller.
This allows the host to signal an ACK or NACK during the 9th clock cycle. The I2C slave controller samples the
acknowledge bit following the 9th SCL rising edge. After the acknowledge bit is sampled, the I2C slave controller
performs the following tasks:

DS4830A User’s Guide

 99

• Sets the I2CST_S.I2CTXI flag to indicate that the I2C slave controller has transmitted a byte. This can
generate an interrupt if enabled.

• Sets or clears the I2CST_S.I2CNACKI flag to reflect the received acknowledge bit. The setting of I2CNACKI
can generate an interrupt if enabled.

• Clears the I2CST_S.I2CBUSY flag to indicate that the I2C slave controller is not actively participating in the
transfer of data.

The detection of an ACK by the I2C slave controller indicates that the host wants to receive another byte of data.
The I2C slave controller maintains control of SDA following the ACK. The next byte to transmit needs to be loaded
into I2CBUF_S prior to the host starting to clock this next byte.

The detection of a NACK indicates that the host does not want to receive any additional data. The I2C slave
controller releases control of SDA following the reception of NACK bit. After the NACK, the slave controller enters
idle state and monitors the I2C bus for a START or STOP condition.

11.1.7.2 – Advanced Mode Data Transmission
To achieve 400kHz I2C without clock stretch, the DS4830A I2C Controller has 4-word TX Pages for each slave
address. The TXPG_EN bit in the I2CTXFIE register enables the TX PAGEs of the all enabled slave addresses. The
user should pre-fill these 4-word pages to ensure data is available to transmit immedialty following a slave address
match. When data is being transmit, the I2C controller automatically selects one of the four TX Pages depending
upon which SLA [3:0] bits are set during the slave address match event.

The individual TX page should be written in the word mode using the I2CBUF_S. See below pseudo code to write
the TX page of I2CSLA2_S address

MOVE DP[0], #01Ch //DP[0] in word mode
MOVE M2[21], #00F2h //Select TX PAGE2 in CUR_SLA

MOVE RPNTR, #0000h //Initialize RPNTR to current read address. When written to 0000h,
 //RPNTR will populate with the correct SRAM memory location for
 //read data

 //Copy word 1
MOVE DP[0], RPNTR //Copy current memory address to the data pointer
MOVE M2[0], @DP[0] //Copy data from @DP[0] to I2CBUF_S register (M2[0])
 //I2CBUF_S will load data into TX PAGE
 // RPNTR = RPNTR + 1 automatically when data is loaded

//into I2CBUF_S. Rollover handled internally.

 //Copy word 2
MOVE DP[0], RPNTR //Copy current memory address in the data pointer
MOVE M2[0], @DP[0] //Copy data from @DP[0] to TX PAGE via I2CBUF_S register

 //Copy word 3
MOVE DP[0], RPNTR //Copy current memory address in the data pointer
MOVE M2[0], @DP[0] //Copy data from @DP[0] to TX PAGE via I2CBUF_S register

 //Copy word 4
MOVE DP[0], RPNTR //Copy current memory address in the data pointer
MOVE M2[0], @DP[0] // Copy data from @DP[0] to TX PAGE via I2CBUF_S register

When TX page is enabled, the SLA[3:0] bits in the CUR_SLA register selects one of the TX pages as shown in
Figure 11-3. The I2C controller reads data from the selected TX page and writes to the shift register. When the I2C
controller is transmitting data, the threshold interrupt flag (THSH) in the I2CTXST register will be set when there are
4 bytes are remaining. This can generate an interrupt, if enabled.

DS4830A User’s Guide

 100

11.1.8 – Receiving Data
The I2C Slave Controller enters data reception mode after receiving a matching slave address with the R/W bit set to
0. The steps of data reception are shown in Figure 11-2 and Figure 11-4. The reception process begins when the I2C
slave controller detects the first rising edge of SCL. This rising edge sets I2CBUSY bit to ‘1’ and clocks the first bit
(MSB) of data from SDA into the data shift register.

11.1.8.1 – Receiving Data in Normal Mode
When receiving data, the I2C slave controller uses a double buffer consisting of the I2CBUF_S register and the shift
register. This allows the I2C module to continue receiving data while the previous data byte is being processed.
After a byte (8 bits) of data is received, the I2C slave controller attempts to copy the received data from the shift
register to I2CBUF_S and two possible events can occur during this attempt.

1. If I2CBUF_S is empty, the I2C slave controller copies the data from the shift register into I2CBUF_S. The
I2CRXI flag is set to indicate a received byte is ready for reading. The setting of I2CRXI can generate an
interrupt if enabled. Software can now read data from the I2CBUS_S.

2. If I2CBUF_S is full, the data in the shift register cannot be copied into I2CBUF_S. This causes a receive
overrun condition. The receive overrun flag, I2CROI is set which can generate an interrupt if enabled.
I2CBUF_S can be full if it is not read by software following the reception of a previous byte.

When the receive overrun occurs (I2CROI = 1), any new incoming data is not shifted into the I2C slave controller.
The controller responds to any bytes received with a NACK regardless of the setting of the I2CACK bit. The receive
overrun condition and the I2CROI flag can only be cleared by software reading received first byte from I2CBUF_S.
When the receive overrun condition is cleared, the I2C slave controller copies the second byte that is received into
I2CBUF, and again sets I2CRXI to indicate a byte of data is received. The I2C slave controller resumes its normal
operation in the next SCL clock cycle after I2CROI is cleared. To avoid losing any data, I2CROI must to be cleared
prior to the first SCL clock rising edge of the next byte.

After the 9th bit of any byte has been received, the I2CBUSY bit is cleared to indicate that the controller is no longer
participating in a data transaction. The value in I2CACK is transmitted to the host on the 9th SCL clock cycle,
assuming the I2C slave controller is not operating in receive overrun.

11.1.8.2 – Receiving Data in Advanced Mode
As shown in Figure 11-4, when receive FIFO is enabled, the incoming data is copied into the FIFO. The receive
FIFO will set flags in the I2CRXFST register when the FIFO is empty, half full with 4 bytes, or full with 8 bytes of
received data. Interrupts can be generated for these events if the appropriate bits are set in the I2CRXFIE register.
The receive FIFO is read one word at a time by reading the I2CBUF_S register.

11.1.9 – Clock Stretching
If slave device cannot receive or transmit another complete byte of data, it may hold SCL low, forcing the master to
wait. Data transfer continues when the slave is ready for next byte of data after releasing SCL.

The I2C slave controller is capable of holding SCL low at the completion of each byte being transferred. If the I2C
Clock Stretch Enable bit (I2CSTREN) is set to a 1, the I2C controller holds SCL low after the 8th or 9th clock pulse as
configured in the I2C Clock Stretch Select bit (I2CSTRS). If I2CSTRS=0, the I2C controller holds SCL low after the
falling edge of the 9th clock pulse. If I2CSTRS=1, the I2C controller holds SCL low after the falling edge of the 8th
clock pulse. When the I2C controller is holding SCL low, the I2C Clock Stretch Interrupt bit (I2CSTRI) is set. The I2C
slave controller holds SCL low until I2CSTRI is cleared to '0' by software. Figure 11-5 shows the I2C slave controller
clock stretching after receiving the 9th clock of a byte.

DS4830A User’s Guide

 101

Figure 11-5: Slave I2C Clock Stretching

Normally when the I2C slave controller is receiving data, the value of I2CACK is sent after the falling edge of the 8th
clock. However, if clock stretching is enabled after the 8th clock, the I2C slave controller continues to output the
I2CACK bit until clock stretching is released by software. This allows software time to inspect data that is received
before responding with an appropriate acknowledge bit.

The applications should use clock stretching if the I2C slave interrupts are not assigned the highest priority. Generally
the application is set to respond only to interrupts from the I2C slave controller, thus not having to continuously poll
the slave I2C controller. After each byte transfer is complete, the I2C slave controller needs to either read the
received byte from I2CBUF_S or write the next byte to transmit to I2CBUF_S. Without using clock stretching, the
host can begin clocking the next byte before the I2C slave controller is prepared. A few conditions that may require
clock stretching to be enabled are listed below when used without RX FIFO and TX Pages.

• When a slave address match is made and the R/W bit is set, the I2C slave controller is expected to transmit
a byte of data to the host. This byte of data needs to be written to I2CBUF_S. If clock stretching is not used,
software may not be able to write the correct data into I2CBUF_S prior to the first clock of the data byte.

• Following the transmission of data to the host, another byte may be requested by the host sending an ACK
bit. The I2C slave controller has to write next data to the I2CBUF_S prior to the first clock of the second byte
which sometimes may not be possible.

• After a byte is received by the I2C slave controller it may be necessary to stretch the clock. This allows
software to read the byte from I2CBUF_S and perform data processing.

DS4830A User’s Guide

 102

11.1.10 – SMBus Timeout
The I2C slave controller can also be used for SMBus or PMBus™ communication. To maintain SMBus compatibility,
a 30ms timer is implemented by the I2C slave controller. The purpose of this timer is to issue a timeout interrupt
when SCL is low for greater than 30ms. The timer only starts when none of the following conditions are true:

1. The I2C slave controller is in the idle state and there are no communications on the I2C bus. The timer should
not generate interrupts regardless of how long SCL is low.

2. The SMBUS mode bit is not set. This ensures the SMBUS timeout functionality does not interfere with
normal I2C functionality.

3. SCL is high. The timer is inactive whenever SCL is high. The timer is reset when it is inactive.
4. The I2C slave controller is disabled or used as a master I2C controller. The timer is not needed in this case.

The following description explains when the SMBus timer starts, assuming that all other START conditions are met.
When the I2C slave controller is idle and it receives a START, it exits the idle state and the timer becomes active
(starts counting) any time SCL goes low. If following the START, the master addresses a different slave on the bus,
the I2C slave controller is returned to the idle state and the timer is reset and becomes inactive. In short, as soon as
SCL goes low following a START, the SMBus timer becomes active until the I2C slave controller re-enters into idle
state.

When a timeout occurs, the timeout bit (I2CTOI) is set, which can generate an interrupt if enabled. If a timeout
occurs, it may be necessary to reset the I2C slave controller. See the Resetting the I2C Slave Controller section for
more details. SMBus mode selection is controlled by the SMB_MOD bit in I2CCN_S register. When the Slave
SMBus Mode Operation bit (SMB_MOD) is set to 1, the SMBUS timeout functionality is enabled.

11.1.11 – Resetting the I2C Slave Controller
The I2C Slave Controller can be reset by disabling the I2C Slave controller by writing ‘0’ at I2CEN bit in the I2CCN_S
register. A reset forces the I2C slave controller to release both SDA and SCL if they are being held low by the I2C
slave controller. The reset may reset few or all bits of I2CCN, I2CST and I2CBUF_S registers and reset the internal
state machine of the I2C slave controller. Following a reset, the I2C slave controller must be re-initialized.

Note: When the I2C slave interface is disabled, the I2C bootloader is not available.

PMBus is a trademark of SMIF, Inc.

DS4830A User’s Guide

 103

11.2 – I2C Slave Controller Register Description
Following are the registers that are used to control the I2C Slave Interface.

11.2.1 – I2C Slave Control Register (I2CCN_S)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - ADDR4EN ADDR3EN ADDR2EN SMB_MOD I2CSTREN I2CGCEN - - I2CACK I2CSTRS - I2CMODE - I2CEN

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Access r r rw rw rw rw rw* rw* r r rw* rw* r r r rw*

* Unrestricted Read. Unrestricted write access when I2CBUSY=0. Writes to I2CEN are disabled when I2CBUSY=1.

BIT NAME DESCRIPTION
15:14 Reserved Reserved. The user should not write to these bits.
13 ADDR4EN I2C Slave Address 4 Enable: Setting this bit to ‘1’, enables slave address I2CSLA4_S and the I2C

controller uses this slave address during the address match event. When this bit is set to ‘0’, disables
slave address I2CSLA4_S.

12 ADDR3EN I2C Slave Address 3 Enable: Setting this bit to ‘1’, enables slave address I2CSLA3_S and the I2C
controller uses this slave address during the address match event. When this bit is set to ‘0’, disables
slave address I2CSLA3_S.

11 ADDR2EN I2C Slave Address 2 Enable: Setting this bit to ‘1’, enables slave address I2CSLA2_S and the I2C
controller uses this slave address during the address match event. When this bit is set to ‘0’, disables
slave address I2CSLA2_S.

10 SMB_MOD Slave SMBUS Mode Operation. When this bit is set to a ‘1’, SMBus timeout functionality is enabled
for the I2C slave interface. When this bit is cleared to ‘0’, the SMBus timeout functionality is disabled.
See the SMBUS Timeout section for more details.

9 I2CSTREN I2C Slave Clock Stretch Enable. Setting this bit to '1' stretches the clock (holds SCL low) at the end
of the clock cycle specified in I2CSTRS. Clearing this bit disables clock stretching.

8 I2CGCEN I2C Slave General Call Enable. Setting this bit to '1' enables the I2C to respond to a general call
address (address = 0000 0000). Clearing this bit to '0' disables response to general call address.

7:6 Reserved Reserved. The user should not write to these bits.
5 I2CACK I2C Slave Data Acknowledge Bit. This bit selects the acknowledge bit returned by the I2C controller

while acting as a receiver. Setting this bit to ‘1’ generates a NACK (leaving SDA high). Clearing the
I2CACK bit to ‘0’ generates an ACK (pulling SDA LOW) during the acknowledgement cycle. This bit
retains its value unless changed by software or hardware.

4 I2CSTRS I2C Slave Clock Stretch Select. Setting this bit to ‘1’ enables clock stretching after the falling edge of
the 8th clock cycle. Clearing this bit to ‘0’ enables clock stretching after the falling edge of the 9th clock
cycle. This bit has no effect when clock stretching is disabled (I2CSTREN=0).

3 Reserved Reserved. The user should not write to this bit.
2 I2CMODE I2C Transfer Mode Select. This bit reflects the actual R/W bit value in current I2C transfer and is set

by hardware. The same bit is set by hardware for corresponding slave address register following a
successful slave address match.

1 Reserved Reserved. The user should not write to this bit.
0 I2CEN I2C Slave Enable. This bit enables the I2C Slave function. When set to ’1’, I2C Slave communication

is enabled. When cleared to ‘0’, the I2C function is disabled.

DS4830A User’s Guide

 104

11.2.2 – I2C Slave Status Register (I2CST_S)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name I2CBUS I2CBUSY - - - I2CSCL I2CROI I2CGCI I2CNACKI - I2CAMI I2CTOI I2CSTRI I2CRXI I2CTXI I2CSRI
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r* r* r r r r* rw rw rw* r rw rw rw* rw* rw rw
* Set by hardware only.

BIT NAME DESCRIPTION
15 I2CBUS I2C Slave Bus Busy. This bit is set to ‘1’ when a START/repeated START condition is detected and

cleared to '0' when the STOP condition is detected. This bit is reset to ‘0’ on all forms of reset or
when I2CEN=0. This bit is controlled by hardware and is read only.

14 I2CBUSY I2C Slave Busy. This bit is used to indicate the current status of the I2C module. The I2CBUSY is
set to '1' when the I2C controller is actively participating in a transaction. This bit is controlled by
hardware and is read only.

13:11 Reserved Reserved. The user should not write to these bits.
10 I2CSCL I2C Slave SCL Status. This bit reflects the logic state of SCL signal. This bit is set to '1' when SCL

is at a logic high (1), and cleared to '0' when SCL is at a logic low (0). This bit is controlled by
hardware and is read only.

9 I2CROI I2C Slave Receiver Overrun Flag. This bit indicates a receive overrun when set to '1'. This bit is set
to ‘1’ if the receiver has received two bytes since the last CPU read of I2CBUF_S. This bit can only
be cleared to '0' by software reading the I2CBUF_S. Setting this bit to 1 by software causes an
interrupt if enabled.

8 I2CGCI I2C Slave General Call Interrupt Flag. This bit is set to '1' when the general call is enabled
(I2CGCEN=1) and the general call address (00h) is received. This bit must be cleared to '0' by
software once set. Setting this bit to '1' by software causes an interrupt if enabled.

7 I2CNACKI I2C Slave NACK Interrupt Flag. This bit is set by hardware to either a ‘1’ if a NACK was received
from the host or a ‘0’ if an ACK was received from the host. The setting of this bit to a ‘1’ causes an
interrupt if enabled. This bit can be cleared to ‘0’ by software once set.

6 Reserved Reserved. The user should not write to this bit.
5 I2CAMI I2C Slave Address Match Interrupt Flag. This bit is set to '1' when the I2C controller receives an

address that matches the contents of the slave address register (I2CSLA_S). This bit must be
cleared to '0' by software once set. Setting this bit to ‘1’ by software causes an interrupt if enabled.

4 I2CTOI I2C Slave Timeout Interrupt Flag. This bit is set to ‘1’ if SMBUS timeout is enabled and SCL is low
longer than 30ms. This bit must be cleared to ‘0’ by software once set. Setting this to ’1’ causes an
interrupt if enabled.

3 I2CSTRI I2C Slave Clock Stretch Interrupt Flag. This bit indicates that the I2C slave controller is operating
with clock stretching enabled and is currently holding the SCL clock signal low. The I2C controller
releases SCL after this bit has been cleared to '0'. This bit must be cleared to '0' by software once
set. This bit is set by hardware only.

2 I2CRXI I2C Slave Receive Ready Interrupt Flag. This bit indicates that a data byte has been received in
the I2C buffer. This bit must be cleared by software once set. This bit is set by hardware only.

1 I2CTXI I2C Slave Transmit Complete Interrupt Flag. This bit indicates that an address or a data byte has
been successfully shifted out and the I2C controller has received an acknowledgment from the
receiver (NACK or ACK). This bit must be cleared by software once set. Setting this bit to ‘1’ by
software causes an interrupt if enabled.

0 I2CSRI I2C Slave START Interrupt Flag. This bit is set to '1' when a START condition (or restart) is
detected. This bit must be cleared to '0' by software once set. Setting this bit to '1' by software
causes an interrupt if enabled.

DS4830A User’s Guide

 105

11.2.3 – I2C Slave Interrupt Enable Register (I2CIE_S)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - - I2CROIE I2CGCIE I2CNACKIE - I2CAMIE I2CTOIE I2CSTRIE I2CRXIE I2CTXIE I2CSRIE
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r r rw rw rw r rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:10 Reserved Reserved. The user should not write to these bits.
9 I2CROIE I2C Slave Receiver Overrun Interrupt Enable. Setting this bit to ‘1’ causes an interrupt to the

CPU when a receiver overrun condition is detected (I2ROI=1). Clearing this bit to ‘0’ disables the
receiver overrun detection interrupt.

8 I2CGCIE I2C Slave General Call Interrupt Enable. Setting this bit to '1' causes an interrupt to the CPU
when a general call is detected (I2CGCI=1). Clearing this bit to '0' disables the general call
interrupt.

7 I2CNACKIE I2C Slave NACK Interrupt Enable. Setting this bit to ‘1’ causes an interrupt to the CPU when a
NACK is detected (I2CNACKI=1). Clearing this bit to ‘0’ disables the NACK detection interrupt.

6 Reserved Reserved. The user should not write to this bit.
5 I2CAMIE I2C Slave Address Match Interrupt Enable. Setting this bit to ‘1’ causes an interrupt to the CPU

when the I2C controller detects an address that matches the I2CSLA_S value (I2CAMI=1).
Clearing this bit to ‘0’ disables the address match interrupt.

4 I2CTOIE I2C Slave Timeout Interrupt Enable. Setting this bit to ‘1’ causes an interrupt to the CPU when
an SMBUS timeout condition is detected (I2CTOI=1). Clearing this bit to ‘0’ disables the timeout
interrupt.

3 I2CSTRIE I2C Slave Clock Stretch Interrupt Enable. Setting this bit to '1' generates an interrupt to the CPU
when the clock stretch interrupt flag is set (I2CSTRI=1). Clearing this bit disables the clock stretch
interrupt.

2 I2CRXIE I2C Slave Receive Ready Interrupt Enable. Setting this bit to ‘1’ causes an interrupt to the CPU
when receive ready interrupt flag is set (I2CRXI=1). Clearing this bit to ‘0’ disables the receive
ready interrupt.

1 I2CTXIE I2C Slave Transmit Complete Interrupt Enable. Setting this bit to ‘1’ causes an interrupt to the
CPU when transmit complete interrupt flag is set (I2CTXI=1). Clearing this bit to ‘0’ disables
transmit complete interrupt.

0 I2CSRIE I2C Slave START Interrupt Enable. Setting this bit to ‘1’ causes an interrupt to the CPU when a
START condition is detected (I2CSRI=1). Clearing this bit to ‘0’ disables the START detection
interrupt.

DS4830A User’s Guide

 106

11.2.4 – I2C Slave Status2 Register (I2CST2_S)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - - - - - - I2CSPI SADI MADI - I2CXFRON -
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r r r r r r rw rw rw r rw r

BIT NAME DESCRIPTION
15:6 Reserved Reserved. The user should not write to these bits.
5 I2CSPI I2C Slave STOP Interrupt Flag. This bit is set to '1' when a STOP condition is detected. This bit

must be cleared to '0' by software once set. Setting this bit to '1' by software causes an interrupt if
enabled.

4 SADI I2C START and Start of Address Cycle Flag. This bit is set to ‘1’ if the I2C controller has detected
an I2C START and 2 cycles of SCL clock. Setting this to ’1’ causes an interrupt if enabled. This bit
must be cleared to ‘0’ by software once set.

3 MADI Memory Address Detected Interrupt Flag. This bit indicates that the I2C slave controller has
detected a memory address and copied address into bit [7:0] of MPNTR register. This bit must be
cleared to ‘0’ by software once set. Setting this bit to ‘1’ by software causes an interrupt if enabled.

2 Reserved Reserved. The user should not write to this bit.
1 I2CXFRON I2C Slave Transmit Complete Interrupt Flag. This bit indicates that an address or a data byte has

been successfully shifted out and the I2C controller has received an acknowledgment from the
receiver (NACK or ACK). This bit must be cleared by software once set.

0 Reserved Reserved. The user should not write to this bit.

11.2.5 – I2C Slave Interrupt Enable2 Register (I2CIE2_S)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - - - - - - I2CSPIE SADIE MADIE - - -
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r r r r r r rw rw rw r rw r

BIT NAME DESCRIPTION
15:6 Reserved Reserved. The user should not write to these bits.
5 I2CSPIE I2C Slave STOP Interrupt Enable. Setting this bit to ‘1’ causes an interrupt to the CPU when a

STOP condition is detected (I2CSPI=1). Clearing this bit to ‘0’ disables the STOP detection interrupt.
4 SADIE I2C Slave After Start Interrupt Enable. Setting this bit to ‘1’ causes an interrupt to the CPU after

I2C start + two master clocks.
3 MADIE I2C Slave Memory Address Interrupt Enable. Setting this bit to ‘1’ causes an interrupt to the CPU

when a memory address is detected on the I2C bus. The memory address cycle is detected by I2C
controller after address match with write. The I2C controller looks for data after address match with
write and copies into the MPNTR register. Clearing this bit to ‘0’ disables the memory address
detection interrupt.

2:0 Reserved Reserved. The user should not write to these bits.

DS4830A User’s Guide

 107

11.2.6 – I2C Slave Address Registers (I2CSLA_S, I2CSLA2_S, I2CSLA3_S and I2CSLA4_S)

I2CSLA_S
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - - - - A6 A5 A4 A3 A2 A1 A0 I2CMode
Reset* 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
Access r r r r r r r r rw rw rw rw rw rw rw rw
* Default value of I2CSLA_S is 36h.

I2CSLA2_S, I2CSLA3_S and I2CSLA4_S
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - - - - A6 A5 A4 A3 A2 A1 A0 I2CMode
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r r r r rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:8 Reserved Reserved. The user should not write to these bits.
7:1 A[6:0] I2C Slave Address. These address bits contain the address of the I2C slave interface. When a match to

this address is detected, the I2C controller automatically acknowledges the host with the I2CACK bit
value and the I2CAMI flag is set to ‘1’. An interrupt is generated if enabled. The I2CSLA_S is enabled by
default. Other slave address registers participate in the address match event only when the
corresponding slave address enable bit in the I2CCN_S register is set to ‘1’.

0 I2CMode I2C Transfer Mode Select. This bit reflects the actual R/W bit value in current value in I2C transfer and
set by hardware.

11.2.7 – I2C Slave Data Buffer Register (I2CBUF_S)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:0 D[15:0] Data for I2C transfer is read from or written to this register. The I2C transmit and receive buffers are

different internal registers, however both are addressed at this register.
The receive FIFO and TX pages are read and written using the I2CBUF_S register.

DS4830A User’s Guide

 108

11.2.8 – Memory Map Address Register (MADDR)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - ROLLOVR - PAGE[2:0] MEM_ADDR[7:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r rw r rw rw rw rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:13 Reserved Reserved. The user should not write to these bits.
12 ROLLOVR Rollover Config: Setting this bit to ‘1’, enables boundary rollover at the memory address 256 and

Setting this bit to ‘0’, enables boundary rollover at the memory address 128 for the s;ave address
defined by the I2CSLA_S register.

11 Reserved Reserved. The user should not write to this bit.
10:8 PAGE PAGE: These bits define the page of memory map structure for I2CSLA_S slave address.
7:0 MEM_ADDR Memory Address. These bits define the start address of memory map structure for I2CSLA_S slave

address.

11.2.9 – Memory Map Address Register (MADDR2)

BIT NAME DESCRIPTION
15:13 Reserved Reserved. The user should not write to these bits.
12 ROLLOVR Rollover Config: Setting this bit to ‘1’, enables boundary rollover at the memory address 256 and

Setting this bit to ‘0’, enables boundary rollover at the memory address 128 for the s;ave address
defined by the I2CSLA2_S register.

11 Reserved Reserved. The user should not write to this bit.
10:8 PAGE PAGE: These bits define the page of memory map structure for I2CSLA2_S slave address.
7:0 MEM_ADDR Memory Address. These bits define the start address of memory map structure for I2CSLA2_S slave

address.

11.2.10 – Memory Map Address Register (MADDR3)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - ROLLOVR - PAGE[2:0] MEM_ADDR[7:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r rw r rw rw rw rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:13 Reserved Reserved. The user should not write to these bits.
12 ROLLOVR Rollover Config: Setting this bit to ‘1’, enables boundary rollover at the memory address 256 and

Setting this bit to ‘0’, enables boundary rollover at the memory address 128 for the s;ave address
defined by the I2CSLA3_S register.

11 Reserved Reserved. The user should not write to this bit.
10:8 PAGE PAGE: These bits define the page of memory map structure for I2CSLA3_S slave address.
7:0 MEM_ADDR Memory Address. These bits define the start address of memory map structure for I2CSLA3_S slave

address.

11.2.11 – Memory Map Address Register (MADDR4)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - ROLLOVR - PAGE[2:0] MEM_ADDR[7:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r rw r rw rw rw rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:13 Reserved Reserved. The user should not write to these bits.
12 ROLLOVR Rollover Config: Setting this bit to ‘1’, enables boundary rollover at the memory address 256 and

Setting this bit to ‘0’, enables boundary rollover at the memory address 128 for the s;ave address
defined by the I2CSLA4_S register.

11 Reserved Reserved. The user should not write to this bit.
10:8 PAGE PAGE: These bits define the page of memory map structure for I2CSLA_S slave address.
7:0 MEM_ADDR Memory Address. These bits define the start address of memory map structure for I2CSLA4_S slave

address.

DS4830A User’s Guide

 109

11.2.12 – Current Slave Address Register (CUR_SLA)

Bit 7 6 5 4 3 2 1 0
Name MADDR_EN14 MADDR_EN3 MADDR_EN2 MADDR_EN1 SLA[3:0]
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:8 Reserved Reserved. The user should not write to these bits.
7 MADDR_EN4 Memory Address Detection Enable 4: Setting this bit to ‘1’, enables the memory address detection as

described in section 11.1.6.3 for the slave address defined by the I2CSLA4_S register.
6 MADDR_EN3 Memory Address Detection Enable 3: Setting this bit to ‘1’, enables the memory address detection as

described in section 11.1.6.3 for the slave address defined by the I2CSLA3_S register.
5 MADDR_EN2 Memory Address Detection Enable 2: Setting this bit to ‘1’, enables the memory address detection as

described in section 11.1.6.3 for the slave address defined by the I2CSLA2_S register.
4 MADDR_EN1 Memory Address Det1ction Enable 1: Setting this bit to ‘1’ enables the memory address detection as

described in section 11.1.6.3 for the slave address defined by the for I2CSLA_S register.
3:0 SLA[3:0] Slave Address Select. These bits indicate the current active slave address. These bits are updated

after the slave address match event by the I2C controller. Using these bits, the TX Pages are selected
by the I2C controller during the I2C transmits events. The I2C controller allows writing to these bits.
However, user should write to these bits before the address match event which allows I2C controller to
select intended TX page.

11.2.13 – Memory Address Pointer Register (MPNTR)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - PAGE[2:0] MEM_PNTR[7:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r rw rw rw rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:11 Reserved Reserved. The user should not write to this bit.
10:8 PAGE PAGE: These bits define the page of memory map structure for current active slave address.
7:0 MEM_ADDR Memory Address. These bits store current address of memory map structure of the current active

slave address. The I2C controller automatically increments and performs boundary rollover for the
active slave address according to ROLLOVER bit (ROLLOVR) defined in the corresponding MADDR
register.

11.2.14 – Read Memory Address Pointer Register (RPNTR)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - PAGE[2:0] MEM_PNTR[7:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r rw rw rw rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:11 Reserved Reserved. The user should not write to this bit.
10:8 PAGE PAGE: These bits define the page of memory map structure for current active slave address.
7:0 MEM_ADDR Memory Address. These bits maintain current read address of memory map structure for the current

active slave address and is used in word mode.

Writing 0000h to RPTNR will cause this register to update with a pointer to the current SRAM location to store data
based upon the memory location defined in the active slave address’ MADDR register and the captured memory
location.

DS4830A User’s Guide

 110

11.2.15 – I2C TX Page Interrupt Enable Register (I2CTXFIE)

Bit 7 6 5 4 3 2 1 0
Name TXPG_EN - - - - - THSH -
Reset 0 0 0 0 0 0 0 0
Access rw r r r r r rw r

BIT NAME DESCRIPTION
7 TXPG_EN TX PAGE ENABLE: Setting this bit to ‘1’, enables the TX PAGE for all enabled slave addresses.
6:2 Reserved Reserved. The user should not write to these bits.
1 THSH TX Page Threshold Reach Enable: Setting this bit to ‘1’, enables TX page threshold reach interrupt.
0 Reserved Reserved. The user should not write to this bit.

11.2.16 – I2C TX Page Status Register (I2CTXFST)

Bit 7 6 5 4 3 2 1 0
Name - - - - - - THSH -
Reset 0 0 0 0 0 0 0 0
Access r r r r r r rw r

BIT NAME DESCRIPTION
7:2 Reserved Reserved. The user should not write to these bits.
1 THSH TX Page Threshold Reach Enable: The I2C controller sets this bit to ‘1’ when number of bytes

remaining in the TX page is 4 for the current active slave.
0 Reserved Reserved. The user should not write to this bit.

11.2.17 – I2C Receive FIFO Interrupt Enable (I2CRXFIE)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - - - - FIFO_EN - - - FULL - THSH EMPTY
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r r r r rw r r r rw r rw rw

BIT NAME DESCRIPTION
15:8 Reserved Reserved. The user should not write to these bits.
7 FIFO_EN FIFO Enable: Setting this bit to ‘1’, enables the receive FIFO.
6:4 Reserved Reserved. The user should not write to these bits.
3 FULL FIFO FULL: Setting this bit to ‘1’, generates an interrupt when FIFO receives 8 bytes (FIFO FULL).
2 Reserved Reserved. The user should not write to these bits.
1 THSH FIFO THSH: Setting this bit to ‘1’, generates an interrupt when FIFO receives 4 bytes.
0 EMPTY FIFO EMPTY: Setting this bit to ‘1’, generates an interrupt when receive FIFO is empty

11.2.18 – I2C Receive FIFO Interrupt Enable (I2CRXFST)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - - - - - - - - FULL - THSH EMPTY
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r r r r r r r r rw r rw rw

BIT NAME DESCRIPTION
15:4 Reserved Reserved. The user should not write to these bits.
3 FULL FIFO FULL: This bit indicates that the receive FIFO has received 8 bytes. This bit must be cleared

to ‘0’ by software once set. Setting this bit to ‘1’ by software causes an interrupt if enabled.
2 Reserved Reserved. The user should not write to these bits.
1 THSH FIFO EMPTY: This bit indicates that the receive FIFO has received 4 bytes. This bit must be

cleared to ‘0’ by software once set. Setting this bit to ‘1’ by software causes an interrupt if enabled.
0 EMPTY FIFO EMPTY: This bit indicates that the receive FIFO is empty. This bit must be cleared to ‘0’ by

software once set. Setting this bit to ‘1’ by software causes an interrupt if enabled.

DS4830A User’s Guide

 111

SECTION 12 – SERIAL PERIPHERAL INTERFACE (SPI)
The DS4830A provides two independent Serial Peripheral Interfaces (SPI) – one defined as SPI Master and SPI
Slave. Each SPI module of the DS4830A microcontroller provides an independent serial communication channel to
communicate synchronously with peripheral devices in a multiple master or multiple slave system. Each interface
allows independent access to a four-wire full-duplex serial bus that can be operated in either master mode or slave
mode. The SPI functionality must be enabled by setting the SPI Enable (SPIEN) bit of the SPI Control register to ‘1’.
The maximum data rate of the SPI interface is 1/2 the system clock frequency for master mode operation and 1/4 the
system clock frequency for slave mode operation.
Note: Even though SPI Master and SPI Slave interfaces are defined, each interface can operate as SPI Master or
SPI Slave or both.

The four external interface signals used by the SPI module are MOSI (Master Out Slave In), MISO (Master In Slave
Out), SPI Clock (SPICK), and Slave Select (SSEL).

SPI Status and Control Unit

SHIFT Register15/7

15/7
Receive Data Buffer

0

0SPIB
Writes

SPIB
Reads

MOSI

MISO

SPICK

SSEL

SPI Master
SPICN.MSTM = 1

SPIEN =
SPICN.0

SPI Status and Control Unit

SHIFT Register15/7

15/7
Receive Data Buffer

0

0
SPIB
Writes

SPIB
Reads

MISO

MOSI

SPICK

SSEL

SPI Slave
SPICN.MSTM = 0

SPIEN =
SPICN.0

Figure 12-1: SPI Master and Slave Block Diagram

12.1 – Serial Peripheral Interface (SPI) Detailed Description

The block diagram Figure 12-1 shows the SPI external interface signals, control unit, read buffer, and single shift
register common to the transmit and receive data path for both the master and slave blocks. SPI can be viewed as a
synchronous serial I/O port that shifts data stream of variable length (8 or 16 bits) between peripheral devices. Data
is shifted out of the SPI through the programmable shift register which is formed by serially connecting the master’s
shift register and a slave shift register.

Each time that an SPI transfer completes, the received character is transferred to the read buffer, giving double
buffering on the receive side. The CPU has read/write access to the control unit and the SPI data buffer (SPIB).
Writes to SPIB are always directed to the shift register while reads always come from the receive data buffer. During
an SPI transfer, data is simultaneously transmitted and received. The serial clock signal (SPICK) synchronizes
shifting and sampling of the bit stream on the two serial data pins.

For both the master and the slave, data is shifted out of the shift register on one edge of SPICK and latched into the
shift register on the opposite SPICK clock edge. The master can initiate data transfer at any time since it controls the
serial clock. The slave select signal (SSEL) allows individual selection of slave SPI device in the network.

12.1.1 – SPI Transfer Formats
During an SPI transfer, data is simultaneously transmitted and received over two serial data lines with respect to a
single serial shift clock. The polarity and phase of the serial shift clock are the primary components in defining the
SPI data transfer format. The polarity of the serial clock corresponds to the idle logic state of the clock line and
therefore also defines which clock edge is the active edge. To define a serial shift clock signal that idles in a logic low
state (active clock edge = rising), the Clock Polarity Select (CKPOL; SPICF.0) bit should be configured to a 0, while
setting CKPOL = 1 causes the shift clock to idle in a logic high state (active clock edge = falling). The phase of the
serial clock selects which edge is used to sample the serial shift data. The Clock Phase Select (CKPHA; SPICF.1) bit

DS4830A User’s Guide

 112

controls whether the active or inactive clock edge is used to latch the data. When CKPHA is set to 1, data is sampled
on the inactive clock edge (clock returning to the idle state). When CKPHA is set to 0, data is sampled on the active
clock edge (clock transition to the active state). Together, the CKPOL and CKPHA bits allow four possible SPI data
transfer formats illustrated in Figure 12-2 and Figure 12-3. The Slave Select signal can remain asserted between
successive transfers. Table 12-1 illustrates the SPI modes.

Table 12-1: SPI Modes

CKPOL CKPHA MODE SAMPLE POINT
0 0 Mode 0 Rising edge
0 1 Mode 1 Falling edge
1 0 Mode 2 Falling edge
1 1 Mode 3 Rising edge

C K PO L =0
C K PH A =1

C K PO L =1
C K PH A =1

M O SI/M ISO

S S E L
SA S=1

Sam pling Points

Transfer C ycle

LSBM SB

1 2 3 4 5 6 7 8

Figure 12-2: SPI Transfer Formats (CKPHA=1)

CKPOL=0
CKPHA=0

CKPOL=1
CKPHA=0

MOSI/MISO

SSEL
SAS=1

Sampling Points

Transfer Cycle

LSBMSB

1 2 3 4 5 6 7 8

MSB
MSB of
Next
Transfer

Figure 12-3: SPI Transfer Formats (CKPHA=0)

DS4830A User’s Guide

 113

12.1.2 – SPI Character Lengths
To flexibly accommodate different SPI transfer data lengths, the character length for any transfer is user configurable
via the Character Length Bit (CHR) in the SPI Configuration Register. These are independently configurable for the
master and slave SPI. The CHR bit allows selection of either 8-bit or 16-bit transfers. When CHR is 0, the character
length is 8-bits; when CHR is set to 1, the character length is 16 bits.

When loading 8-bit characters into the SPIB data buffer, the byte for transmission should be right-justified or placed
in the least significant byte of the word. When a byte transfer completes, the received byte is right-justified and can
be read from the least significant byte of the SPIB word. The most significant byte of the SPIB data buffer is not used
when transmitting and receiving 8-bit characters.

12.2 – SPI System Errors
Three types of SPI system errors can be detected by the SPI module. A mode fault error arises in a multiple master
system when more than one SPI device simultaneously tries to be a master. A receive overrun error occurs when an
SPI transfer completes before the previous character has been read from the receive data buffer. The third kind of
error, write collision, indicates that an attempted write to SPIB was detected while a transfer was in progress
(STBY=1).

12.2.1 – Mode Fault
When a SPI device is configured as a master and its Mode Fault Enable bit (SPICN.2: MODFE) is also set, the Slave
Select pin is configured as input for mode fault detection. The mode fault error occurs if Slave Select signal is
asserted by an external device. This error can occur in multi master system when a second SPI device attempts to
function as a master in the system. This causes the possibility of contention, which may damage the CMOS push
pull drivers. The active state of Slave Select is defined by Slave Active Select bit (SPICF.6: SAS). If SAS is cleared
to 0 and a low SSEL input signal is detected while MODFE is set, a mode fault error has occurred. If SAS is set to 1,
a high SSEL signal indicates that a mode fault error has occurred. The mode fault error detection is to provide
protection from such damage by disabling the bus drivers. When a mode fault is detected, the following actions are
taken immediately by hardware:

1. The MSTM bit is forced to 0 to reconfigure the SPI device as a slave.
2. The SPIEN bit is forced to 0 to disable the SPI module.
3. The Mode Fault (SPICN.3: MODF) status flag is set. Setting the MODF bit can generate an interrupt if it is

enabled.

The application software must correct the system conflict before resuming its normal operation. The MODF flag is set
automatically by hardware but must be cleared by software or a reset once set. Setting the MODF bit to 1 by
software causes an interrupt if enabled.

Mode fault detection is optional and can be disabled by clearing the MODFE bit to 0. Disabling the mode fault
detection will disable the function of the Slave Select signal during the master mode operation, allowing the
associated port pin to be used as a general-purpose I/O.

Note that the mode fault mechanism does not provide full protection from bus contention in multiple master, multiple
slave systems. For example, if two devices are configured as master at the same time, the mode fault-detect circuitry
offers protection only when one of them selects the other as slave by asserting its Slave Select signal. Also, if a
master accidentally activates more than one slave and those devices try to simultaneously drive their output pins,
bus contention can occur without a mode fault error being generated.

12.2.2 – Receive Overrun
Since the receive direction of SPI is double buffered, there is no overrun condition as long as the received character
in the read buffer is read before the next character in the shift register is ready to be transferred to the read buffer.
However, if previous data in the read buffer has not been read out when a transfer cycle is completed and the new
character is loaded into the read buffer, a receive overrun occurs and the Receive Overrun flag (SPICN.5: ROVR)
will be set. Setting the ROVR flag indicates that the newer received character has been overwritten and is lost.
Setting the ROVR bit to 1 will cause an interrupt if enabled. Once set, the ROVR bit is cleared only by software or a
reset.

DS4830A User’s Guide

 114

12.2.3 – Write Collision While Busy
A write collision occurs if an attempt to write the SPIB data buffer is made during a transfer cycle (STBY=1). Since
the shift register is single buffered in the transmit direction, writes to SPIB are made directly into the shift register.
Allowing the write to SPIB while another transfer is in progress could easily corrupt the transmit/receive data. When
such a write attempt is made, the current transfer continues undisturbed, the attempted write data is not transferred
to the shift register, and the control unit sets the Write Collision flag (SPICN.4: WCOL). Setting the WCOL bit to 1
causes an interrupt if SPI interrupt sources are enabled. Once set, the WCOL bit is cleared only by software or a
reset. Normally, write collisions are associated solely with slave devices since they do not control initiation of
transfers and do not have access to as much information about the SPICK clock as the master. As a master, write
collisions are completely avoidable, however, the control unit detects write collisions for both master and slave
modes.

12.3 – SPI Interrupts
Four flags in the SPICN SFR can generate an SPI interrupt when enabled.

• Mode Fault (MODF) – This is applicable in Master mode only.
• Write Collision (WCOL)
• Receive overrun
• SPI Transfer Complete

These four bits serve as interrupts flags that allow the system programmer to specify the source of interrupts which
may cause an interrupt request to the CPU. These bits default to 0 on reset and must be cleared by software when
set. Once the SPI Interrupt is enabled by setting the ESPII bit to ‘1’, any of the four SPI interrupt sources can cause
an interrupt.

12.4 – SPI Master
The DS4830A has the following SPI interface signals.

FUNCTIONAL NAME EXTERNAL PIN NAME
MSPIDI: Input to serial shift register (MISO) MDI
MSPIDO: Output from serial shift register (MOSI) MDIO
MSPICK: Serial shift clock sourced to slave device(s) (SPICK) MCL
MSPICS: (Optional) Mode fault detection input if enabled (MODFE=1) (SSEL) MCS

12.4.1 – SPI Transfer Baud Rates
When operating in the master mode, the SPI serial clock is sourced to the external slave device(s). The serial clock
baud rate is determined by the clock divide ratio specified in the SPI Clock Divider Ratio (SPICK) register. The SPI
module supports 256 different clock divide ratio selections for serial clock generation. The SPI Baud rate is
determined by the following formula:

12.4.2 – SPI Master Operation
The SPI module is placed in master mode by setting the Master Mode Enable (MSTM) bit in the SPI Control register
to 1. Only an SPI master device can initiate a data transfer. The master is responsible for manually
selecting/deselecting slave(s) via the MSPICS signal or any GPIO pin. Writing a data character to the SPI shift
register (SPIB) while in master mode starts a data transfer. The SPI master immediately shifts out the data serially
on the MSPIDO pin, most significant bit first, while providing the serial clock on MSPICK output. New data is
simultaneously received on the MSPIDI pin into the least significant bit of the shift register. The data transfer format
(clock polarity and phase), character length, and baud rate are all configurable as described earlier in the section.
During the transfer, the SPI Transfer Busy (SPICN.7:STBY) flag will be set to indicate that a transfer is in process. At
the end of the transfer, the data contained in the shift register is moved into the receive data buffer, the STBY bit is
cleared by hardware, and the SPI Transfer Complete flag (SPICN.6: SPIC) is set. Setting of the SPIC bit will
generate an interrupt request if SPI interrupt sources are enabled (ESPII=1).

The SPI master can be configured to transfer either 8 or 16 bits in an operation to accommodate network with
different word length requirements. The data transfer rate for the network is determined by the divider ratio in the

SPI Baud Rate =
 Core Clock
2 * Clock Divide Ratio

where Clock Divider Ratio = (SPICK.7:0) + 1

DS4830A User’s Guide

 115

master’s SPI Clock SFR. The SPI transfer format is selected by the master device using two bits SPI Clock Polarity
(CKPOL) and Clock Phase in the SPI Configuration Register.

Figure 12-4: SPI Master Pin Configurations with Mode Fault Enable and Disable

In master mode, the MSPICS pin of the master defaults to general-purpose I/O pin. However, as shown in Figure 12-
4 the MSPICS can be used for mode fault detection input if the Mode Fault Enable bit (MODFE) is set. When the SPI
is configured as a master and the MSPICS pin is used as mode fault detection input, a mode fault condition occurs if
an active signal is detected on MSPICS. This indicates that some other device on the network is attempting to be a
master. The active signal is defined by the Slave Active Select (SAS) bit. When MODFE is set to 1 and SAS is
cleared to 0, an active low signal on MSPICS will trigger a mode fault. If MODFE is set to 1 and SAS is set to 1, an
active high signal on MSPICS will indicate a mode fault condition. Either way, the master device will sense the error
and immediately disables the SPI device to avoid potentially damaging bus contentions.

To avoid unintentional mode fault error, prior to enabling the SPI peripheral as master with mode fault enabled,
software should check the status of MSPICS. MSPICS should be held inactive for at least 2 system clocks before
enabling the SPI master. Otherwise, mode fault will occur and the SPI MSTM bit will be cleared to 0 and the SPI
disabled.

SPI Master

MSPICK

MSPIDO

MSPIDI

MSPICS

CS
(Any GPIO)

SPI Master

CS
(Any GPIO)

Mode Fault Enable

CS: External Slave Chip Select

Mode Fault Disable

Note: MSPICS can be used as CS for External Slave Device

MSPICK

MSPIDO

MSPIDI

DS4830A User’s Guide

 116

12.4.3 – SPI Master Register Descriptions
SPI Master Module has four SFR registers. These are SPICN_M, SPICF_M, SPICK_M and SPIB_M. The SPI
control register SPICN_M and SPI configuration register SPICF_M controls and configures the Serial Peripheral
Interface, respectively. The SPI Clock Register SPICK_M configures SPI Baud rate in Master mode. The SPI Buffer
SPIB_M is used in SPI data transfer. SPI Master SFRs are located in Module 5.

12.4.3.1 – SPI Control Register (SPICN_M)

Bit 7 6 5 4 3 2 1 0
Name STBY SPIC ROVR WCOL MODF MODFE MSTM SPIEN
Reset 0 0 0 0 0 0 0 0
Access r rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
7 STBY Write Transfer Busy Flag. This bit indicates the current status of the SPI module.

STBY is set to ‘1’ when SPI transfer cycle is started and is cleared to ‘0’ when the
transfer cycle is completed. This bit is controlled by hardware and is read only for user
software.

6 SPIC SPI Transfer Complete Flag. This bit indicates the completion of a transfer cycle
when set to ‘1’. This bit must be cleared to ‘0’ by software once set. Setting this bit to
logic ‘1’ by software will cause an interrupt if enabled.

5 ROVR Receive Overrun Flag. This bit indicates a receive overrun when set to ‘1’. This is
caused if two or more characters are received since the last read by the processor. The
newer data is lost. This bit must be cleared to ‘0’ by software once set. Setting this bit
to logic ‘1’ by software will cause an interrupt if enabled.

4 WCOL Write Collision Flag. This bit indicates a write collision when set to ‘1’. This is caused
by attempting to write to the SPIB while a transfer cycle is in progress. . This bit must
be cleared to ‘0’ by software once set. Setting this bit to logic ‘1’ by software will cause
an interrupt if enabled.

3 MODF Mode Fault. This bit is the mode fault flag when the SPI is operating as a master If the
MODFE bit is set, the active signal that causes a mode fault error is defined in the SAS
bit. If the SAS bit is cleared to 0, a low MSPICS signal will trigger a mode fault error. If
the SAS bit is set to 1, a high MSPICS signal will indicate that the mode fault error has
occurred. This bit must be cleared to ‘0’ by software once set. Setting this bit to logic ‘1’
by software will cause an interrupt if enabled. This flag has no meaning in slave mode.

2 MODFE Mode Fault Enable. When set to ‘1’, MSPICS will be utilized for mode fault detection
during SPI master mode operation. When cleared to ‘0’, the MSPICS input has no
function and its pin can be used for other purposes.

1 MSTM Master Mode Enable. When set to ‘1’, the SPI module will operate in Master mode
when the SPI module is enabled (SPIEN = 1). When set to ‘0’, SPI module will operate
in Slave mode when the SPI module enabled (SPIEN = 1).

0 SPIEN SPI Enable. Setting this bit to ‘1’, enables the SPI Module. Setting this bit to ‘0’,
disables the SPI module.

DS4830A User’s Guide

 117

12.4.3.2 – SPI Configuration Register (SPICF_M)

Bit 7 6 5 4 3 2 1 0
Name ESPII SAS - - - CHR CKPHA CKPOL
Reset 0 0 0 0 0 0 0 0
Access rw rw r r r rw rw rw

BIT NAME DESCRIPTION
7 ESPII SPI Interrupt Enable. Setting this bit to ‘1’ enables the SPI interrupt when MODF,

WCOL, ROVR or SPIC flags are set. Clearing this bit to ‘0’ disables the SPI interrupt.

6 SAS Slave Active Select.
In Master mode, this is used only when mode fault is enabled.
If SAS = 0, then mode fault is detected when active low is detected on MSPICS pin.
If SAS = 1, then mode fault is detected when active high is detected on MSPICS pin.

5:3 Reserved Reserved, Read Returns 0.
2 CHR Character Length Bit. The CHR bit determines the character length for an SPI

transfer cycle. A character can consist of 8 or 16 bits in length. When CHR bit is ‘0’, the
character is 8 bits; when CHR is set to ‘1’, the character is 16 bits.

1 CKPHA SPI Clock Phase Select. This bit is used with the CKPOL bit to determine the SPI
transfer format. When the CKPHA is set to ‘1’, the SPI will sample input data at an
inactive edge. When the CKPOL is cleared to 0, the SPI will sample input at an active
edge.

0 CKPOL SPI Clock Polarity Select. This bit is used with the CKPHA bit to determine the SPI
transfer format. When the CKPOL is set to ‘1’, the SPI uses the clock falling edge
as an active edge. When the CKPOL is cleared to 0, the SPI selects the clock rising
edge as an active edge.

12.4.3.3 – SPI Clock Register (SPICK_M)

Bit 7 6 5 4 3 2 1 0
Name SPICK_M[7:0]
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
7:0 SPICK_M[7:0] Clock Divide Ratio Bits. These bits select one of the 256 divide ratios (0 to 255) used for

the baud rate generator, with bit 7 as the most significant. The frequency of SPI baud rate
is calculated using the following equation:

SPI Baud Rate = ½ x Core Clock / (SPICK[7:0] + 1)

12.4.3.4 – SPI Data Buffer Register (SPIB_M)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name SPIB_M[15:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access* rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
*Unrestricted read, write is allowed outside of a transfer cycle; when the STBY bit is set, write is blocked and will
cause write collision error.

BIT NAME DESCRIPTION
15:0 SPIB_M[15:0] SPI Data Buffer Bits. Data for SPI is read from or written to this location. The serial

transmit and receive buffers are separate but both are addressed at this location.

DS4830A User’s Guide

 118

12.5 – SPI Slave
The DS4830A has the following SPI interface signals.

FUNCTIONAL NAME EXTERNAL PIN NAME
SSPIDO: Output from serial shift register (MISO) GP6
SSPIDI: Input to serial shift register (MOSI) SDA
SSPICK: Serial shift clock from SPI master (SPICK) SCL
SSPICS: Slave select input (CS) GP7

12.5.1 – SPI Slave Select
The SPI Slave Select SSPICS can be configured to accept either an active low or active high signal via the Slave
Active Select Bit (SAS) in the SPI Configuration Register. The SAS bit allows the selection of SSPICS active state.
When SAS is cleared to 0, SSPICS is configured to be active low. When SAS is set to 1, SSPICS is configured to be
active high.

12.5.2 – SPI Transfer Baud Rates
When operating as a slave device, the SPI serial clock is driven by an external master. For proper slave operation,
the serial clock provided by the external master should not exceed the system clock frequency divided by 4.

12.5.3 – SPI Slave Operation
The SPI module operates in the slave mode when the MSTM bit is cleared to 0. In Slave mode, the SPI is dependent
on the SSPICK sourced from the master to control the data transfer.

The Slave Select SSPICS input must be externally asserted by a master before data exchange can take place.
SSPICS must be asserted before data transaction begin and must remain asserted for the duration of the
transaction. If data is to be transmitted by the slave device, it must be written to its shift register before the beginning
of a transfer cycle, otherwise the character already in the shift register will be transferred. The slave device considers
a transfer to begin with the first clock edge or the active SSPICS edge, dependent on the data transfer format. When
SAS is cleared to 0, the active SSPICS edge is the falling edge of SSPICS while if SAS is set to 1, the active
SSPCIS edge is the rising edge of SSPICS.

The SPI slave receives data from the external master SSPIDI pin, most significant bit first, while simultaneously
transferring the contents of its shift register to the master on the SSPIDO pin, also most significant bit first. Data
received from the external master replaces data in the internal shift register until the transfer completes. Just like in
the master mode of operation, received data is loaded into the read buffer and the SPI Transfer Complete flag is set
at the end of transfer. The setting of the Transfer Complete flag will generate an interrupt request if enabled. Note
also that when CKPHA=0, the most significant bit of the SPI data buffer will be shifted out on the 8th shift clock edge.

When SSPICS is not asserted, the slave device ignores the SSPICK clock and the shift register is disabled. Under
this condition, the device is basically idle, no data is shifted out from the shift register and no data is sampled from
the SSPIDI pin. The SSPIDO pin is placed in an input mode and is weakly pulled high to allow other devices on the
bus to drive the bus. De-assertion of the SSPICS signal by the master during a transfer (before a full character, as
defined by CHR, is received) aborts the current transfer. When the transfer is aborted, no data is loaded into the read
buffer, the SPIC flag is not set, and the slave logic and the bit counter are reset.

In slave mode, the Clock Divider Ratio bits (CKR7:0) have no function since the serial clock is supplied by an
external master. The transfer format (CKPOL, CKPHA settings) and the character length selection (CHR) for the
slave device, however, should match the master for a proper communication.

Slave mode is used when the SPI is controlled by another peripheral device. The SPI is in slave mode when the
MSTM bit is cleared to logic 0.

Each SPI (named as SPI master or SPI slave in this section) can be used as either SPI master or Slave.

DS4830A User’s Guide

 119

12.5.4 – SPI Slave Register Descriptions
SPI Slave Module has four SFR registers. These are SPICN_S, SPICF_S, SPICK_S, and SPIB_S. The SPI control
register SPICN_S and SPI configuration register SPICF_S controls and configures the Serial Peripheral Interface
respectively. The SPI Clock Register SPICK_S is not used in SPI Slave mode as SPI clock is driven by SPI Master.
The SPI Buffer SPIB_S is used in SPI data transfer. SPI Slave SFRs are located in Module 1.

12.5.4.1 – SPI Control Register (SPICN_S)

Bit 7 6 5 4 3 2 1 0
Name STBY SPIC ROVR WCOL MODF MODFE MSTM SPIEN
Reset 0 0 0 0 0 0 0 0
Access r rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
7 STBY Write Transfer Busy Flag. This bit indicates the current status of the SPI module.

STBY is set to ‘1’ when SPI transfer cycle is started and is cleared to ‘0’ when the
transfer cycle is completed. This bit is controlled by hardware and is read only for user
software.

6 SPIC SPI Transfer Complete Flag. This bit indicates the completion of a transfer cycle
when set to ‘1’. This bit must be cleared to ‘0’ by software once set. Setting this bit to
logic ‘1’ by software will cause an interrupt if enabled.

5 ROVR Receive Overrun Flag. This bit indicates a receive overrun when set to ‘1’. This is
caused if two or more characters are received since the last read by the processor. The
newer data is lost. This bit must be cleared to ‘0’ by software once set. Setting this bit
to logic ‘1’ by software will cause an interrupt if enabled.

4 WCOL Write Collision Flag. This bit indicates a write collision when set to ‘1’. This is caused
by attempting to write to the SPIB while a transfer cycle is in progress. . This bit must
be cleared to ‘0’ by software once set. Setting this bit to logic ‘1’ by software will cause
an interrupt if enabled.

3 MODF Mode Fault.
This flag has no meaning in slave mode.

2 MODFE Mode Fault Enable
This flag has no meaning in slave mode. In slave mode, the SSPICS pin always
functions as a slave select input signal to the SPI module, independent of the MODFE
bit.

1 MSTM Master Mode Enable. When set to ‘1’, SPI module will operate as Master mode when
SPI module is enabled (SPIEN = 1). When set to ‘0’, SPI module will operate as Slave
mode when SPI module enabled (SPIEN = 1).

0 SPIEN SPI Enable. Setting this bit to ‘1’, enables SPI Module. Setting this bit to ‘0’, disables
the SPI module.

DS4830A User’s Guide

 120

12.5.4.2 – SPI Configuration Register (SPICF_S)

Bit 7 6 5 4 3 2 1 0
Name ESPII SAS - - - CHR CKPHA CKPOL
Reset 0 0 0 0 0 0 0 0
Access rw rw r r r rw rw rw

BIT NAME DESCRIPTION
7 ESPII SPI Interrupt Enable. Setting this bit to ‘1’ enables the SPI interrupt when MODF,

WCOL, ROVR or SPIC flags are set. Clearing this bit to ‘0’ disables the SPI interrupt.

6 SAS Slave Active Select.
In Slave Mode, this bit is used to determine the SSPICS active state. When the SAS is
cleared to ‘0’, the SSPICS is active low and will respond to an external low signal.
When the SAS is set to ‘1’, the SSPICS is active high.

5:3 Reserved Reserved, Read Returns 0.
2 CHR Character Length Bit. The CHR bit determines the character length for an SPI

transfer cycle. A character can consist of 8 or 16 bits in length. When CHR bit is ‘0’, the
character is 8 bits; when CHR is set to ‘1’, the character is 16 bits.

1 CKPHA SPI Clock Phase Select. This bit is used with the CKPOL bit to determine the SPI
transfer format. When the CKPHA is set to ‘1’, the SPI will sample input data at an
inactive edge. When the CKPOL is cleared to 0, the SPI will sample input at an active
edge.

0 CKPOL SPI Clock Polarity Select. This bit is used with the CKPHA bit to determine the SPI
transfer format. When the CKPOL is set to ‘1’, the SPI uses the clock falling edge
as an active edge. When the CKPOL is cleared to 0, the SPI selects the clock rising
edge as an active edge.

12.5.4.3 – SPI Clock Register (SPICK_S)

Bit 7 6 5 4 3 2 1 0
Name SPICK_S[7:0]
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
7:0 SPICK_S[7:0] The register has no function when operation in slave mode and clock generation circuitry is

disabled.

12.5.4.4 – SPI Data Buffer Register (SPIB_S)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name SPIB_S[15:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access* rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
*Unrestricted read, write is allowed outside of a transfer cycle; when the STBY bit is set, write is blocked and will
cause write collision error.

BIT NAME DESCRIPTION
15:0 SPIB_S[15:0] SPI Data Buffer Bits. Data for SPI is read from or written to this location. The serial

transmit and receive buffers are separate but both are addressed at this location.

DS4830A User’s Guide

 121

SECTION 13 – 3-WIRE
The DS4830A has proprietary 3-Wire master interface for communication with MAXIM 3-wire laser drivers (which
supports MSB first 3-wire protocol). The 3-wire communication mode operates similar to SPI mode. However, in the
3-wire mode, there is one bi-directional I/O instead of separate data in and data out signals. The 3-wire interface
consists of the MCS, MDIO and MCL. The 3-Wire Master interface reads data on the falling edge of MCL. During 3-
Wire write operation the 3-Wire master outputs the data on the falling edge of MCL.

MCS

MCL 1 2 3 4 5 6 7 8

A6

9 10 11 12 13 14 150

A5 A4 A3 A2 A1 RWN D7 D6 D5 D4 D3 D2 D1 D0

1 2 3 4 5 6 7 8

A6

9 10 11 12 13 14 150

A5 A4 A3 A2 A1 RWN D7 D6 D5 D4 D3 D2 D1 D0

WRITE MODE

READ MODE

A0

A0

MCS

MCL

MDIO

MDIO

Figure 13-1: 3-Wire Write and Read Operation

13.1 – Detailed Description
The DS4830A has a proprietary 3-Wire digital serial interface and it is designed to interface with Maxim 3-wire slave
devices (Laser drivers). The DS4830A acts as the 3-Wire master. It is a 3-pin interface consisting of MDIO a
bidirectional data line, MCL clock signal and MCS chip select output. Chip select is active high. The 3-Wire master
initiates communication by generating clock.

By default, 3-Wire Chip select is enabled and it is automatically controlled by 3-Wire interface during the
communication. The DS4830A 3-Wire interface supports byte mode data transfer. The 3-Wire Control Register
(TWR) is used to control and configure the 3-Wire interface. The 3-Wire interface provides 8 user selectable MCL
clock frequencies. The 3-Wire communication is enabled by setting the TWEN bit to ‘1’ in the TWR register and MCS
goes to low. Data transfer is initiated on next core clock after writing to the Data and Address Register (DADDR).

13.1.1 – Operation
The DS4830A 3-wire master supports 8 user configurable communication clock frequencies. These are selected by
writing to the TWCP [2:0] bits in the TWR register. Each 3-Wire packet consists of 16-bits (15-bit address/data, 1-bit
RWN). See Table 13-1 for 3-Wire Data Packet.

Table 13-1: 3-Wire Data Packet

BIT NUMBER NAME DESCRIPTION
15 to 9 ADDR (Address) 7-bit Internal Register Address (3-Wire Slave)

8 RWN 0 - Write
1 – Read

7 to 0 DATA 8-bit Read or Write Data

The 3-Wire interface is enabled when the TWEN bit in the TWR register is set to ‘1’. Using the DADDR register 3-
Wire write (RWN = 0) and read (RWN = 1) operations are performed. The 3-Wire master supports 7-bit read or write
address and 8-bit data. Write to the DADDR register automatically starts the data transfer and the 3-Wire interface
sets BUSY flag to ‘1’. The BUSY flag is reset to ‘0’ when the data transfer is completed.

DS4830A User’s Guide

 122

13.1.1.1 – Write Mode (RWN=0)
The 3-Wire master generates 16 clock cycles on MCL pin. It outputs 16-bits (MSB first DADDR data) to the MDIO
line at the falling edge of the MCL. After completion of 16 clocks, the 3-Wire BUSY flag is cleared and the data
transfer complete flag TWI is set to ‘1’ which generates interrupt if enabled. The master closes the transmission by
setting the MCS to ‘0’.

13.1.1.2 – Read Mode (RWN=1)
The 3-Wire master generates 16 clock cycles at MCL. It outputs 8-bits of ADDR + RWN (MSB first) to the MDIO line
at the falling edge of the clocks. The MDIO line is released after the RWN bit is transmitted. The slave outputs 8-bits
of data (MSB first) at rising edge of the clock. The master reads the data bits at the falling edge of the clocks. After
the completion of 16 clocks, the 3-Wire BUSY flag is cleared and the data transfer complete flag TWI is set to ‘1’
which generates interrupt if enabled. Read data is available in the DADDR [7:0] bits and the DADDR[8:15] bits set to
0.The master closes the transmission by setting the MCS to ‘0’.

13.1.1.3 – Chip Select Disable Mode (TWCDIS = 1)
The DS4830A 3-Wire master provides facility to disable MCS chip select. In this mode, any GPIO can be configured
to function as chip select and the 3-Wire interface does not control MCS during the communication. In chip select
disabled mode, the application program should control chip select during the 3-Wire communication. Using this
feature, multiple 3-Wire slaves can be interfaced with the 3-Wire master.

DS4830A User’s Guide

 123

13.2 – 3-Wire Register Descriptions
The 3-Wire interface is controlled by two SFR registers. These are the 3-Wire Control Register TWR and Data and
Address Register DADDR. The TWR register configures and controls 3-Wire interface. The DADDR is used in 3-Wire
read and write operation. These registers are located at Module 2.

13.2.1 – 3-Wire Control Register (TWR)

Bit 7 6 5 4 3 2 1 0
Name TWEN TWCP[2:0] TWIE TWCSDIS TWI BUSY
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw r

BIT NAME DESCRIPTION
7 TWEN 3-Wire Enable. This bit enables the 3-Wire interface. When this bit is set to ‘1’, the

3-Wire interface is enabled. When this bit is cleared, the 3-Wire function is disabled.
6:4 TWCP[2:0] 3-Wire Clock Period. These bits are used for setting the 3-Wire MCL clock period.

TWCP[2:0] MCL Clock Frequency (Period)
000 1 MHz (1000nSec)
001 714 KHz (1400nSec)
010 555 KHz (1800nSec)
011 454 KHz (2200nSec)
100 384 KHz (2600nSec)
101 333 KHz (3000nSec)
110 294 KHz (3400nSec)
111 263 KHz (3800nSec)

3 TWIE 3-Wire Interrupt Enable. Setting this bit to ‘1’ will enable an interrupt when the 3-
Wire data transfer is completed. Clearing this bit will disable the 3-Wire data transfer
complete interrupt.

2 TWCDIS 3-Wire Chip Select disable. Setting this bit to ‘1’, will disable the chip select and
the 3-Wire Master interface will not control the chip select MCS during the
communication. In chip select disable mode, application program should control the
3-Wire chip select by any GPIO. Clearing this bit will enable MCS as active chip
select and it is set to HIGH (See Figure 13-1) at start of 3-Wire data communication
and set to LOW once the 3-Wire data communication is completed.

1 TWI 3-Wire Interrupt. This bit is set to ‘1’ when data transfer is completed. This bit can
generate interrupt if TWIE bit is enabled. Once set, it should be cleared by software.

0 BUSY 3-Wire Busy. This bit is set to ‘1’ when data is written to the DADDR register and it
indicates that the data transfer is in progress. This bit is reset to ‘0’ once the data
transfer is completed. This is also reset to zero when 3-Wire operation is disabled
(the TWEN bit is ‘0’). This is read only bit.

13.2.2 – Data and Address Register (DADDR)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name ADDR[15:9] RWN DATA[7:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:9 ADDR[6:0] 3-Wire Address. These bits specify Slave device internal register address.
8 RWN Read or Write Select. When this bit is set to ‘1’, the 3-Wire ‘Read’ operation is

performed. When this bit is ‘0’, the 3-Wire ‘Write’ operation is performed.
7:0 DATA[7:0] 3-Wire Data. During 3-Wire ‘Read’ operation (RWN = 1), the master writes the read

data from the 3-Wire bus at these bits. During 3-Wire ‘Write’ operation (RWN = 0),
the master sends data written at these bits on the 3-Wire bus.

Important Note: The entire DADDR register should be written at once instead of writing individual bits or
fields.

DS4830A User’s Guide

 124

SECTION 14 – PWM
The DS4830A provides 10 independent PWM output pins that can be used to create DC-DC power supply
controllers or a Thermoelectric Cooler Controller (TECC)

Refer to Application Note 5424: Thermoelectric Cooler Control Using the DS4830 Optical Microcontroller.

14.1 – Detailed Description
The DS4830A provides 10 independently configurable PWM outputs. The DS4830A PWM controller has 3 SFRs
PWMCN, PWMDATA and PWMSYNC for configuration and control of the 10 PWM outputs. Using PWMCN and
PWMDATA, individual PWM channels can be programmed for unique duty cycles (DCYCn), configurations (PWMCFGn),
and delays (PWMDLYn), where n represents the PWM channel number. The DS4830A provides three types of driving
strength PWM outputs. Refer to the DS4830A IC data sheet for more information.

The PWM block has three SFRs that are accessed in module 5 (PWMCN, PWMDATA and PWMSYNC). All aspects
of the PWM block can be programmed using these 3 SFRs.

14.1.1 – PWMCN and PWMDATA SFRs
The PWM Control SFR (PWMCN) along with the PWM Data SFR (PWMDATA) is used to configure and control
individual PWM channels. All the channels can be independently configured. Figure 14-1 illustrates how this is
accomplished.

The PWMCN SFR has 4 bits (PWM_SEL) that select a particular PWM channel to be configured (See PWM Register
Descriptions for details). 2 bits (REG_SEL) within the PWMCN SFR allows for programming of 3 local registers for
each PWM Channel:

• Duty Cycle (Register DCYCn),
• Configuration (Register PWMCFGn)
• Delay (Register PWMDLYn).

The PWMDATA SFR writes data to the particular local register pointed to by the PWM_SEL and REG_SEL bits as
illustrated in Figure 14-1. PWM_SEL auto increments after each read or write operation to PWMDATA register
allowing quick configuration.

The PWMCN SFR additionally allows enabling or disabling individual PWM Channels independently as well as
update of the Duty Cycle programmed in the DCYCn local register. Table 14-1 explains how the different Local
Registers are selected, and is discussed further in the Individual PWM detailed description section.

Table 14-1: Selecting the Local Registers

REG_SEL LOCAL REGISTER SELECTED
00b Duty Cycle Register (DCYCn)
01b PWM Configuration Register (PWMCFGn)
1xb Delay Setting Register (PWMDLYn)

http://www.maximintegrated.com/AN5424

DS4830A User’s Guide

 125

PWMCN.REG_SEL = 00b

PWMCN.PWM_SEL =n

PWMCN.REG_SEL = 01b

PWMCN.PWM_SEL =n

PWMCN.REG_SEL = 1xb

PWMCN.PWM_SEL =n

DCYC0 (Ch0)

DCYC9 (Ch9)

DUTY CYCLE REGISTER

PWMCFG0 (Ch0)

PWMCFG9 (Ch9)

PWM CONFIGURATION

PWMDLY0 (Ch0)

PWMDLY9 (Ch9)

DELAY REGISTER

PWMDATA REGISTERNote: n = 0 to 9

READ OR WRITE TO PWMDATA

Figure 14-1: Illustration of PWMDATA and PWMCFG SFRs

14.1.2 – PWMSYNC SFR
Different channels can be synchronized using the PWMSYNC register. Doing so effectively brings the channels in phase
by restarting the channels that are to be synchronized, without affecting the PWM operation. The PWM channels to be
synchronized must have the same configurations (Resolution, Pulse Spreading option, Clock source etc.). The
PWMSYNC register auto clears itself on the next core clock. Figure 14-2 shows an illustration of the PWMSYNC SFR
operation. See PWM Delay section for more details.

PWM Clock

PWM0

PWM1

Out of
Phase

In Phase
Both PWMs Rstarted

PWMSYNC = 00h PWMSYNC = 03h PWMSYNC = 00h

Figure 14-2: PWM Output Synchronization When the Same Delay is Programmed

DS4830A User’s Guide

 126

14.2 – Individual PWM Channel Operation

Note1: PWM Compare value and PWM Internal Counter are DS4830A
internal registers and not accessible to the user.
Note2: Number of Slots depends on resolution and it varies between 1 to
512 in the multiple of 2. Refer to table 14-3 for details

 Configuration for PWMn

PWM Clock Selection

M
U

X

Core Clock

Peripheral Clock

External Clock

PWM Clock

Master Enable

Local Enable

Duty Cycle

Resolution

PWM Delay

PWM Internal
Counter

11 0

0000h

PWM Compare Value

PS[1:0]

PWn

PS1 PS0 Number of Slots

0 0 Resolution / 210

0 1 Resolution / 29

1 0 Resolution / 28

1 1 Resolution / 27

Figure 14-3: Block Diagram of One PWM Channel

The DS4830A has 10 PWMs which can provide up to 16 bits of resolution on each channel. Each channel can be
independently enabled or disabled. Each PWM is configured using 3 Local Registers (for a total of 30 Local
Registers for programming the 10 PWMs).

The source clock to PWM can be selected from Core clock, Peripheral Clock or External Clock. The external clock
range is 20MHz to 133MHz. The PWM frame frequency is calculated from the below formula,

N

FrequencyClockPWMFrequencyFramePWM
2

= , Where N is resolution

As explained above the PWMCN SFR points to a particular PWM channel. The local registers are then programmed
by writing data to the PWMDATA SFR. The Local Register is selected based on the REG_SEL bits in the PWMCN
SFR (See Table 14-1).

Details for programming of the Local Registers are in the “PWM Register Descriptions” section.

14.2.1 – Duty Cycle Register (DCYCn)
This register controls the Duty cycle of the PWM Channel. The number of bits used to program the Duty Cycle
depends on the resolution programmed in the PWMCFG register. For 12 bits of resolution, the Duty cycle is the
lower 12 bits of the PWMDATA register. However if only 7 bits of resolution is selected, only the lower 7 bits are
used to control the Duty Cycle of the corresponding PWM Channel.

To achieve a particular duty cycle, the PWM output level is set to high and the internal counter starts counting from
0000h. The PWM output remains high untill the PWM count is equal to the value in the DCYC register. The PWM
controller sets the PWM output to low for the remaining clock counts for the selected resolution. One such cycle
represents one PWM frame and repeats until the PWM is disabled.

For example, when 9 bits of resolution is selected and the DCYC register is written to 128, the PWM controller sets
the output high for the first 128 counts of PWM clock and sets output low for the remaining 384 PWM clock counts
(29 =512, = 512 – 128 = 384). The PWM frame in this case is 512 clock cycles. The PWM output frequency depends
upon the selected clock source in the PWMCFG register. Figure 14-4 illustrates this example.

DS4830A User’s Guide

 127

PWM Output
High Time

128 Cycles

PWM Output
Low Time

384 Cycles

PWM Frame = 512 Cycles

9-bit PWM Operation in Normal Mode

DCYCn = 128

Figure 14-4: PWM Duty Cycle Set to 128 with 9-Bit Resolution

14.2.2 – PWM Configuration Register (PWMCFGn)
This register allows independent configuration of a PWM Channel. Each PWM Channel can be independently
disabled or enabled. Each output can have from 7 to 16 bits of resolution and can be inverted.

The PWM channels 0 – 7 are multiplexed with the DAC outputs. The PWMCFGn register allows configuring the
outputs to be present at an alternate location instead of the original location.

The PWMs can be clocked using the core clock, the peripheral clock or an external clock as defined by the
PWMCFGn register.

14.2.2.1 – Pulse Spreading
The DS4830A PWMs have the ability to perform pulse spreading on the output stream. Pulse spreading divides the
PWM frame into equal slots. The DS4830A PWM controller supports nine pulse spreading options with slots varying
from 1 to 512 in the multiple of 2. For each resolution selection, up to four pulse spreading options are available.
Pulse spreading options can be selected from 2 bits in the PWMCFGn register (PS[1:0]). The PWM controller
distributes the duty cycle over the selected number of slots equally. If resolution bits are 12 and Pulse spreading
option is 3 then the PWM controller distributes the PWM Frame over 32 equal slots. By doing this, the PWM output
frequency becomes 32 times the PWM Frame frequency. In 12-bit resolution, the PWM clock period is 4096 counts
long. If Pulse spreading option is set to 3, the PWM frame is divided into 32 slots with each slot taking 128 PWM
counts. The duty cycle is equally distributed in each slot using dithering. Each slot frequency can be calculated from
the below equation and see Table 14-2 for number of slots for each resolution.

N

SlotsofNumberFrequencyFramePWMFrequencySlotPWM
2

×
= , where N is resolution.

DS4830A User’s Guide

 128

Table 14-2: Number of Slots for Each Resolution

RES_SEL[3:0] Resolution PS[1:0]= 00 PS[1:0]= 01 PS[1:0]= 10 PS[1:0]= 11
Number of Slots

0000b 7 1 1 1 1
0001b 8 1 1 1 2
0010b 9 1 1 2 4
0011b 10 1 2 4 8
0100b 11 2 4 8 16
0101b 12 4 8 16 32
0110b 13 8 16 32 64
0111b 14 16 32 64 128
1000b 15 32 64 128 256
1001b 16 64 128 256 512

>1001b 16 64 128 256 512

Pulse Spreading Method
The DS4830A PWM controller uses a delta sigma algorithm to distribute the duty cycle uniformly among the slots.
For example, a 10-bit PWM output with a DCYCn value of 128 with 8-slot pulse spreading enabled (PS[1:0] = b’11)
produces a PWM output as shown in the Figure 14-5. The duty cycle of 128 in 1024 cycles (10-bit resolution) has
been divided over 8 equal slots of 16 PWM clock cycles. As duty cycle increases by a count each time the pulse
spread is implemented uniformly and the corresponding duty cycle is distributed among slots. Table 14-3 and Figure
14-5 explain this example. Example considers PWM operation in the positive polarity.

Table 14-3: Duty Cycle Distribution with 8-Slot Pulse Spreading for 10-Bit Resolution PWM Operation

Resolution Duty
Cycle Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8

10

128 16 16 16 16 16 16 16 16
129 16 16 16 16 16 16 16 17
130 16 16 16 17 16 16 16 17
131 16 16 17 16 16 17 16 17
132 16 17 16 17 16 17 16 17
133 16 17 16 17 17 16 17 17
134 16 17 17 17 17 16 17 17
135 16 17 17 17 17 17 17 17
136 17 17 17 17 17 17 17 17

DS4830A User’s Guide

 129

111
Cycles

17 Cycles

1-Slot = 128 Cycles

112
Cycles

111
Cycles

17 Cycles

16 Cycles

PWM Output
Low Time

PWM Frame = 1024 Cycles

10-bit resolution PWM Operation with 8-Slot pulse spreading mode

DCYCn = 128

Slot 1 Slot 2 Slot 3 Slot 4

PWM Output
High Time

DCYCn = 129

DCYCn = 130

DCYCn = 131

DCYCn = 132

DCYCn = 133

DCYCn = 134

DCYCn = 135

DCYCn = 136

Slot 5 Slot 6 Slot 7 Slot 8 Next Cycle
Slot 1

Figure 14-5: Duty Cycle Distribution with 8-Slot Pulse Spreading (PS[1:0] = 11b) for 10-Bit PWM Operation

DS4830A User’s Guide

 130

See Tables 14-4a, 14-4b, and 14-4c for slot frequencies at various resolutions and pulse-spreading options with the
different PWM source clock frequencies.

Table 14-4a: Slot Frequencies for Various Resolution and Pulse Spreading with Core Clock = 10MHz

Source = Core Clock (10MHz)

Resolution Frame Frequency
(Hz)

Pulse Spreading (PS[1:0])

00 01 10 11

Slot Frequency (Hz)

7 78125 78125 78125 78125 78125

8 39062.5 39062.5 39062.5 39062.5 78125

9 19531.25 19531.25 19531.25 39062.5 78125

10 9765.625 9765.625 19531.25 39062.5 78125

11 4882.813 9765.625 19531.25 39062.5 78125

12 2441.406 9765.625 19531.25 39062.5 78125

13 1220.703 9765.625 19531.25 39062.5 78125

14 610.352 9765.625 19531.25 39062.5 78125

15 305.176 9765.625 19531.25 39062.5 78125

16 152.588 9765.625 19531.25 39062.5 78125

Table 14-4b: Slot Frequencies for Various Resolution and Pulse Spreading with Peripheral Clock = 20MHz

Source = Peripheral Clock (20MHz)

Resolution Frame Frequency
(Hz)

Pulse Spreading (PS[1:0])

00 01 10 11

Slot Frequency (Hz)

7 156250 156250 156250 156250 156250

8 78125 78125 78125 78125 156250

9 39062.5 39062.5 39062.5 78125 156250

10 19531.25 19531.25 39062.5 78125 156250

11 9765.625 19531.25 39062.5 78125 156250

12 4882.813 19531.25 39062.5 78125 156250

13 2441.406 19531.25 39062.5 78125 156250

14 1220.703 19531.25 39062.5 78125 156250

15 610.352 19531.25 39062.5 78125 156250

16 305.176 19531.25 39062.5 78125 156250

DS4830A User’s Guide

 131

Table 14-4c: Slot Frequencies for Various Resolution and Pulse Spreading with External Clock = 128MHz

Source = External Clock (128MHz)

Resolution Frame
Frequency (Hz)

Pulse Spreading (PS[1:0])

00 01 10 11

Slot Frequency (Hz)

7 1000000 1000000 1000000 1000000 1000000

8 500000 500000 500000 500000 1000000

9 250000 250000 250000 500000 1000000

10 125000 125000 250000 500000 1000000

11 62500 125000 250000 500000 1000000

12 31250 125000 250000 500000 1000000

13 15625 125000 250000 500000 1000000

14 7812.5 125000 250000 500000 1000000

15 3906.25 125000 250000 500000 1000000

16 1953.125 125000 250000 500000 1000000

14.2.2.2 – Alternate PWM Output
Table 14-5 shows the mapping of each PWM Output. The PWM outputs PW0 to PW7 are also multiplexed with the
DAC output pins. The DS4830A provides the option to select these alternate locations for PW0 to PW7 outputs if
PWM functionality is required along with DAC outputs. When the ALT_LOC is set to ‘1’ during PWM configuration for
a PWM output, the PWM output will be available on this alternate pin. See Table 14-3 for details.

Table 14-5: Alternate PWM Output

PWM OUTPUT PIN DS4830A PIN NUMBER
WHEN ALT_LOC = 0 GPIO PIN DS4830A PIN NUMBER

WHEN ALT_LOC = 1 GPIO PIN

PW0 32 P0.4 4 P2.0
PW1 33 P0.5 6 P2.1
PW2 34 P6.5 12 P2.2
PW3 35 P1.5 13 P2.3
PW4 36 P1.6 24 P1.0
PW5 37 P1.7 25 P1.3
PW6 38 P6.6 26 P1.1
PW7 40 P2.7 27 P1.2
PW8 30 P0.6 30 P0.6
PW9 29 P0.7 29 P0.7

14.2.3 – PWM DELAY Register (PWMDLYn)
The Delay Register is used to provide a delay when starting the PWM output. By controlling the starting time for each
individual PWM channel, multiphase operation can be achieved.

The number of bits used to program the Delay depends on the resolution programmed in the PWMCFG SFR. For 12
bits of resolution, the Delay is the lower 12 bits of the PWMDATA register. However if only 7 bits of resolution is
selected, only the lower 7 bits are used to control the Delay of the corresponding PWM Channel. For example if 8-bit
resolution is selected, the maximum delay programmed is limited to 255 (only lower 8 bits are considered).

The Delay resolution also depends on the selected Pulse spreading for the corresponding channel. The maximum
delay is scaled correspondingly. With 10 bits of resolution and 4-slot pulse spreading (PS[1:0] = 2), the maximum
delay programmed is limited to 1024/4 = 256.

DS4830A User’s Guide

 132

Programmed Delay. Max 8 Bits (256 clock cycles),
for 10 bits of Resolution & 4-slot pulse spreading

Source Clock

Figure 14-6: PWM Delay Operation without Pulse Spreading

14.2.3.1 – PWM DELAY with PWMSYNC SFR
The PWM channels to be synchronized must have the same configurations (Resolution, Pulse Spreading option, Clock
source etc.). The delays on the two channels can be different. After the synchronization, the programmed delay is
maintained as shown in Figure 14-7.

PWMSYNC = 00h PWMSYNC = 03h PWMSYNC = 00h

PWM1

PWM0

Core Clock

Figure 14-7: PWM Output Synchronization with 4 Clocks Delay

14.3 – PWM Output Register Descriptions
The DS4830A PWM controller has three SFRs. These are PWM Control Register PWMCN, PWM Data Register
PWMDATA and PWM Synchronization Register PWMSYNC. The PWMCN configures and controls the various PWM
operations. The PWMDATA register configures various PWM configurations and the PWMSYNC is used in PWM
synchronization operation. The PWMCN, PWMDATA and PWMSYNC registers are cleared on POR only.

DS4830A User’s Guide

 133

14.3.1 – PWM Control Register (PWMCN)
The PWMCN register is used to setup and start the PWM Output. To avoid undesired operation, the user should not
modify the “Reserved” bits in the PWMCN registers.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - M_EN - - - UPDATE PWM_SEL[3:0] - - REG_SEL[1:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r rw r r r rw rw rw rw rw r r rw rw

BIT NAME DESCRIPTION
15:13 - Reserved. The user should not write to these bits.
12 M_EN Master Enable. This is the master enable bit for all PWM channels. All the PWM channels

will be enabled only after this bit is set to ‘1’. This bit should be set to ‘1’, after configuring
all local registers of all the required PWM channels.

11:9 - Reserved. The user should not write to these bits.
8 UPDATE Update. When this bit is set to ‘1’, the duty cycle of all PWM channels are updated

simultaneously. Writing a new value in the Duty Cycle register will not reflect in the PWM
output until UPDATE is set to ‘1’. Once set, this bit will automatically clear after one core
clock.

7:4 PWM_SEL[3:0] PWM Channel Select. These bits select one of the 10 PWM channels for read or write to
its local registers. These bits are used with REG_SEL[1:0] and provide access to 30 PWM
local registers (3 local registers per channel). PWM_SEL auto increments after each read
or write operation to PWMDATA register.

DCYC = Duty Cycle Register
PWMCFG = PWM Configuration Register
PWMDLY = Delay Setting Register

PWM_SEL
REG_SEL

00b 01b 1xb
0000b DCYC0 PWMCFG0 PWMDLY0

0001b DCYC1 PWMCFG1 PWMDLY1

0010b DCYC2 PWMCFG2 PWMDLY2

0011b DCYC3 PWMCFG3 PWMDLY3

0100b DCYC4 PWMCFG4 PWMDLY4

0101b DCYC5 PWMCFG5 PWMDLY5

0110b DCYC6 PWMCFG6 PWMDLY6

0111b DCYC7 PWMCFG7 PWMDLY7

1000b DCYC8 PWMCFG8 PWMDLY8

1001b DCYC9 PWMCFG9 PWMDLY9

>1001b RESERVED RESERVED RESERVED

3:2 - Reserved. The user should not write to these bits.
1:0 REG_SEL[1:0] Register Select. These bits are used to select one of three local registers of the selected

PWM channel (selected by PWM_SEL[3:0] bits).

REG_SEL Local Register Selected
00b Duty Cycle Register (DCYCn)
01b PWM Configuration Register (PWMCFGn)
1xb Delay Setting Register (PWMDLYn)

DS4830A User’s Guide

 134

14.3.2 – PWM Data Register (PWMDATA)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name PWMDATA[15:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:0 PWMDATA[15:0] PWM Data. The PWM Data Register is used for configurations for various PWM

channels. It is used to read or write various PWM local registers which are pointed by
combinations of REG_SEL[1:0] and PWM_SEL[3:0] bits in the PWMCN register.

The PWMDATA Register is used to configure the local registers for each PWM channel. PWM channel is selected by
PWM_SEL[3:0] bits in the PWMCN register. Individual local registers for a channel are selected by REG_SEL[1:0]
bits in the PWMCN register. See below for the local register configurations.

14.3.2.1 – Local Register DCYCn

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name PWMDATA[15:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

PWMCN REG_SEL = 00b
PWMDATA[15:0]  DCYCn[15:0]

BIT NAME DESCRIPTION

15:0 DCYCn[15:0] Duty Cycle Register. When REG_SEL[1:0] in the PWMCN SFR is set to 00b, the

PWMDATA register points to the Duty Cycle Register of the PWM channel selected by
PWM_SEL[3:0] bits in the PWMCN register.

The number of bits used to program the Duty Cycle depends on the resolution
programmed in the PWMCFG register. For 16 bits of resolution, the Duty cycle the
complete 16 bits of the PWMDATA register. However if only 7 bits of resolution is
selected, only the lower 7 bits are used.

Example: If PWM_SEL[3:0] = 0101b and REG_SEL[1:0] = 00b, then the PWMDATA
register points to the Duty Cycle Register of the PWM Channel 5. A read or write to/from
PWMDATA register will read or write from the Duty Cycle Register of PWM Channel 5. If
the resolution of channel 5 is set to 9 bits, only DCYCn[8:0] will be used for programming
the Duty Cycle.

DS4830A User’s Guide

 135

14.3.2.2 – Local Register PWMCFGn (through PWMDATA [15:0]
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name INV - ALT_

LOC
PWMEN - CLK_SEL - PS1 PS0 RES[3:0]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

PWMCN REG_SEL = 01b

PWMDATA[15:0]  PWMCFGn[15:0]
BIT NAME DESCRIPTION
15 INV Invert PWM Output. When this bit is set to ‘1’, PWM output is inverted for the selected

PWM channel (determined by the PWM_SEL[3:0] bits).
14 - Reserved. The user should not write to this bit.
13 ALT_LOC Alternate Location: PWM outputs at channels 0 to 7 are multiplexed with the DAC

outputs. By default, the PWM outputs appear at the DAC outputs. When ALT_LOC bit is
set to ‘1’, the PWM outputs will appear at the alternate location (See Table 14-3 for
details).

12 PWMEN Local Enable: Setting this bit to ‘1’ will enable the individual PWM channel. PWM
operation will be enabled only when both local enable and the Master Enable M_EN in
PWMCN are enabled. Setting this bit to ‘0’ will disable the individual PWM channel.

11:10 - Reserved. The user should not write to these bits.
9:8 CLK_SEL[1:0] Clock Select. These bits select the PWM clock for the selected PWM channel (which is

selected by PWM_SEL[3:0] bits).

CLK_SEL PWM Clock Source
00b Core Clock
01b Peripheral Clock
1xb External Clock

The external clock range is 20MHz to 133MHz.
7:6 - Reserved. The user should not write to these bits.
5:4 PS[1:0] Pulse Spreading: These bits enable pulse spreading. The number of slots in a PWM

frame is defined by these bits along with resolution.

PS[1:0] Pulse spreading
00b Resolution / 210
01b Resolution / 29
10b Resolution / 28
11b Resolution / 27

3:0 RES[3:0] Resolution Select. These bits are used to configure PWM resolution (in bits) for selected
PWM channel (which is selected by PWM_SEL[3:0] bits). The PWM Frame frequency is
determined by the clock Frequency programmed and the resolution selected.

N
FrequencyClockPWMFrequencyFramePWM

2
=

Where N is the selected resolution.
RES [3:0] PWM Resolution bits

0000b 7
0001b 8
0010b 9
0011b 10
0100b 11
0101b 12
0110b 13
0111b 14
1000b 15

>=1001b 16

DS4830A User’s Guide

 136

14.3.2.3 – Local Register PWMDLYn
PWMCN REG_SEL = 1xb

PWMDATA[15:0]  PWMDLY[15:0]
BIT NAME DESCRIPTION
15:0 PWMDLYn[15:0] Delay Setting Register. When REG_SEL[1:0] is set to 1xb, the PWMDATA register

points to the Delay Setting Register of PWM channel selected by PWM_SEL[3:0] bits in
the PWMCN register. The Delay Setting Register is a 16-bit register, which is used for
providing starting delay. Using this Delay Setting Register multiphase operation can be
configured.

If PWM_SEL[3:0] = 0101b and REG_SEL[1:0] = 1xb, then the PWMDATA register
points to the Delay Register of the PWM Channel 5. A read or write to/from the
PWMDATA register will read or write from the Duty Setting Register of PWM Channel 5.

The Delay Setting Register is 16-bit register but number of bits is used by the PWM
controller depends upon the selected resolution for given PWM channel. For Example,
if resolution is 9- bits then only lower 9 bits PWMDLYn[8:0] are used in PWM operation
and upper bits 10-15 bits will be ignored..

14.3.3 – PWM Synchronization Register (PWMSYNC)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - - PWMSYNC[9:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r r rw rw rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
15:10 - Reserved. The user should not write to these bits.

These bits are ignored by the PWM controller.
9:0 PWMSYNC[9:0] PWM Synchronization. This register is used to provide synchronization among

different PWM channels. Each bit of this register corresponds to a PWM channel.
Setting any bit of this register will restart corresponding PWM channel. After a write to
this register, it is cleared to 0x0000 on the next core cycle.

For Example: When 0x0005 is written on the PWMSYNC register, PWM channel 0
and 2 will restart after current PWM counter (internal register) is over. This feature is
used to bring different PWM channels in phase if they have the same PWM
configurations (Resolution, Clock source, and Pulse spreading configuration, etc.). The
Delay Register settings can be different for the PWM channels to be synchronized,
and the settings are retained after the synchronization. See Figures 14.2 and 14.7 for
details.

DS4830A User’s Guide

 137

14.4 – PWM Output Code Examples

14.4.1 – 9-Bit PWM Output and Pulse Spreading (PS[1:0]= 11, 1-Slot) with Core Clock
Creating a 25% duty cycle with ~20kHz frequency PWM output at Channel 0 (default location):

//PWM Configuration for PW0

PWMCN = 0x0000; //Channel 0, Duty cycle
PWMDATA = 0x007F; //25% Duty cycle for 9-bit resolution

PWMCN = 0x0001; //Channel 0, Config register
PWMDATA = 0x1002; //Default location, 9-bit resolution with core clock with 1-slot pulse spreading, PWMEN

PWMCN = 0x0003; //Channel 0, Delay Configuration
PWMDATA = 0x0000; //No delay

PWMCN_bit.UPDATE = 1; //Update PWM duty cycle
PWMCN_bit.M_EN = 1; //Master Enable

14.4.2 – 9-Bit PWM Output and Pulse Spreading (PS[1:0]= 11, 4-Slots) with Core Clock
Creating a 40% duty cycle with 78.125kHz frequency PWM output at Channel 1 (default location):

//PWM Configuration for PW1

PWMCN = 0x0010; //Channel1 Duty cycle
PWMDATA = 0x00CD; //40% Duty cycle for 9-bit resolution with core clock

PWMCN = 0x0011; //Channel 1Config register
PWMDATA = 0x1032; //Default location, 9-bit resolution with core clock with 4-slot pulse spreading, PWMEN

PWMCN = 0x0013; //Channel 1 Delay Configuration
PWMDATA = 0x0000; //No delay

PWMCN_bit.UPDATE = 1; //Update PWM duty cycle
PWMCN_bit.M_EN = 1; //Master Enable

14.4.3 – 12-Bit PWM Output and Pulse Spreading (PS[1:0]= 01, 8-Slots) with Alternate Location and
Peripheral Clock
Creating a 25% duty cycle with 156.25kHz frequency PWM output at Channel 1 (alternate location) with Peripheral
Clock:

//PWM Configuration for PW1

PWMCN = 0x0010; //Channel 1 Duty cycle
PWMDATA = 0x03FF; //25% Duty cycle for 12-bit resolution

PWMCN = 0x0011; //Channel 1 Config register
PWMDATA = 0x3215; //Alternate location (PW1, Port 2.1), 12-bit resolution with peripheral clock with 8-slot pulse spreading, PWMEN

PWMCN = 0x0013; //Channel 1 Delay Configuration
PWMDATA = 0x0000; //No delay

PWMCN_bit.UPDATE = 1; //Update PWM duty cycle
PWMCN_bit.M_EN = 1; //Master Enable

DS4830A User’s Guide

 138

SECTION 15 – GENERAL-PURPOSE INPUT/OUTPUT (GPIO) PINS

15.1 – Overview
The DS4830A provides general-purpose input/output (GPIO) functionality on 31 pins. In addition to the GPIO
functionality, each of these pins is multiplexed with at least one other function, which is classified as “Special
Function.”

Special functions override the GPIO register settings of the port pin when they are enabled. Once the special
function takes control, normal control of the port pin is lost until the special function is disabled.

Table 15-1 details all of the GPIO pins as well as what other functions are multiplexed with each pin. With the
exception of a few pins which are described further in detail later, the GPIO pins operate as shown in the GPIO Pin
Block Diagram, Figure 15-1. Some of the features of these GPIO pins are:

• CMOS output drivers
• Schmitt trigger inputs
• Optional weak pullup to VDD when operating in input mode

VDD

VDD
M

U
X

I/O PAD

PDp.n

SF DIRECTION

SF ENABLE

POp.n

WEAK

M
U

X

SF OUTPUT

DETECT
CIRCUIT

*

*

DS4830A Pin

SF = SPECIAL FUNCTION

THE FORMAT FOR GPIO CONTROL BITS SHOWN IS PDp.n
‘p’ designates the port (p=0,1,2,6)
‘n’ is the port pin (n=0 to 7).

PIp.n, or SF INPUT

INTERRUPTS ON ALL PORTS

EIFp.n EIEp.n
EIESp.n

Figure 15-1: GPIO Pin Block Diagram

DS4830A User’s Guide

 139

Table 15-1: GPIO Pins and Multiplexed Functions
Port

Index
Pin Name Pin No. Default

Function
Special

Function-1
Special function-1

enable
Special

Function-2
Special function-2

enable
Special

Function-3
Special function-3

enable
Special

function-4
Special function-4

enable

P0.0 GP12 19 GPIO ADC-S12 PINSEL.12 = 1 &
ADDATA.DIFF = 0 ADC-SHP1 SHCN.SMP_HLD1 = 1 ADC-D6P PINSEL.12 = 1 &

ADDATA.DIFF =1 - -

P0.1 GP13 20 GPIO ADC-S13
PINSEL.13 = 1 &

ADDATA.DIFF = 0 ADC-SHN1 SHCN.SMP_HLD1 = 1 ADC-D6N PINSEL.13 = 1 &
ADDATA.DIFF =1 - -

P0.2 GP14 21 GPIO ADC-S14
PINSEL.14 = 1 &

ADDATA.DIFF = 0 ADC-D7P PINSEL.14 = 1 &
ADDATA.DIFF =1 SHEN1 SENR.INT_TRIG_EN1 =

0 - -

P0.3 GP15 22 GPIO ADC-S15
PINSEL.15 = 1 &

ADDATA.DIFF = 0 ADC-D7N PINSEL.15 = 1 &
ADDATA.DIFF =1 - - - -

P0.4 DACPW0 32 GPIO DAC0 DACCFG.CFG0 = 01b or
10b PW0 PWMCFG.PWMEN = 1

& PWMCN.M_EN = 1 - - - -

P0.5 DACPW1 33 GPIO DAC1 DACCFG.CFG1 = 01b or
10b PW1 PWMCFG.PWMEN = 1

& PWMCN.M_EN = 1 - - - -

P0.6 PW8 30 GPIO PW8 PWMCFG.PWMEN = 1 &
PWMCN.M_EN = 1 - - - - - -

P0.7 PW9 29 GPIO PW9 PWMCFG.PWMEN = 1 &
PWMCN.M_EN = 1 - - - - - -

P1.0 MSDIO 24 GPIO 3W Data TWR.TWEN = 1 I2CM-SDA I2CCN_M.I2CEN=1 SPIM-DO SPICN_M.SPIEN=1 PW4
PWMCFG.PWMEN = 1
& PWMCN.M_EN = 1

& PWMCFG.ALT_LOC = 1

P1.1 MSCL 26 GPIO 3W Clock TWR.TWEN = 1 I2CM-CLK I2CCN_M.I2CEN=1 SPIM-CL SPICN_M.SPIEN=1 PW6
PWMCFG.PWMEN = 1
& PWMCN.M_EN = 1

& PWMCFG.ALT_LOC = 1

P1.2 MCS 27 GPIO 3W CS TWR.TWEN = 1 - - SPIM-CS SPICN_M.SPIEN=1 PW7
PWMCFG.PWMEN = 1
& PWMCN.M_EN = 1

& PWMCFG.ALT_LOC = 1

P1.3 MSDI 25 GPIO - - - - SPIM-DI SPICN_M.SPIEN=1 PW5
PWMCFG.PWMEN = 1
& PWMCN.M_EN = 1

& PWMCFG.ALT_LOC = 1

P1.4 REFINB 39 GPIO ADC-REFB DACCFG.CFG4-7* = 01b
(any one or more DACs)

- - - - - -

P1.5 DACPW3 35 GPIO DAC3 DACCFG.CFG3 = 01b or
10b PW3 PWMCFG.PWMEN = 1

& PWMCN.M_EN = 1 - - - -

P1.6 DACPW4 36 GPIO DAC4 DACCFG.CFG4 = 01b or
10b PW4 PWMCFG.PWMEN = 1

& PWMCN.M_EN = 1
I2CM-SDA-

ALT i2CCN_M.I2CM_ALT = 1 - -

P1.7 DACPW5 37 GPIO DAC5 DACCFG.CFG5 = 01b or
10b PW5 PWMCFG.PWMEN = 1

& PWMCN.M_EN = 1
I2CM-SCL-

ALT i2CCN_M.I2CM_ALT = 1 - -

P2.0 GP0 4 GPIO ADC-S0

PINSEL.0 = 1 &
ADDATA.DIFF = 0 ADC-D0P PINSEL.0 = 1 &

ADDATA.DIFF =1 PW0

PWMCFG.PWMEN = 1
& PWMCN.M_EN = 1

& PWMCFG.ALT_LOC =
1

- -

P2.1 GP1 6 GPIO ADC-S1

PINSEL.1 = 1 &
ADDATA.DIFF = 0 ADC-D0N PINSEL.1 = 1 &

ADDATA.DIFF =1 PW1

PWMCFG.PWMEN = 1
& PWMCN.M_EN = 1

& PWMCFG.ALT_LOC =
1

REFOUT -

P2.2 GP6 12 GPIO ADC-S6

PINSEL.6 = 1 &
ADDATA.DIFF = 0 ADC-D3P PINSEL.6 = 1 &

ADDATA.DIFF =1 PW2

PWMCFG.PWMEN = 1
& PWMCN.M_EN = 1

& PWMCFG.ALT_LOC =
1

SDO SPICN_S.SPIEN=1

P2.3 GP7 13 GPIO ADC-S7

PINSEL.7 = 1 &
ADDATA.DIFF = 0 ADC-D3N PINSEL.7= 1 &

ADDATA.DIFF =1 PW3

PWMCFG.PWMEN = 1
& PWMCN.M_EN = 1

& PWMCFG.ALT_LOC =
1

SCS SPICN_S.SPIEN=1

P2.4 GP8 14 GPIO ADC-S8
PINSEL.8 = 1 &

ADDATA.DIFF = 0 ADC-D4P PINSEL.8 = 1 &
ADDATA.DIFF =1 - - - -

P2.5 GP9 15 GPIO ADC-S9
PINSEL.9 = 1 &

ADDATA.DIFF = 0 ADC-D4N PINSEL.9 = 1 &
ADDATA.DIFF =1 - - - -

P2.6 REFINA 31 GPIO ADC-REFA DACCFG.CFG0-3* = 01b
(any one or more DACs)

- - - - - -

P2.7 DACPW7 40 GPIO DAC7 DACCFG.CFG7 = 01b or
10b PW7 PWMCFG.PWMEN = 1

& PWMCN.M_EN = 1 - -

P6.0 GP4 10 TCK ADC-S4
PINSEL.4 = 1 &

ADDATA.DIFF = 0 ADC-D2P PINSEL.4 = 1 &
ADDATA.DIFF =1 - - - -

P6.1 GP5 11 TDI ADC-S5
PINSEL.5 = 1 &

ADDATA.DIFF = 0 ADC-D2N PINSEL.5 = 1 &
ADDATA.DIFF =1 - - - -

P6.2 GP10 17 TMS ADC-S10
PINSEL.10 = 1 &

ADDATA.DIFF = 0 ADC-D5P PINSEL.10 = 1 &
ADDATA.DIFF =1 - - - -

P6.3 GP11 18 TDO ADC-S11
PINSEL.11 = 1 &

ADDATA.DIFF = 0 ADC-D5N PINSEL.11 = 1 &
ADDATA.DIFF =1 - - - -

P6.4 SHEN0 23 GPIO SHEN0 SENR.INT_TRIG_EN0 =
1 - - - - - -

P6.5 DACPW2 34 GPIO DAC2 DACCFG.CFG2 = 01b or
10b PW2 PWMCFG.PWMEN = 1

& PWMCN.M_EN = 1 CLKIN + - -

P6.6 DACPW6 38 GPIO DAC6 DACCFG.CFG6 = 01b or
10b PW6 PWMCFG.PWMEN = 1

& PWMCN.M_EN = 1 - - - -

Notes:
• TCK: Test Access Port (TAP) Clock
• TDI: Test Access Port (TAP) Data Input
• TMS: Test Access Port (TAP) Mode Select
• TDO: Test Access Port (TAP) Data Output
• * One or more DACs should be enabled.
• +External Clock is enabled when the external clock source is selected by one or more peripherals among

timers, PWM and Sample and Hold.

From a software perspective, each of the GPIO ports (Port0, Port1, Port2, and Port6) has six Special Function
Registers (POp, PIp, PDp, EIFp, EIEp and EIESp where p=0, 1, 2, or 6). Each GPIO port is designed to provide

DS4830A User’s Guide

 140

programming flexibility for any application. The associated registers and their module addresses are listed in Table
15-2. The user should not write to any reserved bits as this may cause undesired behavior.

Table 15-2: GPIO Registers

REGISTER FUNCTION PORT 0 PORT 1 PORT 2 PORT 6
POp Port Output Register M0[02h] M0[01h] M0[00h] M1[03h]
PIp Port Input Register M0[0Ah] M0[09h] M0[08h] M1[08h]
PDp Port Direction Register M0[12h] M0[11h] M0[10h] M1[11h]
EIFp Port External Interrupt Flag Register M0[05h] M0[04h] M0[03h] M1[06h]

EIEp Port External Interrupt Enable
Register M0[0Fh] M0[0Eh] M0[0Dh] M1[07h]

EIESp Port External Interrupt Edge Select
Register M0[15h] M0[14h] M0[13h] M1[10h]

DS4830A User’s Guide

 141

15.2 – GPIO Port Register Descriptions
The DS4830A has 4 ports P0, P1, P2 and P6. Each port has 8 pins (exception is P6 which has 7 pin only). The
GPIO operation is to control/monitor through PDp, POp and PIp (p = 0, 1, 2 and 6). These ports are multiplexed with
various functions like ADC, DAC, Sample and Hold, PWM, I2C, 3-Wire, SPI etc. Additionally, these ports also provide
GPIO interrupts on all of the pins. A GPIO interrupt can be generated when the pin is being operated as a GPIO, or
a special. Three additional registers, EIFp, EIEp, and EIESp are used to control the GPIO interrupts.

On device reset, the TAP port is active, allowing for in-circuit debugging and programming. The JTAG is active by
default on Port6[3:0] and it is disabled when SC.TAP bit is set to ‘0’. Enabled special functions operate on the JTAG
ports only if SC.TAP bit is set to ‘0’. Port 6 also provides GPIO interrupts on all of the pins. The GPIO works only
when SC.TAP = 0. A GPIO interrupt can be generated when the pin is being operated as a GPIO, or a special or
alternate function. Three additional registers, EIF6, EIE6, and EIES6 are used to control the GPIO interrupts.
Port6.7 is not present in the Port6.

15.2.1 – GPIO Direction Register Port (PD0, PD1, PD2, and PD6)
Bit # 7 6 5 4 3 2 1 0
Name PDp_7 PDp_6 PDp_5 PDp_4 PDp_3 PDp_2 PDp_1 PDp_0
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

PDp is an 8-bit register used to determine the direction of the pins when they are used as GPIO pins. Each pin is
independently controlled by its direction bit. When PDp.n (p = 0 to 7, n = 0 to 7) is set to ‘1’, the pin is an output; data
in the POp.n bit will be driven on the pin. When PDp.n is cleared to ‘0’, the pin is an input and allows an external
signal to drive the pin. Note that each port pin has a weak pullup circuit when functioning as an input. The P channel
pullup transistor is controlled by the POp.n bit. If POp.n is set to ‘1’, the corresponding weak pullup is turned on, if the
POp.n bit is cleared to ‘0’, the weak pullup is turned off and the pin’s input is high-impedance.

15.2.2 – GPIO Output Register Port (PO0, PO1, PO2, and PO6)
Bit # 7 6 5 4 3 2 1 0
Name POp_7 POp_6 POp_5 POp_4 POp_3 POp_2 POp_1 POp_0
Reset* 1 1 1 1 1 1 1 1
Access rw rw rw rw rw rw rw rw

*GPIO which are shared with DAC ports has POp.n = 0 on reset.

POp is an 8-bit register that controls the output data of a GPIO pin. If the pin is setup to be an output (PDp.n = 1),
the data in POp.n will be output on the pin. If the pin is set as an input (PDp.n = 0), setting POp.n to a ‘1’ enables a
p-channel weak pullup, otherwise the pin’s input is high impedance.
When the Port pins are operating as PWM pins, the data in POp will not affect PWM operation. Changing the
direction of the pin does not change the data content of POp.n.

15.2.3 – GPIO Input Register for Port (PI0, PI1, PI2, and PI6)
Bit # 7 6 5 4 3 2 1 0
Name PIp_7 PIp_6 PIp_5 PIp_4 PIp_3 PIp_2 PIp_1 PIp_0
Reset s s s s s s s s
Access r r r r r r r r

PIp is an 8-bit register which contains the data that is applied to the GPIO pins. The PIp input register contains valid
input data even when the pin is not operating as a GPIO. The reset value for this register is dependent on the logical
states applied to the pins. Note that each pin has a weak pullup circuit when functioning as an input and the P
channel pullup transistor is controlled by the POp.n bit.

15.2.4 – GPIO Port External Interrupt Edge Select Register (EIES0, EIES1, EIES2, and EIES6)
Bit # 7 6 5 4 3 2 1 0
Name IESPp_7 IESPp_6 IESPp_5 IESPp_4 IESPp_3 IESPp_2 IESPp_1 IESPp_0
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

The EIESp register sets the interrupt edge select to trigger an interrupt on either a rising or falling edge. Setting the
IESPp_n bits to 0 will trigger the corresponding interrupt on a positive edge. When these bits are set to a 1, the
interrupt will be on a negative edge.

DS4830A User’s Guide

 142

15.2.5 – GPIO Port External Interrupt Flag Register (EIF0, EIF1, EIF2, and EIF6)
Bit # 7 6 5 4 3 2 1 0
Name IFPp_7 IFPp_6 IFPp_5 IFPp_4 IFPp_3 IFPp_2 IFPp_1 IFPp_0
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

These bits are set when a negative edge (IESPp.n = 1) or a positive edge (IESPp.n = 0) is detected on the Pp.n pin.
Setting any of the bits to 1 will generate an interrupt to the CPU if the corresponding interrupt is enabled. These bits
will remain set until cleared by software or a reset. These bits must be cleared by software before exiting the
interrupt service routine or another interrupt will be generated as long as the bit remains set.

15.2.6 – GPIO Port External Interrupt Enable Register (EIE0, EIE1, EIE2, and EIE6)
Bit # 7 6 5 4 3 2 1 0
Name IEPp_7 IEPp_6 IEPp_5 IEPp_4 IEPp_3 IEPp_2 IEPp_1 IEPp_0
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

Setting any of these bits to 1 will enable the corresponding external interrupt. Clearing any of the bits to 0 will disable
the corresponding interrupt function.

15.3 – GPIO Code Example
15.3.1 – GPIO Pin as Output
//set pin 6.4 as a high output
PD6 |= 0x10; //set direction PD6.4 to 1 for an output
PO6 |= 0x10; //set the output PO6.4 high

15.3.2 – GPIO High-Impedance Input
//set pin 6.4 as a high-impedance input
PD6 &= ~0x10; //set direction PD6.4 to 0 for input
PO6 &= ~0x10; //set PO6.4 low to disable weak pullup

15.3.3 – GPIO Weak Pullup Input
//enable the pin 6.4 weak pullup
PD6 &= ~0x10; //set direction PD6.4 to 0 for input
PO6 |= 0x10; //set PO6.4 high to enable weak pullup

15.3.4 – GPIO Open-Drain Output
//configure pin6.4 as port ‘Open Drain’
PO6 &= ~0x10; // set the PO6.4 to the logic ‘0’
PD6 |= 0x10; // this will configure P6.4 as output and drive logic ‘0’
PD6 &= ~0x10; // this will configure P6.4 as input with high impedance.
In summary, the GPIO output can be set to the ‘Open Drain’ by doing the following method

1. Set the POp.n to the logic ‘0’.
2. Toggle the direction register PDp.n between the input and output.

This causes the pin to alternate between logic ‘0’ (PDp.n = 1) and ‘high impedance’ (PDp.n = 0).

DS4830A User’s Guide

 143

SECTION 16 – GENERAL-PURPOSE TIMERS
The DS4830A has two identical 16-bit general-purpose timers. Each timer has the following,

• Two modes - Free synchronous and Compare
• Three Clock source selection options - Core clock, Peripheral clock and External clock
• 6 prescalers
• Interrupt feature in both modes.

Core Clock
00b or 01b

External Clock
11b

Clock Selection

MUX

Peripheral Clock
10b

Clock
Prescaler
GTPS[2:0]

GTV

15 0
0000h

15
GTC

0

RELOAD

Timer CLK

COMPARE

GTR

GTIF

GTIE

Next Timer Clock

Timer
Interrupt

Notes:

1. Free synchronous mode is a special compare mode in which the GTV is compared with 0xFFFF.

2. The GTV register is reset to 0x0000 when the GTR bit is set to ‘0’ (Timer off).

Compare Mode Block Diagram

Figure 16-1: Timer Functional Diagram

16.1 – Detailed Description
The DS4830A has two 16-bit programmable timer modules. Each timer module supports input clock selection
between Core, Peripheral and External clock sources. Each timer has two modes of operation i.e. free synchronous
timer and compare mode. The timer is controlled by the General Timer Reset (GTR) bit in the General Timer Control
Register (GTCN). When this bit is set to ‘1’, it enables the timer and starts counting up. When this bit is set to ‘0’, the
timer is stopped. Each timer has six prescalers selection feature. Using various prescaler and input clock options,
various timing loops can be generated.

16.1.1 – Timer Modes
Each timer has two modes of operation i.e. free synchronous timer and compare mode. The MODE bit in the GTCN
register selects the timer mode. The 16-bit free synchronous mode is configured by setting the MODE bit to 0. When
the Mode bit is set to ‘1’, compare mode is configured.

In free synchronous mode, the timer module begins counting up from 0x0000. When the General Timer Value
Register (GTV) value reaches to 0xFFFF, the GTIF interrupt flag is set to ‘1’ which generates an interrupt if enabled,
and the timer reloads the GTV register with 0x0000 at the next timer clock. The GTV register is a read only register
and it resets to 0x0000 when the timer is stopped. (GTR = 0).

In compare mode, the timer module begins counting from 0x0000 and when the value in the GTV register matches
the value in the General Timer Compare Register (GTC), the GTIF interrupt flag is set to ‘1 ‘ which generates an

DS4830A User’s Guide

 144

interrupt if enabled. When the match occurs, the timer reloads the GTV register with 0x0000 at the next timer clock.
In compare mode, the GTC register should be written first before setting the GTR bit.

16.1.2 – Clock Selection
There are three timer clock sources available in each timer module, core clock, peripheral clock and external clock.
The peripheral clock is twice the core clock. The external clock can be between 20MHz to 133MHz. The timer clock
source can be selected using CLK_SEL [1:0] bits in the GTCN register.

16.1.3 – Timer Clock Prescaler
Each timer has 6 different prescalers. The prescaler is selected by appropriately setting the GTPS [2:0] bits in the
GTCN register. The prescaler divides the selected input clock by a value from 1 to 1024.

DS4830A User’s Guide

 145

16.2 – Timer Register Descriptions
Each General Timer module has three independent SFR registers. These are GTCN, GTV and GTC. The General
Timer Control Register GTCN controls the timer operation. The General Timer Value Register GTV is the Timer
Value register and is incremented every timer clock when enabled. The General Timer Compare Register GTCx is
used in the timer compare mode only. Timer 1 and 2 SFRs are located in module 0 and 3 respectively.

16.2.1 – General Timer Control Register (GTCN)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - GTR MODE CLK_SEL[1:0] GTIE - - - GTIF - GTPS[2:0]
Reset* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r rw rw rw rw rw r r r rw r rw rw rw
*These are default power on reset value.

BIT NAME DESCRIPTION
15:13 Reserved Reserved. The user should write 0 to these bits.
12 GTR Timer Run Control. Setting this bit to ‘1’ will enable the timer. Clearing this bit to ‘0’ will

stop the timer and clear the GTV register.
11 MODE Timer Mode Select. This bit selects the timer mode. When this bit is ‘0’, free

synchronous mode is selected. In this mode, the GTV register starts counting from
0x0000. When the GTV register reaches 0xFFFF, GTIF is set to ‘1’ and the GTV register
reloads to 0x0000 at the next timer clock. When the MODE bit is set to ‘1’, compare
mode is selected. In this mode, the GTV register starts counting from 0x0000. When the
GTV register matches the value in the GTC register, GTIF is set to ‘1’ and the GTV
register reloads to 0x0000 at the next timer clock.
Note: In the compare mode, the GTC register value should be set prior to write to the
‘MODE’ bit.

10:9 CLK_SEL[1:0] Timer Clock Select. These bits select the timer clock source.
CLK_SEL Clock Source
0X Core Clock
10 Peripheral Clock
11 External Clock*

*The external clock range is 20MHz to 133MHz.
8 GTIE Timer Interrupt Enable. Setting the GTIE bit to ‘1’ causes an interrupt to be generated

to the CPU when GTIF=1. Clearing this bit to ‘0’ will not cause an interrupt when
GTIF=1.

7:5 Reserved Reserved. The user should write 0 to these bits.
4 GTIF Timer Matched Interrupt Flag. This bit is set to ‘1’ when

1. In free synchronous mode, the GTV register value reaches 0xFFFF.
2. In compare mode, the GTV register value matches the value in the GTC register.
This flag generates an interrupt if the GTIE bit is enabled. This bit is cleared in software
by writing ‘0’.

3 Reserved Reserved. The user should write 0 to these bits.
2:0 GTPS[2:0] Timer Prescaler Select. These bits configure the prescaler from the timer clock input to

the timer.
Prescaler bits Timer input clock
000 Timer Clock
001 Timer Clock/4
010 Timer Clock/16
011 Timer Clock/64
100 Timer Clock/256
101 Timer Clock/1024
11X Timer Clock

DS4830A User’s Guide

 146

16.2.2 – General Timer Value Register (GTV1 and GTV2)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name GTV(1,2)
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r r r r r r r r r r r r

16.2.3 – General Timer Compare Register (GTC1 and GTC2)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name GTC(1,2)
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

DS4830A User’s Guide

 147

SECTION 17 – SUPPLY VOLTAGE MONITOR (SVM)
The DS4830A provides feature to allow monitoring its power supply. The Supply Voltage Monitor (SVM) monitors the
VDD power supply and can alert the processor through an interrupt if VDD falls below a programmable threshold.

The DS4830A provides the following power monitoring features:

• SVM compares VDD against a programmable threshold from approximately 2.3V to 3.5V.
• Optional SVM interrupt can be triggered when VDD drops below the programmed threshold.

The Supply Voltage Monitor is controlled by the peripheral register SVM. This register is located in Module 1, Index
9.

Supply Voltage Monitor Register (SVM)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - SVTH[3:0] - - - - SVMI SVMIE SVMRDY SVMEN
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r rw* rw* rw* rw* r r r rw rw rw r rw
*SVTH[3:0] bits can only be written when the SVM is not running (SVMEN=0)

BIT NAME DESCRIPTION
15:12 Reserved Reserved. The user should write 0 to these bits.
11:8 SVTH[3:0] Supply Voltage Threshold Bits [3:0]: These bits are used to select a user defined supply voltage

threshold. If VDD is below this threshold, the SVMI bit will be set and an interrupt can be generated if
enabled. The threshold level can be adjusted from 2.3V to 3.5V in 0.1V increments. The default
value is 00h (2.3V).

Supply Voltage Monitor Threshold = 2.3V + SVTH[3:0] * 0.1V

Note that the SVTH[3:0] bits can only be modified when SVMEN = 0. Writing to these bits is ignored
if SVMEN = 1. The SVM thresholds 00h to 05h have no actual µs because these are lower than the
DS4830A operating VDDMIN range (which is 2.85V). In the upper side, setting 0Ch to 0Fh corresponds
to 3.5V VDD.

7:4 Reserved Reserved. The user should write 0 to these bits.
3 SVMI Supply Voltage Monitor Interrupt: This bit is set to '1' when the VDD supply voltage falls below the

threshold defined by SVTH[3:0]. If SVMIE = 1, setting this bit to 1 by either hardware or software
triggers an interrupt. This bit must be cleared by software, but if VDD is still below the threshold, the bit
is immediately set again by hardware.

2 SVMIE Supply Voltage Monitor Interrupt Enable: Setting this bit to 1 allows an interrupt to be generated (if
not otherwise masked) when SVMI is set to 1. Clearing this bit to 0 disables the SVM interrupt.

1 SVMRDY Supply Voltage Monitor Ready: This read-only status bit indicates whether the SVM is ready for
use.
0 = The SVM is disabled (SVMEN = 0), or the SVM is in the process of powering up.
1 = The SVM is enabled and ready for use.

0 SVMEN Supply Voltage Monitor Enable: Setting this bit to 1 enables the SVM and begins monitoring VDD
against the programmed (SVTH[3:0]) threshold. After SVMEN is set, SVMRDY will be set in
approximately 20 us. Clearing this bit to 0 disables the SVM.

DS4830A User’s Guide

 148

SECTION 18 – HARDWARE MULTIPLIER MODULE
The hardware multiplier module can be used by the DS4830A to support high-speed multiplications. The hardware
multiplier module is equipped with two 16-bit operand registers, a 32-bit read-only result register, and an accumulator
of 48-bit width. The multiplier can complete a 16-bit x 16-bit multiply-and-accumulate/subtract operation in a single
cycle. The hardware multiplier module supports the following operations without interfering with the normal core
functions:

o Signed or unsigned Multiply (16 bit x 16 bit)
o Signed or unsigned Multiply-Accumulate (16 bit x 16 bit)
o Signed or unsigned Multiply-Subtract (16 bit x 16 bit)
o Signed Multiply and Negate (16 bit x 16 bit)

18.1 – Hardware Multiplier Organization

The hardware multiplier consists of two 16-bit, parallel-load operand registers (MA, MB); a read-only result register
formed by two parallel 16-bit registers (MC1R and MC0R); an accumulator, which is formed by three 16-bit parallel
registers (MC2, MC1, and MC0); and a status/control register (MCNT). Figure 18-1 shows a block diagram of the
hardware multiplier.

Figure 18-1: Multiplier Organization

18.2 – Hardware Multiplier Controls
The selection of operation to be performed by the multiplier is determined by four control bits in the MCNT register:
SUS, MSUB, MMAC, and SQU. The number of operands that must be loaded to trigger the specified operation is
dictated by the OPCS bit setting, except when the square function is enabled (SQU = 1). Enabling the square
function implicitly defines that only a single operand (either MA or MB) needs to be loaded to trigger the square
operation, independent of the OPCS bit setting. The MCNT register bits must be configured to select the desired
operation and operand count prior to loading the operand(s) to trigger the multiplier operation. Any write to MCNT
automatically resets the operand load counter of the multiplier, but does not affect the operand registers, unless such
action is requested using the Clear Data Registers (CLD) control bit. Once the desired operation has been specified

MA MB

MC0MC1MC2

MULTIPLIER

0015 15

015015015

MCNT

Overflow

SUS
MMAC

OPCS
SQU

MSUB

CLD
MCW

MC0RMC1R
015015

DS4830A User’s Guide

 149

via the MCNT register bits, loading the prescribed number of operands triggers the respective multiply, multiply-
accumulate/subtract or multiply-negate operation.

18.3 – Register Output Selection
The Hardware Multiplier implements the MC Register Write Select (MCW) control bit so that writing of the result to
the MC2:MC0 registers can be blocked to preserve the MC registers (accumulator). When the MCW bit is configured
to logic 1, the result for the given operation is not written to the MC registers. When the MCW bit is configured to
logic 0, the MC registers are updated with the result of the operation. The MC1R, MC0R read-only register pair are
updated independent of the MCW bit setting. This register pair always reflects the output that would normally be
placed in MC1:MC0, given that MCW = 1 or MMAC = 0. When MCW = 0 and MMAC = 1, the MC1R:MC0R content
may not match the MC1:MC0 register content, but it will be predictable and may be useful in certain situations. See
Table 18-1 for details.

18.3.1 – Signed-Unsigned Operand Selection
The operands can be either signed or unsigned numbers, but the data type must be defined by the user software via
the Signed-Unsigned (SUS) bit prior to triggering the operation. For an unsigned operation, the Signed-Unsigned bit
(SUS) in the MCNT register must be set to 1; for a signed operation, the SUS bit must be cleared to 0. The multiplier
treats unsigned numbers as absolute magnitude. For a 16-bit positional binary number, this represents a value in the
range 0 to 216 - 1 (FFFFh). The signed number representation is a two's-complement value, where the most
significant bit is defined as a sign bit. The range of a 16-bit two's-complement number is -2(16-1) (8000h) to +2(16-1) - 1
(7FFFh). The product of any signed operation will be sign extended before being stored or accumulated/subtracted
into the MC registers. The SUS bit should always be configured to logic 0 (i.e., signed operands) for the multiply-
negate operation. Attempting an unsigned multiply-negate operation results in incorrect results and setting of the OF
bit. Modifying the operand data type selection via the SUS bit does not alter the contents of the MC registers. The
MC registers are read/write accessible and can be modified by user code when necessary.

18.3.2 – Operand Count Selection
The OPCS bit allows selection of single operand or two operands operation for the multiply and multiply-
accumulate/subtract operations. When the OPCS bit is cleared to 0, the multiply or multiply-accumulate/subtract
operation established by the SUS, MSUB, and MMAC bits, is triggered once two operands are loaded-(MA and MB
registers). When OPCS is set to 1, the operation commences once data is loaded to either MA or MB. The OPCS bit
is ignored when the square operation is enabled (SQU), since loading of data to the MA or MB register actually
writes to both registers.

18.4 – Hardware Multiplier Operations
The control bits, which specify data type (SUS), operand count (OPCS or SQU), and destination control (MCW),
have already been described. However, there are two additional MCNT register bits that serve to define the
Hardware Multiplier operation. The multiply-accumulate/subtract and multiply-negate operations are enabled by the
Multiply-Accumulate Enable (MMAC) and Multiply Negate (MSUB) bits in the MCNT register. When the MMAC bit is
set to 1, the multiplier performs a multiply-accumulate (if MSUB = 0) or a multiply-subtract (if MSUB = 1). If MMAC is
configured to 0, the multiplier result is not accumulated or subtracted, but can be stored directly (if MSUB = 0) or
negated (if MSUB = 1) before storage. The multiply-negate operation (MMAC = 0, MSUB = 1) is only allowable for
signed data operands (SUS = 0). For unsigned multiply-accumulate/subtract operations, the OF bit is set when a
carry-out/borrow-in from the most significant bit of the MC register occurs. For a signed two’s-complement multiply-
accumulate/subtract operations, the OF bit is set when the carry-out/borrow-in from the most significant magnitude
position of the MC register is different from the carryout/ borrow-in of the sign position of the MC register. Since there
is no overflow condition for multiply and multiply-negate operations, the OF bit is always cleared for these operations
with one exception. The OF bit will be set to logic 1 if an unsigned multiply-negate (invalid operation) is requested.
Table 18-1 shows the operations supported by the multiplier and associated MCNT control bit settings.
18.4.1 – Accessing the Multiplier
There are no restrictions on how quickly data is entered into the operand registers or the order of data entry. The
only requirement to do a calculation is to perform the loading of MA and/or MB registers having specified data type
and operation in the MCNT register. The multiplier keeps track of the writes to the MA and MB registers, and starts
calculation immediately after the prescribed number of operands is loaded. If two operands are specified for the
operation, the multiplier waits for the second operand to be loaded into the other operand register before starting the
actual calculation. If for any reason software needs to reload the first operand, it should either reload that same
operand register or use the CLD bit in the MCNT register to reinitialize the multiplier; otherwise, loading data to
another operand register triggers the calculation. The CLD bit is a self-clearing bit that can be used for multiplier
initialization. When it is set, it clears all data registers and the OF bit to zero and resets the multiplier operand write
counter.

DS4830A User’s Guide

 150

The specified hardware multiplier operation begins when the final operand(s) is loaded and will complete in a single
cycle. The read-only MC1R, MC0R result registers can be accessed in the very next cycle unless
accumulation/subtraction with MC2:0 is requested (MCW = 0 and MMAC = 1), in which case, one cycle is required
so that stable data can be read. When MCW = 0, the MC2:0 registers always require one wait cycle before the
operation result is accessible. The single wait cycle needed for updating the MC2:0 registers with a calculated result
does not prevent initiating another calculation. Back-to-back operations can be triggered (independent of data type
and operand count) without the need of wait state between the loadings of operands.

Table 18-1 Hardware Multiplier Operations
MCW:MSUB:MMAC OPERATION MC2 MC1 MC0 MC1R:MC0R OF STATUS

000 Multiply MA*MB MA*MB No
001 Multiply-Accumulate MC+(MA*MB) 32lsbits of (MC+2*(MA*MB)) Yes
010 Multiply-Negate (SUS = 0 only) -(MA*MB) -(MA*MB) No
011 Multiply-Subtract MC-(MA*MB) 32lsbits of (MC-2*(MA*MB)) Yes
100 Multiply MC2 MC1 MC0 MA*MB No
101 Multiply-Accumulate MC2 MC1 MC0 32lsbits of (MC+(MA*MB)) No
110 Multiply-Negate (SUS = 0 only) MC2 MC1 MC0 -(MA*MB) No
111 Multiply-Subtract MC2 MC1 MC0 32lsbits of (MC-(MA*MB)) No

The DS4830A has two sets of internal MAC registers to allow interruptible MAC operation. The MACRSEL bit in the
MACSEL register selects one of the MAC registers.

Internal Registers

MCNT0

MA0

MB0

MC0_0

MC2_0

MC1_0

MC0R_0

MC1R_0

MUX MAC
CORE

MACRSEL

MCNT1

MA1

MB1

MC0_1

MC2_1

MC1_1

MC0R_1

MC1R_1

MCNT

MA

MB

MC0

MC2

MC1

MC0R

MC1R

MAC SFRs

Figure 18-2: Dual MAC Registers Organization

DS4830A User’s Guide

 151

18.5 – Hardware Multiplier Peripheral Registers
The hardware multiplier registers are detailed below. Addresses of registers are given as “Mx[yy]” where x is the
module number (from 0 to 5 decimal) and yy is the register index (from 00h to 1Fh hexadecimal).

Table 18-2: Hardware Multiplier Registers
REGISTER ADDRESS FUNCTION

MCNT M3[00h]
Multiplier Control Register. Selects operation, data type, operand count, hardware square
function, and write option on the MC register. Also contains the overflow flag and the clear
control for operand registers and accumulator.

MA M3[01h] Multiplier Operand A Register. Used by the user software to load one of the 16-bit values for a
hardware multiplier operation.

MB M3[02h] Multiplier Operand B Register. Used by the user software to load one of the 16-bit values for a
hardware multiplier operation.

MC2 M3[03h]
Multiplier Accumulate Register 2. Contains the two most significant bytes of the accumulator
register. The 48-bit accumulator is formed by MC2, MC1 and MC0. The most significant bit of
this register is the signed bit for signed operations.

MC1 M3[04h] Multiplier Accumulate Register 1. Contains bytes 3 and 2 of the accumulator register. The 48-
bit accumulator is formed by MC2, MC1 and MC0.

MC0 M3[05h] Multiplier Accumulate Register 0. Contains the two least significant bytes of the accumulator
register. The 48-bit accumulator is formed by MC2, MC1 and MC0.

MC1R M3[08h]
Multiplier Read Register 1. Contains bytes 1 and 0 result from the last operation when MCW bit
is 1 or the last operation is either multiply-only or multiply-negate. The contents of this register
will remain until an SFR related to the multiplier has been changed.

MC0R M3[09h]
Multiplier Read Register 0. Contains bytes 3 and 2 result from the last operation when MCW bit
is 1 or the last operation is either multiply-only or multiply-negate. The contents of this register
will remain unchanged until an SFR related to the multiplier has been changed.

SHFT M3[07h]
Right and Left Shift Register: The shift operations are implemented to help with fixed point
math. These operations only work on the 48-bit accumulator, MC [2:0] registers. The MCR
[1:0] registers are not affected by a shift operation.

MACSEL M3[0Eh] MAC Select Register. The device has internally two sets of MAC registers. Using this register
one of two MAC registers is selected which allows uninterruptible MAC operation.

DS4830A User’s Guide

 152

18.5.1 – Multiplier Control Register (MCNT)
Bit 7 6 5 4 3 2 1 0
Name OF MCW CLD SQU OPCS MSUB MMAC SUS
Reset 0 0 0 0 0 0 0 0
Access r rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
7 OF Overflow Flag. This bit is set to logic 1 when an overflow occurred for the last operation. This bit can be set

for accumulation/subtraction operations or unsigned multiply-negate attempts. This bit is automatically cleared
to 0 following a reset, starting a multiplier operation, or setting of the CLD bit to 0.

6 MCW MC Register Write Select. The state of the MCW bit determines if an operation result will be placed into the
accumulator registers (MC).

0 = The result will be written to the MC registers.
 1 = The result is not written to the MC registers (MC register content is unchanged).

5 CLD Clear Data register. This bit initializes the operand registers and the accumulator of the multiplier. When it is
set to 1, the contents of all data registers and the OF bit are cleared to 0 and the operand load counter is reset
immediately. This bit is cleared by hardware automatically. Writing a 0 to this bit has no effect.

4 SQU Square Function Enable. This bit supports the hardware square function. When this bit is set to logic 1, a
square operation is initiated after an operand is written to either the MA or the MB register. Writing data to
either of the operand registers writes to both registers and triggers the specified square or square-
accumulate/subtract operation. Setting this bit to 1 also overrides the OPCS bit setting. When SQU is cleared
to logic 0, the hardware square function is disabled.

0 = Square function disabled
1 = Square function enabled

3 OPCS Operand Count Select. This bit defines how many operands must be loaded to trigger a multiply or multiply-
accumulate/subtract operation (except when SQU = 1 since this implicitly specifies a single operand). When
this bit is cleared to logic 0, both operands (MA and MB) must be written to trigger the operation. When this bit
is set to 1, the specified operation is triggered once either operand is written.

0 = Both operands (MA and MB) must be written to trigger the multiplier operation.
1 = Loading one operand (MA or MB) triggers the multiplier operation.

2 MSUB Multiply-Accumulate Negate. Configuring this bit to logic 1 enables negation of the product for signed
multiply operations and subtraction of the product from the accumulator (MC[2:0]) when MMAC = 1. When
MSUB is configured to logic 0, the product of multiply operations will not be negated and accumulation is
selected when MMAC = 1.

1 MMAC Multiply-Accumulate Enable. This bit enables the accumulate or subtract operation (as per MSUB) for the
hardware multiplier. When this bit is cleared to logic 0, the multiplier will perform only multiply operations.
When this bit is set to logic 1, the multiplier will perform a multiply-accumulate or multiply-subtract operation
based upon the MSUB bit.
 0 = Accumulate/subtract operation disabled
 1 = Accumulate/subtract operation enabled

0 SUS Signed-Unsigned. This bit determines the data type of the operands. When this bit is cleared to logic 0, the
operands will be treated as two’s complement values and the multiplier will perform a signed operation. When
this bit is set to logic 1, the operands will be treated as absolute magnitudes and the multiplier will perform an
unsigned operation.
 0 = Signed Operands
 1 = Unsigned Operands

DS4830A User’s Guide

 153

18.5.2 – Multiplier Operand A Register (MA)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name MA[15:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
Multiplier Operand A: This operand A register is used by the application code to load 16-bit values for multiplier operations.

18.5.3 – Multiplier Operand B Register (MB)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name MB[15:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
Multiplier Operand B: This operand B register is used by the application code to load 16-bit values for multiplier operations.

18.5.4 – Multiplier Accumulator 2 Register (MC2)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name MC2[15:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
Multiplier Accumulator 2 Register: The MC2 register represents the two most significant bytes of the accumulator register. The
48-bit accumulator is formed by MC2, MC1 and MC0. For a signed operation, the most significant bit of this register is the sign bit.

18.5.5 – Multiplier Accumulator 1 Register (MC1)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name MC1[15:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
Multiplier Accumulator 1 Register: The MC1 register represents bytes 3 and 2 of the accumulator register. The 48-bit
accumulator is formed by MC2, MC1, and MC0.

18.5.6 – Multiplier Accumulator 0 Register (MC0)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name MC0[15:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
Multiplier Accumulator 0 Register: The MC0 register represents the two least significant bytes of the accumulator register. The
48-bit accumulator is formed by MC2, MC1, and MC0.

18.5.7 – Multiplier Read Register 1 (MC1R)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name MC1R[15:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Multiplier Read Register 1: The MC1R register represents bytes 3 and 2 from the result of the last operation when MCW = 1 or
the last operation was a multiply or multiply-negate. When MCW = 0 and the last operation was a multiply-accumulate/subtract,
the contents of this register may or may not agree with the contents of MC1 due to the combinatorial nature of the adder. The
content of this register may change if MCNT, MA, MB, or MC[2:0] is changed.

18.5.8 – Multiplier Read Register 0 (MC0R)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name MC0R[15:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Multiplier Read Register 0: The MC1R register represents bytes 1 and 0 from the result of the last operation when MCW = 1 or
the last operation was a multiply or multiply-negate. When MCW = 0 and the last operation was a multiply-accumulate/subtract,
the contents of this register may or may not agree with the contents of MC0 due to the combinatorial nature of the adder. The
content of this register may change if MCNT, MA, MB or MC[2:0] is changed.

DS4830A User’s Guide

 154

18.5.9 – MAC Select Register (MACSEL)
Bit 7 6 5 4 3 2 1 0
Name - - - - - - - MACRSEL
Reset 0 0 0 0 0 0 0 0
Access r r r r r r r rw

BIT NAME DESCRIPTION
7:1 - Reserved
0 MACRSEL MAC Registers Select Register. The device has internally two sets of MAC registers. Using this bit one of

two MAC registers is selected which allows uninterruptible MAC operation.

18.5.10 – MAC Shift Register (SHIFT)
Bit 7 6 5 4 3 2 1 0
Name SHC - - - - - SR SL
Reset 0 0 0 0 0 0 0 0
Access rw r r r r r rw rw

BIT NAME DESCRIPTION
7 SHC Shift Carry: This bit represents the carry out from last shift operation. For a left shift operation this bit will get

MC2[15] (MSB of MC2 register). For a right shift operation this bit will get MC0[0] (LSB of MC0 register). This
bit can be cleared by writing a 0 to it.

6:2 - Reserved
1 SR Shift Right: a 1 to this bit will cause one bit right shift operation on MC2-M0 register. This bit auto clears itself,

so a read on SHFT register will always return 0 for this bit position.
0 SL Shift Left: a 1 to this bit will cause one bit left shift operation on MC2-M0 register. This bit auto clears itself, so

a read on SHFT register will always return 0 for this bit position.

The shift (right/left) operations are implemented for faster fixed point math operations. These operations only work
on the 48-bit accumulator, MC [2:0] registers. The MCR [1:0] registers are not affected by a shift operation.

Right Shift Operation:
On doing a right shift the MC2-MC0 contents will be
MC2[15:0] = MC2[15],MC2[15:1] (MSB bit, sign bit, is preserved)
MC1[15:0] = MC2[0],MC1[15:1]
MC0[15:0] = MC1[0],MC0[15:1]
SHC = MC0[0]

Left Shift Operation:
On doing a left shift the MC2-MC0 contents will be
SHC = MC2[15] (shifted sign bit)
MC2[15:0] = MC2[14:0],MC1[15]
MC1[15:0] = MC1[14:0],MC0[15]
MC0[15:0] = MC0[14:0], 0

DS4830A User’s Guide

 155

18.6 – Hardware Multiplier Examples
The following are code examples of multiplier operations.

;Unsigned Multiply 16-bit x 16-bit
move MCNT, #21h ; CLD=1, SUS=1 (unsigned)
move MA, #0FFFh ; MC2:0=0000_0000_0000h
move MB, #1001h ; MC1R:MC0R= 00FF_FFFFh

; MC2:0=0000_00FF_FFFFh

;Signed Multiply 16-bit x 16-bit
move MCNT, #20h ; CLD=1, SUS=0 (signed)
move MA, #F001h ; MC2:0=0000_0000_0000h
move MB, #1001h ; MC1R:MC0R= FF00_0001h

; MC2:0=FFFF_FF00_0001h

;Unsigned Multiply-Accumulate 16-bit x 16-bit

; MC2:0=0000_0100_0001h
move MCNT, #03h ; MMAC=1, SUS=1 (unsigned)
move MA, #0FFFh ;
move MB, #1001h ;

; MC1R:MC0R=02FF_FFFFh
; MC2:0=0000_0200_0000h

;Signed Multiply-Accumulate 16-bit x 16-bit

; MC2:0=0000_0100_0001h
move MCNT, #02h ; SUS=0 (signed)
move MA, #F001h ;
move MB, #1001h ;

; MC1R:MC0R= FF00_0003h
; MC2:0=0000_0000_0002h

;Unsigned Multiply-Subtract 16-bit x 16-bit

; MC2:0=0000_0100_0001h
move MCNT, #07h ; MMAC=1, MSUB=1, SUS=1 (unsigned)
move MA, #0FFFh ;
move MB, #1001h ;

; MC1R:MC0R=FF00_0003h
; MC2:0=0000_0000_0002h

;Signed Multiply-Subtract 16-bit x 16-bit

; MC2:0=0000_0100_0001h
move MCNT, #06h ; MMAC=1, MSUB=1, SUS=0 (signed)
move MA, #F001h ;
move MB, #1001h ;

; MC1R:MC0R= 02FF_FFFFh
; MC2:0=0000_0200_0000h

;Signed Multiply Negate 16-bit x 16-bit
move MCNT, #24h ; CLD=1, MSUB=1, SUS=0 (signed)
move MA, #F001h ; MC2:0=0000_0000_0000h
move MB, #1001h ; MC1R:MC0R =00FF_FFFFh

; MC2:0=0000_00FF_FFFFh

DS4830A User’s Guide

 156

SECTION 19 – WATCHDOG TIMER
19.1 - Overview
The Watchdog Timer is a user programmable clock counter that can serve as a time-base generator, an event timer,
or a system supervisor. As can be seen in Figure 19-1, the timer is driven by the main system clock and is supplied
to a series of dividers. If the watchdog interrupt and the watchdog reset are disabled (WDCN.EWDI = 0 and
WDCN.EWT = 0), the watchdog timer and its input clock are disabled. Whenever the watchdog timer is disabled, the
watchdog interval timer (per WDCN.WD[1:0] bits) and 512 clock reset counter will be reset if either the interrupt or
reset function is enabled. When the watchdog timer is initially enabled, there will be a 1-clock to 3-clock cycle delay
before it starts. The divider output is selectable, and determines the interval between timeouts. When the timeout is
reached, an interrupt flag will be set, and if enabled, an interrupt occurs. A watchdog-reset function is also provided
in addition to the watchdog interrupt. The reset and interrupt are completely discrete functions that may be
acknowledged or ignored, together or separately for various applications.

DIVIDE BY DIVIDE BY
2 3

DIVIDE BY
2 3

DIVIDE BY
2 3

RWT
(RESET WATCHDOG)

WD1

 WD0

TIMEOUT

SYSTEM CLOCK

TIMEOUT INTERVAL SELECTOR

WDIF

EWDI
(ENABLE WATCHDOG INTERRUPT)

WATCHDOG
INTERRUPT

RESET

WTRF

RESET COUNTER
512 SYSCLK DELAY

EWT
(ENABLE WATCHDOG TIMER RESET)

2 12 2 15
 2 18

 2 21

2 12

Figure 19-1: Watchdog Timer Block Diagram

19.2 – Watchdog Timer Description
When the watchdog timer is enabled, it begins counting system clock cycles. The watchdog count will be reset
anytime RWT is set to 1. If the watchdog count reaches the time interval set by WD1:0], a watchdog timeout occurs,
setting the Watchdog Interrupt Flag (WDCN.WDIF). A watchdog timeout will also generate an interrupt and/or reset
the DS4830A. Table 19-1 describes the possible states of the watchdog timer.

DS4830A User’s Guide

 157

Table 19-1: Watchdog Operating States

EWT EWDI WDIF ACTIONS
x X 0 No interrupt has occurred.
0 0 x Watchdog disable, clock is gated off.
0 1 1 Watchdog interrupt has occurred.

1 0 1 No interrupt has been generated. Watchdog reset will occur in 512 system
clock cycles if RWT is not set or WDIF not cleared.

1 1 1 Watchdog interrupt has occurred. Watchdog reset will occur in 512 system
clock cycles if RWT is not set or WDIF not cleared.

19.2.1 – Watchdog Timer Interrupt Operation
The watchdog interrupt is enabled using the Enable Watchdog Timer Interrupt (WDCN.EWDI) bit. When the timeout
occurs, the watchdog timer will set the Watchdog Interrupt Flag bit (WDCN.WDIF), and an interrupt will occur if the
interrupt global enable (IC.IGE) and system interrupt mask (IMR.IMS) are set and an interrupt is not currently being
serviced (IC.INS = 0). The Watchdog Interrupt Flag must be cleared by software.

19.2.2 – Watchdog Timer Reset Operation
In order to reset the DS4830A, the watchdog timer reset function must be enabled by setting the Enable Watchdog
Timer Reset (WDCN.EWT) bit. When a watchdog timeout occurs, the WDIF flag will be set and an interrupt will be
generated if enabled. Following the timeout, the watchdog will count an additional 512 system clock cycles. To
avoid a reset, software must either set the RWT bit or clear the EWT bit. This can occur at any time during the
watchdog timer interval or the additional 512 system clock cycles after WDIF is set. At the end of the 512 system
clock cycles the DS4830A will be reset. When the reset occurs, the Watchdog Timer Reset Flag (WDCN.WTRF) will
automatically be set to indicate the cause of the reset. Software must clear this bit manually.

19.2.3 – Watchdog Timer Applications
Using the watchdog interrupt during software development can allow the user to select ideal watchdog reset
locations. Code is first developed without enabling the watchdog interrupt or reset functions. Once the program is
complete, the watchdog interrupt function is enabled to identify the required locations in code to set the RWT bit.
Incrementally adding instructions to reset the watchdog timer prior to each address location (identified by the
watchdog interrupt) will allow the code to eventually run without receiving a watchdog interrupt. At this point the
watchdog timer reset can be enabled without the potential of generating unwanted resets. At the same time the
watchdog interrupt may also be disabled. Proper use of the watchdog interrupt with the watchdog reset allows
interrupt software to survey the system for errant conditions.

When using the watchdog timer as a system monitor, the watchdog reset function should be used. If the interrupt
function were used, the purpose of the watchdog would be defeated. For example, assume the system is executing
errant code prior to the watchdog interrupt. The interrupt would temporarily force the system back into control by
vectoring the CPU to the interrupt service routine. Restarting the watchdog and exiting by an RETI or RET, would
return the processor to the errant code. By using the watchdog reset function, the processor is restarted from the
beginning of the program, and therefore placed into a known state.

The watchdog timer is controlled by the Watchdog Timer Control Register, WDCN. The WDCN register is one of the
system register and is located in Module 8, Register 19. The bit names and description of WDCN are listed in Table
19-2.

DS4830A User’s Guide

 158

Table 19-2: Watchdog Timer Control Register Bits (WDCN)
Bit 7 6 5 4 3 2 1 0
Name POR EWDI WD1 WD0 WDIF WTRF EWT RWT
Reset s* s* 0 0 0 s* s* 0
Access rw rw rw rw rw rw rw rw
*Bits 5, 4, 3 and 0 are cleared to 0 on all forms of reset; for others, see individual bit descriptions.

BIT NAME DESCRIPTION
7 POR Power-On Reset Flag: This bit is set to 1 whenever a power-on/brownout reset occurs. It is

unaffected by other forms of reset. This bit can be checked by software following a reset to
determine if a power-on/brownout reset occurred. It should always be cleared by software
following a reset to ensure that the sources of following resets can be determined correctly.

6 EWDI Enable Watchdog Timer Interrupt: If this bit is set to 1, an interrupt request can be
generated when the WDIF bit is set to 1 by any means. If this bit is cleared to 0, no
interrupt will occur when WDIF is set to 1, however, it does not stop the watchdog timer or
prevent watchdog resets from occurring if EWT = 1. If EWT = 0 and EWDI = 0, the
watchdog timer will be stopped. If the watchdog timer is stopped (EWT = 0 and EWDI = 0),
setting the EWDI bit will reset the watchdog interval and reset counter, and enable the
watchdog timer. This bit is cleared to 0 by power-on reset and is unaffected by other forms
of reset.

5:4 WD[1:0] Watchdog Timer Interval Control Bits: These bits determine the watchdog timeout interval.
The timeout interval is set in terms of system clocks. Modifying the watchdog interval will
automatically reset the watchdog timer unless the 512 system clock reset counter is
already in progress, in which case, changing the WD[1:0] bits will not affect the watchdog
timer or reset counter.

WD1 WD0 CLOCKS UNTIL
INTERRUPT

CLOCKS UNTIL RESET

0 0 212 212 + 512
0 1 215 215 + 512
1 0 218 218 + 512
1 1 221 221 + 512

3 WDIF Watchdog Interrupt Flag: This bit will be set to 1 when the watchdog timer interval has
elapsed or can be set to 1 by user software. When WDIF = 1, an interrupt request will
occur if the watchdog interrupt has been enabled (EWDI = 1) and not otherwise masked or
prevented by an interrupt already in service (i.e., IGE = 1, IMS = 1, and INS = 0 must be
true for the interrupt to occur). This bit should be cleared by software before exiting the
interrupt service routine to avoid repeated interrupts. Furthermore, if the watchdog reset
has been enabled (EWT = 1), a reset is scheduled to occur 512 system clock cycles
following setting of the WDIF bit.

2 WTRF Watchdog Timer Reset Flag: This bit is set to 1 when the watchdog resets the processor.
Software can check this bit following a reset to determine if the watchdog was the source of
the reset. Setting this bit to 1 in software will not cause a watchdog reset. This bit is
cleared by power-on reset only and is unaffected by other forms of reset. It should also be
cleared by software following any reset so that the source of the next reset can be correctly
determined by software. This bit is only set to 1 when a watchdog reset actually occurs. If
EWT is cleared to 0 when the watchdog timer elapses, this bit will not be set.

1 EWT Enable Watchdog Timer Reset: If this bit is set to 1 when the watchdog timer elapses, the
watchdog resets the DS4830A 512 system clock cycles later unless action is taken to
disable the reset event. Clearing this bit to 0 prevents a watchdog reset from occurring but
does not stop the watchdog timer or prevent watchdog interrupts from occurring if EWDI =
1. If EWT = 0 and EWDI = 0, the watchdog timer will be stopped. If the watchdog timer is
stopped (EWT = 0 and EWDI = 0), setting the EWT bit will reset the watchdog interval and
reset counter, and enable the watchdog timer. This bit is cleared on power-on reset and is
unaffected by other forms of reset.

0 RWT Reset Watchdog Timer: Setting this bit to 1 resets the watchdog timer count. If watchdog
interrupt and/or reset modes are enabled, the software must set this bit to 1 before the
watchdog timer elapses to prevent an interrupt or reset from occurring. This bit always
returns 0 when read.

DS4830A User’s Guide

 159

SECTION 20 – TEST ACCESS PORT (TAP)
The DS4830A incorporates a Test Access Port (TAP) and TAP controller for communication with a host device
across a 4-wire synchronous serial interface. The TAP may be used by the DS4830A to support in-system
programming and/or in-circuit debug. The TAP is compatible with the JTAG IEEE standard 1149 and is formed by
four interface signals described in Table 20-1. For detailed information on the TAP and TAP controller, refer to IEEE
STD 1149.1 “IEEE Standard Test Access Port and Boundary-Scan Architecture.”

Table 20-1: Test Access Port Pins

EXTERNAL PIN SIGNAL FUNCTION

TDO
(Test Data Output)

Serial-Data Output. This signal is used to serially transfer internal data to the external
host. Data is transferred least significant bit first. Data is driven out only on the falling
edge of TCK, only during TAP Shift-IR or Shift-DR states and is otherwise inactive.

TDI
(Test Data Input)

Serial-Data Input. This signal is used to receive data serially transferred by the host.
Data is received least significant bit first and is sampled on the rising edge of TCK.
TDI is weakly pulled high internally when TAP=1.

TCK
(Test Clock Input)

Serial Shift Clock Provided by Host. When this signal is stopped at 0, storage
elements in the TAP logic must retain their data indefinitely. TCK is weakly pulled
high internally when TAP=1.

TMS
(Test Mode Select Input)

Mode Select Input. This signal is sampled at the rising edge of TCK and controls
movement between TAP states. TMS is weakly pulled high internally when TAP=1.

These pins default to the TAP/JTAG function on reset, which means that the part is always ready for in-circuit
debugging or in-circuit programming operations following any reset. Once an application has been loaded and starts
running, the TAP/JTAG port can still be used for in-circuit debugging operations. If in-circuit debugging functionality
is not needed, the associated port pins can be reclaimed for application use by setting the TAP bit (SC.7) bit to 0.
This disables the TAP/JTAG interface and allows the four pins to operate as normal port pins.

 2 1 0

TDOTDI

WRITE

TCK

DEBUG

UPDATE-DR

UPDATE-DR

VDD

VDD

TAP
CONTROLLER

7 6 5 4 3 2 1 0 s1 s0

TMS

 SYSTEM PROGRAM

READ

POWER-ON RESET

BY-PASS

012
INSTRUCTION REGISTER

….

Figure 20-1: TAP and TAP Controller

DS4830A User’s Guide

 160

20.1 – TAP Controller
The TAP controller is a synchronous state machine that responds to changes at the TMS and TCK signals. Based on
its state transition, the controller provides the clock and control sequence for TAP operation. The performance of the
TAP is dependent on the TCK clock frequency. The maximum TCK clock frequency should be limited to 1/8 the
system clock frequency. This section provides a brief description of the state machine and its state transitions. The
state diagram in Figure 20-1 summarizes the transitions caused by the TMS signal sampling on the rising edge at
TCK. The TMS signal value is presented adjacent to each state transition in the figure.

TEST-LOGIC-RESET

RUN-TEST-IDLE SELECT-DR-SCAN

EXIT2-DR

CAPTURE-DR

SHIFT-DR

EXIT1-DR

PAUSE-DR

UPDATE-DR

SELECT-IR-SCAN

EXIT2-IR

CAPTURE-IR

SHIFT-IR

EXIT1-IR

PAUSE-IR

UPDATE-IR

1

0

1 1 1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0 0

1 1

0 0

Figure 20-2: TAP Controller State Diagram

DS4830A User’s Guide

 161

20.2 – TAP State Control
The TAP provides an independent serial channel to communicate synchronously with the host system. The TAP
state control is achieved through host manipulation of the Test Mode Select (TMS) and Test Clock (TCK) signals.
The TMS signal is sampled at the rising edge of TCK and decoded by the TAP controller to control movement
between the TAP states. The TDI input and TDO output are meaningful once the TAP is in a serial shift state (i.e.
Shift-IR or Shift-DR).

20.2.1 – Test-Logic-Reset
On a power-on reset, the TAP controller is initialized to the Test-Logic-Reset state and the instruction register (IR2:0)
is initialized to the By-Pass instruction so that it will not affect normal system operation. No matter what the state of
the controller, it will enter Test-Logic-Reset when TMS is held high for at least five rising edges of TCK. The
controller remains in the Test-Logic-Reset state if TMS remains high. An erroneous low signal on the TMS may
cause the controller to move into the Run-Test-Idle state but no disturbance is caused to system operation if the
TMS signal is returned and kept at the intended logic high for three rising edges of TCK since this returns the
controller to the Test-Logic-Reset state.

20.2.2 – Run-Test-Idle
As illustrated in Figure 20-2, the Run-Test-Idle state is simply an intermediate state for getting to one of the two state
sequences in which the controller performs meaningful operations:

• Controller state sequence (IR-Scan), or
• Data register state sequence (DR-Scan)

20.2.3 – IR-Scan Sequence
The controller state sequence allows instructions (e.g. ‘Debug’ and ‘System Programming’) to be shifted into the
instruction register starting from the Select-IR-Scan state. In the TAP, the instruction register is connected between
the TDI input and the TDO output. Inside the IR-Scan Sequence, the Capture-IR state loads a fixed binary pattern
(001b) into the 3-bit shift register and the Shift-IR state causes shifting of TDI data into the shift register and serial
output to TDO, least significant bit first. Once the desired instruction is in the shift register, the instruction can be
latched into the parallel instruction register (IR2:0) on the falling edge of TCK in the Update-IR state. The contents of
the 3-bit instruction shift register and parallel instruction register (IR2:0) are summarized with respect to the TAP
controller states in Table 20-2.

Table 20-2: Instruction Register Content vs. TAP Controller State

TAP
CONTROLLER STATE INSTRUCTION SHIFT REGISTER PARALLEL (3-BIT)

INSTRUCTION REGISTER (IR2:0)
Test-Logic-Reset Undefined Set to By-pass (011b) Instruction

Capture-IR Load 001b at the rising edge of TCK Retain last state

Shift-IR Input data via TDI and Shift towards
TDO at the rising edge of TCK Retain last state

Exit1-IR
Exit2-IR

Pause-IR
Retain last state Retain last state

Update-IR Retain last state Load from shift register at the falling edge of TCK
All other states Undefined Retain last state

When the parallel instruction register (IR2:0) is updated, the TAP controller decodes the instruction and performs any
necessary operations, including activation of the data shift register to be used for the particular instruction during
data register shift sequences (DR-Scan). The length of the activated shift register depends upon the value loaded to
the instruction register (IR2:0). The supported instruction register encodings and associated data register selections
are shown in Table 20-3.

DS4830A User’s Guide

 162

Table 20-3: Instruction Register (IR2:0) Encodings

IR2:0 INSTRUCTION FUNCTION SERIAL DATA SHIFT REGISTER SELECTION
000 Extest No operation Unchanged. Retain previous selection
001 Sample/Preload No operation Unchanged. Retain previous selection
010 Debug In-circuit debug mode 10-bit shift register
011 By-pass No operation (default) 1-bit shift register

100 System
Programming Bootstrap function 3-bit shift register

101 By-pass No operation (default) 1-bit shift register
110 Reserved
111 By-pass No operation (default) 1-bit shift register

The Extest (IR2:0 = 000b) and Sample/Preload (IR2:0 = 001b) instructions are mandated by the JTAG standard,
however, the DS4830A does not intend to make practical use of these instructions. Hence, these instructions are
treated as no operations but may be entered into the instruction register without affecting the on-chip system logic or
pins and does not change the existing serial data register selection between TDI and TDO.

The By-pass (IR2:0 = 011b, 101b, or 111b) instruction is also mandated by the JTAG standard. The By-pass
instruction is fully implemented by the DS4830A to provide a minimum length serial data path between the TDI and
the TDO pins. This is accomplished by providing a single cell bypass shift register. When the instruction register is
updated with the By-pass instruction, a single bypass register bit is connected serially between TDI and TDO in the
Shift-DR state. The instruction register automatically defaults to the By-pass instruction when the TAP is in the Test-
Logic-Reset state. The By-pass instruction has no effect on the operation of the on-chip system logic.

The Debug (IR2:0 = 010b) and System Programming (IR2:0 = 100b) instructions are private instructions which are
intended solely for in-circuit debug and in-system programming operations respectively. If the instruction register is
updated with the Debug instruction, a 10-bit serial shift register is formed between the TDI and TDO pins in the Shift-
DR state. If the System Programming instruction is entered into the instruction register (IR2:0), a 3-bit serial data
shift register is formed between the TDI and TDO pins in the Shift-DR state.

Instruction register (IR2:0) settings other than those listed and described above are reserved for internal use. As can
be seen in Figure 20-2, the instruction register serves to select the length of the serial data register between TDI and
TDO during the Shift-DR state.

20.2.4 – DR-Scan Sequence
Once the instruction register has been configured to a desired state (mode), transactions are performed via a data
buffer register associated with that mode. These data transactions are executed serially in a manner analogous to
the process used to load the instruction register and are grouped in the TAP Controller state sequence starting from
the Select-DR-Scan state. In the TAP controller state sequence, the Shift-DR state allows internal data to be shifted
out through the TDO pin while the external data is shifted in simultaneously via the TDI pin. Once a complete data
pattern is shifted in, input data can be latched into the parallel buffer of the selected register on the falling edge of
TCK in the Update-DR state. On the same TCK falling edge, in the Update-DR state, the internal parallel buffer is
loaded to the data shift register for output. This Shift-DR/Update-DR process serves as the basis for passing
information between the external host and the DS4830A. These data register transactions occur in the data register
portion of the TAP controller state sequence diagram and have no effect on the instruction register.

20.3 – Communication via TAP
The TAP controller is in Test-Logic-Reset state after a power-on-reset. During this initial state, the instruction register
contains By-pass instruction and the serial path defined between the TDI and TDO pins for the Shift-DR state is the
1-bit bypass register. All TAP signals (TCK, TMS, TDI, and TDO) default to being weakly pulled high internally on
any reset. The TAP controller will remain in the Test-Logic-Reset state as long as TMS is held high. The TCK and
TMS signals may be manipulated by the host to transition to other TAP states. The TAP controller will remain in a
given state whenever TCK is held low.

For the host to establish a specific data communication link, a private instruction must be loaded into the IR2:0
register. Once the instruction is latched in the instruction parallel buffer at the Update-IR state, it is recognized by the
TAP controller and the communication channel is established. In-Circuit Debug or In-System Programming

DS4830A User’s Guide

 163

commands and data can be exchanged between the host and the DS4830A by operating in the data register portion
of the state sequence (i.e. DR-Scan). The TAP retains the private instruction which was loaded into IR2:0 until a new
instruction is shifted in or until the TAP controller returns to the Test-Logic-Reset state.

20.3.1 – TAP Communication Examples – IR-Scan and DR-Scan
Figures 20-3 and 20-4 illustrate examples of communication between the host JTAG controller and the Test Access
Port (TAP) of the DS4830A. The host controls the TCK and TMS signals to move through the desired TAP states
while accessing the selected shift register through the TDI input and TDO output pair.

R
un-Test/Idle

U
pdate-IR

E
xit1-IR

P
ause-IR

E
xit2-IR

S
hift-IR

E
xit1-IR

S
elect-D

R
-S

can

New Instruction

Instruction Register

Test-Logic-R
eset

TCK

TMS

TDI

TDO

Control
State

IR Shift
Register

IR Parallel
Output

Register
Selected

TDO
Enable

C
apture-IR

S
hift-IR

S
elect-IR

-S
can

R
un-Test/Idle

By-Pass

Don’t care or undefinedDon’t care or undefined

Don’t care or undefined Don’t care or undefined

Figure 20-3: TAP Controller Debug Mode IR-Scan Example

DS4830A User’s Guide

 164

R
un-Test/Idle

S
elect-D

R
-S

can

C
apture-D

R

S
h ift-D

R

E
xit1-D

R

P
ause-D

R

E
xit2-D

R

S
hift-D

R

U
pdate-D

R

S
elect-IR

-S
can

E
xit1-D

R

R
un-Test/Idle

S
elect-D

R
-S

can

Old Data New Data

Data Register

Test-Logic-R
eset

TCK

TMS

TDI

TDO

Control
State

Shift
Register

Parallel
Output

Instruction
Register

TDO
Enable

Don’t care or undefined Don’t care or undefined

Don’t care or undefined

Figure 20-4: TAP Controller Debug Mode DR-Scan Example

DS4830A User’s Guide

 165

SECTION 21 – IN-CIRCUIT DEBUG MODE
The DS4830A is equipped with embedded debug hardware and embedded ROM firmware developed for the
purpose of providing in-circuit debugging capability to the user application. The in-circuit debug mode uses the
JTAG-compatible Test Access Port (TAP) as its means of communication between the host and the DS4830A.
Figure 21-1 shows a block diagram of the in-circuit debugger. The in-circuit debug hardware and software features
include:

• a debug engine,
• a set of registers providing the ability to set breakpoints on register, code, or data,
• a set of debug service routines stored in a ROM.

Collectively, these hardware and software features allow two basic modes of in-circuit debugging:

• Background mode allows the host to configure and set up the in-circuit debugger while the CPU
continues to execute the normal program. Debug mode can be invoked from Background mode.

• Debug mode allows the debug engine to take control of the CPU, providing read write access to internal
registers and memory, and single step trace operation.

TMS

TDO
TDI
TCK

CPU

ROM

DEBUG

ENGINE

ICDB
ICDF
ICDC

BREAKPOINT

COMPARATOR CODE ADDR

DATA ADDR

REG DATA

IP

IR DATA

ADDR

ENABLE

BREAK
ICDA
ICDD
ICDTn

 TAP

CONTROLLER

COMPARATOR

COMPARATOR

Figure 21-1: In-Circuit Debugger

The embedded hardware debug engine is implemented as a stand-alone hardware block in the DS4830A. The
debug engine can be enabled for monitoring internal activities and interacting with selected internal registers while
the CPU is executing user code. This capability allows the user to employ the embedded debug engine to debug the
actual system, in place of the in-circuit emulator that uses external hardware to duplicate operation of the
microcontroller outside of the real application environment.

To enable a communication link between the host and the microcontroller debug engine, the Debug instruction
(010b) must be loaded into the TAP instruction register using the IR-Scan sequence. Once the instruction is latched
in the instruction parallel buffer (IR2:0) and is recognized by the TAP controller in the Update-IR state, the 10-bit data
shift register is activated as the communication channel for DR-Scan sequences. The TAP instruction register retains
the Debug instruction until a new instruction is shifted via an IR-Scan or the TAP controller returns to the Test-Logic-
Reset state.

The host now can transmit and receive serial data through the 10-bit data shift register that exists between the TDI
input and TDO output during DR-Scan sequences. All background and debug mode communication (commands,
data input/output, and status) occurs via this serial channel. Each 10-bit exchange of data between the host and the
DS4830A internal hardware is composed of two status bits and a single byte of command or data. The 10-bit word is
always transmitted least significant bit first with the format shown in Figure 21-2. The details of the two status bits
are shown in Table 21-1.

DS4830A User’s Guide

 166

TDI TDO

9 09 0

X X s1 s0

Host Command / Data Input Status

DS4830A

DS4830A Data Output

Figure 21-2: 10-Bit Word Format

Table 21-1: Status Bits

s1:s0 STATUS/CONDITION
00 Non-Debug. Default condition, Background mode, or debug engine inactive.
01 Debug Idle. Debug engine is ready to receive data from the host (command, data).
10 Debug Busy. Debug engine is busy without valid data (i.e. ROM code execution, trace operations).
11 Debug Valid. Debug engine is busy with valid data

The data byte portion of the 10-bit shift register is interfaced directly to the ICDB parallel register. The ICDB register
functions as the holding data register for both transmit and receive operations. On the falling edge of TCK in the
Update-DR state, the outgoing data is loaded from the ICDB parallel register to the debug shift register and the
incoming shift register data is latched in the ICDB parallel register.

21.1 – Background Mode Operation
When the instruction register is loaded with the Debug instruction (IR2:0 = 010b), the host can communicate with the
DS4830A in a background mode using TAP DR-Scan sequences without disturbing CPU operation. Note, however,
that JTAG in-system programming also requires use of the 10-bit debug shift register and, if enabled (JTAG_SPE=1,
PSS1:0= 0), takes precedence over background mode communication. When operating in background mode, the
status bits are always cleared to 00b (non-debug), which indicates that the DS4830A is ready to receive background
mode commands.

The host can perform the following operations from background mode:

• read/write internal breakpoint registers (BP0–BP5)
• read/write internal in-circuit debug registers (ICDC, ICDF, ICDA, ICDD)
• monitor to determine when a breakpoint match has occurred
• directly invoke debug mode

Table 21-2 shows the background mode commands supported by the DS4830A. Encodings not listed in this table
are not supported in background mode and are treated as no operations.

DS4830A User’s Guide

 167

Table 21-2: Background Mode Commands
OPCODE COMMAND OPERATION
0000-0000 No Operation No operation. (Default state for Debug Shift register).

0000-0001 Read ICDC
Read control data from the ICDC. The contents of the ICDC register will be loaded into the Debug
Shift Register via the ICDB register for host read. This command requires one follow-on transfer
cycle.

0000-0010 Read ICDF
Read flags from the ICDF. The contents of the ICDF register (one byte) will be loaded into the
Debug Shift Register via the ICDB register for host read. This command requires one follow-on
transfer cycle.

0000-0011 Read ICDA
Read data from the ICDA. The contents of the ICDA register will be loaded into the Debug Shift
Register via the ICDB register for host read. This command requires two follow-on transfer cycles
with the least significant byte first.

0000-0100 Read ICDD
Read data from the ICDD. The contents of the ICDD register will be loaded into the Debug Shift
Register via the ICDB register for host read. This command requires two follow-on transfer cycles
with the least significant byte first.

0000-0101 Read BP0
Read data from the BP0. The contents of the BP0 register will be loaded into the Debug Shift
Register via the ICDB register for host read. This command requires two follow-on transfer cycles
with the least significant byte first.

0000-0110 Read BP1
Read data from the BP1. The contents of the BP1 register will be loaded into the Debug Shift
Register via the ICDB register for host read. This command requires two follow-on transfer cycles
with the least significant byte first.

0000-0111 Read BP2
Read data from the BP2. The contents of the BP2 register will be loaded into the Debug Shift
Register via the ICDB register for host read. This command requires two follow-on transfer cycles
with the least significant byte first.

0000-1000 Read BP3
Read data from the BP3. The contents of the BP3 register will be loaded into the Debug Shift
Register via the ICDB register for host read. This command requires two follow-on transfer cycles
with the least significant byte first.

0000-1001 Read BP4
Read data from the BP4. The contents of the BP4 register will be loaded into the Debug Shift
Register via the ICDB register for host read. This command requires two follow-on transfer cycles
with the least significant byte first.

0000-1010 Read BP5
Read data from the BP5. The contents of the BP5 register will be loaded into the Debug Shift
Register via the ICDB register for host read. This command requires two follow-on transfer cycles
with the least significant byte first.

0001-0001 Write ICDC Write control data to the ICDC. The contents of ICDB will be loaded into the ICDC register by the
debug engine at the end of the data transfer cycle.

0001-0011 Write ICDA Write data to the ICDA. The contents of ICDB will be loaded into the ICDA register by the debug
engine at the end of the data transfer cycles. Data is transferred with the least significant byte first.

0001-0100 Write ICDD Write data to the ICDD. The contents of ICDB will be loaded into the ICDD register by the debug
engine at the end of data transfer cycles. Data is transferred with the least significant byte first.

0001-0101 Write BP0 Write data to the BP0. The contents of ICDB will be loaded into the BP0 register by the debug
engine at the end of data transfer cycles. Data is transferred with the least significant byte first.

0001-0110 Write BP1 Write data to the BP1. The contents of ICDB will be loaded into the BP1 register by the debug
engine at the end of data transfer cycles. Data is transferred with the least significant byte first.

0001-0111 Write BP2 Write data to the BP2. The contents of ICDB will be loaded into the BP2 register by the debug
engine at the end of data transfer cycles. Data is transferred with the least significant byte first.

0001-1000 Write BP3 Write data to the BP3. The contents of ICDB will be loaded into the BP3 register by the debug
engine at the end of data transfer cycles. Data is transferred with the least significant byte first.

0001-1001 Write BP4 Write data to the BP4. The contents of ICDB will be loaded into the BP4 register by the debug
engine at the end of data transfer cycles. Data is transferred with the least significant byte first.

0001-1010 Write BP5 Write data to the BP5. The contents of ICDB will be loaded into the BP5 register by the debug
engine at the end of data transfer cycles. Data is transferred with the least significant byte first.

0001-1111 Debug
Debug command. This command forces the debug engine into debug mode and halts the CPU
operation at the completion of the current instruction after the debug command is recognized by the
debug engine.

21.1.1 – Breakpoint Registers
The DS4830A incorporates six breakpoint registers (BP0–BP5) that are configurable by the host for establishing
different types of breakpoint mechanisms. The first four breakpoint registers (BP0–BP3) are 16-bit registers that are
configurable as program memory address breakpoints. When enabled, the debug engine will force a break when a
match between the breakpoint register and the program memory execution address occurs. The final two 16-bit
breakpoint registers (BP4, BP5) are configurable in one of two possible capacities. They may be configured as data
memory address breakpoints or may be configured to support register access breakpoints. In either case, if
breakpoints are enabled and the defined breakpoint match occurs, the debug engine will generate a break condition.
The six breakpoint registers are documented below.

DS4830A User’s Guide

 168

21.1.1.1 – Breakpoint 0 Register (BP0)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name BP0[15:0]
Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Access s s s s s s s s s s s s s s s s
s = special

The Breakpoint 0 register is accessible only via background mode read/write commands. Breakpoint registers BP0,
BP1, BP2, and BP3 serve as program memory address breakpoints. When DME bit is set in background mode, the
debug engine monitors the program-address bus activity while the CPU is executing the user program. If an address
match is detected, a break occurs, allowing the debug engine to take control of the CPU and enter debug mode.

21.1.1.2 – Breakpoint 1 Register (BP1)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name BP1[15:0]
Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Access s s s s s s s s s s s s s s s s
s = special

The Breakpoint 1 register is accessible only via background mode read/write commands. Breakpoint registers BP0,
BP1, BP2, and BP3 serve as program memory address breakpoints. When DME bit is set in background mode, the
debug engine monitors the program-address bus activity while the CPU is executing the user program. If an address
match is detected, a break occurs, allowing the debug engine to take control of the CPU and enter debug mode.

21.1.1.3 – Breakpoint 2 Register (BP2)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name BP2[15:0]
Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Access s s s s s s s s s s s s s s s s
s = special
The Breakpoint 2 register is accessible only via background mode read/write commands. Breakpoint registers BP0,
BP1, BP2, and BP3 serve as program memory address breakpoints. When DME bit is set in background mode, the
debug engine monitors the program-address bus activity while the CPU is executing the user program. If an address
match is detected, a break occurs, allowing the debug engine to take control of the CPU and enter debug mode.

21.1.1.4 – Breakpoint 3 Register (BP3)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name BP3[15:0]
Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Access s s s s s s s s s s s s s s s s
s = special

The Breakpoint 3 register is accessible only via background mode read/write commands. Breakpoint registers BP0,
BP1, BP2, and BP3 serve as program memory address breakpoints. When DME bit is set in background mode, the
debug engine monitors the program-address bus activity while the CPU is executing the user program. If an address
match is detected, a break occurs, allowing the debug engine to take control of the CPU and enter debug mode.

21.1.1.5 – Breakpoint 4 Register (BP4)
The Breakpoint 4 register is accessible only via background mode read/write commands.
When REGE = 0: This register serves as one of the two data memory address breakpoints. When DME is set in
background mode, the debug engine will monitor the data memory address bus activity while the CPU is executing
the user program. If an address match is detected, a break occurs, allowing the debug engine to take over control of
the CPU and enter debug mode.
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name BP4[15:0]
Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Access s s s s s s s s s s s s s s s s
s = special

When REGE = 1: This register serves as one of the two register breakpoints. A break occurs when the destination
register address for the executed instruction matches with the specified module and index. The destination module
is indicated by the M[3:0] bits and the register within that module is defined by the r[4:0] bits.

DS4830A User’s Guide

 169

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - - - r.4 r.3 r.2 r.1 r.0 M.3 M.2 M.1 M.0
Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Access s s s s s s s s s s s s s s s s
s = special

21.1.1.6 – Breakpoint 5 Register (BP5)
The Breakpoint 5 register is accessible only via background mode read/write commands.
When REGE = 0: This register serves as one of the two data memory address breakpoints. When DME is set in
background mode, the debug engine will monitor the data memory address bus activity while the CPU is executing
the user program. If an address match is detected, a break occurs, allowing the debug engine to take over control of
the CPU and enter debug mode.
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name BP5[15:0]
Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Access s s s s s s s s* s* s* s* s* s** s** s** s**
s = special

When REGE = 1: This register serves as one of the two register breakpoints. The destination module is indicated by
the M[3:0] bits and the register within that module is defined by the r[4:0] bits. A break occurs when two following
conditions are met:

• The destination register address for the executed instruction matches with the specified module and index.
• The bit pattern written to the destination register matches those bits specified for comparison by the ICDD

data register and ICDA mask register. Only those ICDD data bits with their corresponding ICDA mask bits
will be compared. When all bits in the ICDA register are cleared, Condition 2 becomes a don’t care.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name - - - - - - - r.4 r.3 r.2 r.1 r.0 M.3 M.2 M.1 M.0
Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Access s s s s s s s s s s s s s s s s
s = special

21.1.2 – Using Breakpoints
All breakpoint registers (BP0-BP5) default to the FFFFh state on power-on reset or when the Test-Logic-Reset TAP
state is entered. The breakpoint registers are accessible only with Background mode read/write commands issued
over the TAP communication link. The breakpoint registers are not read/write accessible to the CPU.

Setting the Debug Mode Enable (DME) bit in the ICDC register to logic 1 enables all six breakpoint registers for
breakpoint match comparison. The state of the Break-On Register Enable (REGE) bit in the ICDC register
determines whether the BP4 and BP5 breakpoints should be used as data memory address breakpoints (REGE = 0)
or as register breakpoints (REGE = 1).

When using the register matching breakpoints, it is important to realize that Debug mode operations (e.g., read data
memory, write data memory, etc.) require use of ICDA and ICDD for passing of information between the host and
DS4830A ROM routines. It is advised that these registers be saved and restored or be reconfigured before returning
to the background mode if register breakpoints are to remain enabled.

When a breakpoint match occurs, the debug engine forces a break and the DS4830A enters Debug Mode. If a
breakpoint match occurs on an instruction that activates the PFX register, the break is held off until the prefixed
operation completes. The host can assess whether Debug mode has been entered by monitoring the status bits of
the 10-bit word shifted out of the TDO pin. The status bits will change from the Non-debug (00b) state associated
with background mode to the Debug-Idle (01b) state when Debug Mode is entered. Debug mode can also be
manually invoked by host issuance of the 'Debug' background command.

DS4830A User’s Guide

 170

21.2 – Debug Mode
There are two ways to enter the Debug Mode from Background Mode:

1. Issuance of the Debug command directly by the host via the TAP communication port, or
2. Breakpoint matching mechanism.

The host can issue the Debug background command to the debug engine. This direct Debug Mode entry is
nondeterministic. The response time varies dependent on system conditions when the command is issued. The
breakpoint mechanism provides a more controllable response, but requires that the breakpoints be initially
configured in Background mode. No matter the method of entry, the debug engine takes control of the CPU in the
same manner. Debug mode entry is similar to the state machine flow of an interrupt except that the target execution
address is x8010h which resides in the Utility ROM instead of the address specified by the IV register that is used for
interrupts. On debug mode entry, the following actions occur:

1. block the next instruction fetch from program memory
2. push the return address onto the stack
3. set the contents of IP to x8010h
4. clear the IGE bit to 0 to disable interrupt handler if it is not already clear.
5. halt CPU operation

Once in Debug mode, further breakpoint matches or host issuance of the Debug command are treated as no
operations and will not disturb debug engine operation. Entering debug mode also stops the clocks to all timers,
including the Watchdog Timer. Temporarily disabling these functions allows debug mode operations without
disrupting the relationship between the original user program code and hardware timed functions. No interrupt
request can be granted since the interrupt handler is also halted as a result of IGE = 0.

21.2.1 – Debug Mode Commands
The debug engine sets the data shift register status bits to 01b (debug-idle) to indicate that it is ready to accept
debug commands from the host.

The host can perform the following operations from debug mode:

• read register map
• read program stack
• read/write register
• read/write data memory
• single step of CPU (trace)
• return to background mode
• unlock password

The only operations directly controlled by the debug engine are single step and return. All other operations are
assisted by debug service routines contained in the Utility ROM. These operations require that multiple bytes be
transmitted and/or received by the host, however each operation always begins with host transmission of a
command byte. This command byte is decoded by the debug engine in order to determine the quantity, sequence,
and destination for follow-on bytes received from the host. Even though there is no timing window specified for
receiving the complete command and follow-on data, the debug engine must receive the correct number of bytes for
a particular command before executing that command. If command and follow-on data are transmitted out of byte
order or proper sequence, the only way to resolve this situation is to disable the debug engine by changing the
instruction register (IR2:0) and reloading the Debug instruction. Once the debug engine has received the proper
number of command and follow-on bytes for a given ROM assisted operation, it will respond with the following
actions:

• update the Command bits (CMD3:0) in the ICDC register to reflect the host request,
• enable the ROM if it is not been enabled,
• force a jump to ROM address x8010h, and
• set the data shift register status bits to 10b (debug-busy)

The ROM code performs a read to the ICDC register CMD3:0 bits to determine its course of action. Some
commands can be processed by the ROM without receiving data from the host beyond the initially supplied follow-on
bytes, while others (e.g., Unlock Password) require additional data from the host. Some commands need only to

DS4830A User’s Guide

 171

provide an indication of completion to the host, while others (e.g., Read Register Map) need to supply multiple bytes
of output data. To accomplish data flow control between the host and ROM, the status bits should be used by the
host to assess when the ROM is ready for additional data and/or when the ROM is providing valid data output.
Internally, the ROM can ascertain when new data is available or when it may output the next data byte via the TXC
flag. The TXC flag is an important indicator between the debug engine and the Utility ROM debug routines. The
Utility ROM firmware sets the TXC flag to 1 to indicate that valid data has been loaded to the ICDB register. The
debug engine clears the TXC flag to 0 to indicate completion of a data shift cycle, thus allowing the ROM to continue
execution of a requested task that is still in progress. The Utility ROM signals that it has completed a requested task
by setting the ROM Operation Done (ROD) bit of the SC register to logic 1. The ROD bit is reset by the debug engine
when it recognizes the done condition.

Table 21-3 shows the debug mode commands supported by the DS4830A. Note that background mode commands
are supported inside debug mode, however, the documentation of these commands can be found in the Background
mode section of the document. Encodings not listed in this table are not supported in debug mode and are treated as
no operations.

Table 21-3: Debug Mode Commands

OPCODE COMMAND OPERATION
0010-0000 No Operation No Operation.

0010-0001 Read register Map

Read data from internal registers. This command forces the debug engine to update
the CMD3:0 bits in the ICDC to 0001b and perform a jump to ROM code at x8010h.
The ROM debug service routine will load register data to ICDB for host capture/read,
starting at the lowest register location in module 0, one byte at a time in a successive
order until all internal registers are read and output to the host.

0010-0010 Read data memory

Read data from data memory. This command requires four follow-on transfer cycles,
two for the starting address and two for the word read count, starting with the LSB
address and ending with the MSB read count. The input address must be based
memory map when executing from utility ROM, as shown in Figure 2-4. The address is
moved to the ICDA register and the word read count is moved to the ICDD register by
the debug engine. This information is directly accessible by the ROM code. At the
completion of this command period, the debug engine updates the CMD3:0 bits to
0010b and performs a jump to ROM code at x8010h. The ROM debug service routine
will load ICDB from data memory according to address and count information provided
by the host.

0010-0011 Read program stack

Read data from program stack. This command requires four follow-on transfer
cycles, two for the starting address and two for the read count, starting with the LSB
address and ending with the MSB read count. The address is moved to the ICDA
register and the read count is moved to the ICDD register by the debug engine. This
information is directly accessible by the ROM code. At the completion of this command
period, the debug engine updates the CMD3:0 bits to 0011b and performs a jump to
ROM code at x8010h. The ROM Debug service routine will pop data out from the
stack according to the information received in the ICDA and ICDD register. The
address input is the highest value that is used, as words are popped off the stack and
returned in descending order.

0010-0100 Write register

Write data to a selected register. This command requires four follow-on transfer
cycles, two for the register address and two for the data, starting with the LSB address
and ending with the MSB data. The address is moved to the ICDA register and the
data is moved to the ICDD register by the debug engine. This information is directly
accessible by the ROM code. At the completion of this command period, the debug
engine updates the CMD3:0 bits to 0100b and performs a jump to ROM code at
x8010h. The ROM Debug service routine will update the select register according to
the information received in the ICDA and ICDD registers.
Any register location can be written using this command, including reserved locations
and those used for opcode support. No protection is provided by the debugging
interface, and avoiding side effects is the responsibility of the host system
communicating with the DS4830A. Writing to the IP register alters the address that
execution resumes from when the debugging engine exits.

DS4830A User’s Guide

 172

OPCODE COMMAND OPERATION

0010-0101 Write data memory

Write data to a selected data memory location. This command requires four follow-
on transfer cycles, two for the memory address and two for the data, starting with the
LSB address and ending with the MSB data. The input address must be based
memory map when executing from utility ROM, as shown in Figure 2-4. The address is
moved to the ICDA register and the data is moved to the ICDD register by the debug
engine. This information is directly accessible by the ROM code. At the completion of
this command period, the debug engine updates the CMD3:0 bits to 0101b and
performs a jump to ROM code at x8010h. The ROM Debug service routine will update
the selected data memory location according to the information received in the ICDA
and ICDD registers.

0010-0110 Trace
Trace command. This command allows single stepping the CPU and requires no
follow-on transfer cycle. The trace operation is a ‘debug mode exit, one cycle CPU
execution, debug mode entry’ sequence.

0010-0111 Return
Return command. This command terminates the debug mode and returns the debug
engine to background mode. This allows the CPU to resume its normal operation at
the point where it has been last interrupted.

0010-1000 Unlock password

Unlock the password lock. This command requires 32 follow-on transfer cycles each
containing a byte value to be compared with the program memory password for the
purpose of clearing the PWL bit and granting access to protected debug and loader
functions. When this command is received, the debug engine updates the CMD3:0 bit
to 1000b and performs a jump to ROM code at x8010h. Data is loaded to the ICDB
register when each byte of data is received, beginning with the LSB of the least
significant word first and end with the MSB of the most significant word.

0010-1001 Read register

Read from a selected internal register. This command requires two follow-on
transfer cycles, starting with the LSB address and ending with the MSB address. The
address is moved to ICDA register by the debug engine. This information is directly
accessible by the ROM code. At the completion of this command period, the debug
engine updates the CMD3:0 bits to 1001b and performs a jump to ROM code at
x8010h. The ROM Debug service routine will always assume a 16-bit register length
and return the requested data LSB first.
Reading a register through the debug interface returns the value that was in that
register before the debugging engine was invoked. An exception to this rule is the SP
register; reading the SP register through the debug interface actually returns the value
(SP+1).

21.2.2 – Read Register Map Command Host-ROM Interaction
A read register map command reads out data contents for all implemented system and peripheral registers. The host
does not specify a target register but instead should expect register data output in successive order, starting with the
lowest order register in register module 0. Data is loaded by the ROM to the 8-bit ICDB register and is output one
byte per transfer cycle. Thus, for a 16-bit register, two transfer cycles are necessary. The host initiates each transfer
cycle to shift out the data bytes and will find valid data output tagged with a debug-valid (status = 11b). At the end of
each transfer cycle, the debug engine clears the TXC flag to signal the ROM service routine that another byte may
be loaded to ICDB. The ROM service routine sets the TXC flag each time after loading data to the ICDB register.
This process is repeated until all registers have been read and output to the host. The host system recognizes the
completion of the register read when the status debug-idle is presented. This indicates that the debug engine is
ready for another operation.

This command outputs all peripheral registers in the range M0[00h] to M5[17h], along with a fixed set of system reg-
isters. The following formatting rules apply to the returned data:

• All peripheral registers are output as 16 bits, least significant byte first. If the register is an 8-bit register, the
top is returned as 00h.

• System registers are output as 8 bits or 16 bits, least significant byte first.
• Registers I2CBUF_S, I2CBUF_M, SPIB_M, SPIB_S, QTDATA, PWMDATA and ADDATA are not read.

Their values are returned as 0000h.
• Nonimplemented and reserved peripheral registers in the range M0[00h] to M5[17h] are represented as

empty word values in Table 21-4. These values should be ignored.

The first byte output by this command is the value 180 (B4h), which represents the number of words output for
peripheral register. There are a total of 216 words that are output by this command. Table 21-4 lists all of the
registers output and the order in which they are output.

DS4830A User’s Guide

 173

Table 21-4: Output from Read Register Map Command
WO
RD REGISTER WO

RD REGISTER WO
RD REGISTER WORD REGISTER WORD REGISTER WORD REGISTER WO

RD REGISTER

0 PO2 32 64 96 MCNT 128 ADCN 160 192 A[3]

1 PO1 33 I2CST_M 65 I2CST_S 97 MA 129 SENR 161 QTCN 193 A[4]

2 PO0 34 I2CIE_M 66 MPNTR 98 MB 130 ADST 162 LTIL 194 A[5]

3 EIF2 35 PO6 67 I2CTXFST 99 MC2 131 ADST1 163 HTIL 195 A6[]

4 EIF1 36 CRC8IN 68 I2CTXFIE 100 MC1 132 164 196 A[7]

5 EIF0 37 MIIR1 69 I2CRXFST 101 MC0 133 165 197 A[8]

6 GTV1 38 EIF6 70 I2CRXFIE 102 GTCN2 134 DADDR 166 PWMCN 198 A[9]

7 GTCN1 39 EIE6 71 I2CST2_S 103 SHFT 135 MIIR4 167 PWMSYNC 199 A[10]

8 PI2 40 PI6 72 RPNTR 104 MC1R 136 TEMPCN 168 LTIH 200 A[11]

9 PI1 41 SVM 73 105 MC0R 137 SHCN 169 HTIH 201 A[12]

10 PI0 42 - 74 106 GTC2 138 ADMIS 170 QTLST 202 A[13]

11 GTC1 43 - 75 107 GTV2 139 PINSEL 171 203 A[14]

12 44 I2CCN_M 76 I2CSLA_S 108 GR_REG1 140 REFAVG 172 204 A[15]

13 EIE2 45 I2CCK_M 77 I2CSLA2_S 109 GR_REG2 141 173 205 IP

14 EIE1 46 I2CTO_M 78 I2CSLA3_S 110 MACRSEL 142 TWR 174 MIIR5 206 SP

15 EIE0 47 I2CSLA_M 79 I2CSLA4_S 111 USER_INT 143 RPCFG 175 207 IV

16 PD2 48 EIES6 80 I2CIE2_S 112 GR_REG3 144 SPICN_S 176 208 LC[0]

17 PD1 49 PD6 81 MADDR 113 GR_REG4 145 SPICF_S 177 209 LC[1]

18 PD0 50 82 MADDR2 114 GR_REG5 146 SPICK_S 178 SPICN_M 210 OFFS

19 EIES2 51 83 MADDR3 115 GR_REG6 147 I2C_SPB 179 SPICF_M 211 DPC

20 EIES1 52 84 MADDR4 116 GR_REG7 148 DEV_NUM 180 SPICK_M 212 GR

21 EIES0 53 CRC8OUT 85 CUR_SLA 117 GR_REG8 149 DACD0 181 213 BP

22 54 86 I2CIE_S 118 GR_REG9 150 DACD1 182 214 DP[0]

23 55 ADCG1 87 119 GR_REG10 151 DACD2 183 215 DP[1]

24 56 ADCG2 88 ICDT0 120 GR_REG11 152 DACD3 184 AP APC

25 57 ADVOFF 89 ICDT1 121 GR_REG12 153 DACD4 185 PSF IC

26 58 90 ICDC 122 GR_REG13 154 DACD5 186 IMR SC

27 59 ADCG3 91 ICDF 123 GR_REG14 155 DACD6 187 IIR CKCN

28 60 ADCG4 92 ICDB 124 GR_REG15 156 DACD7 188 WDCN 0

29 61 CHIPREV 93 ICDA 125 GR_REG16 157 DACCFG 189 A[0]

30 62 ICSLA2_M 94 ICDD 126 158 ADADDR 190 A[1]

31 63 95 127 159 191 A[2]

21.2.3 – Single Step Operation (Trace)
The debug engine supports single step operation in debug mode by executing a Trace command from the host. The
debug engine allows the CPU to return to its normal program execution for one cycle and then forces a debug mode
re-entry. The steps for the Trace command are:

1) Set status to 10b (debug-busy)
2) Pop the return address from the stack
3) Set the IGE bit to logic 1 if debug mode was activated when IGE=1.
4) Supply the CPU with an instruction addressed by the return address
5) Stall the CPU at the end of the instruction execution
6) Block the next instruction fetch from program memory
7) Push the return address onto the stack
8) Set the contents of IP to x8010h
9) Clear the IGE bit to 0 to disable the interrupt handler
10) Halt CPU operation
11) Set the status to debug-idle

Note that the trace operation uses a return address from the stack as a legitimate address for program fetching. The
host must maintain consistency of program flow during the debug process. The Instruction Pointer is automatically
incremented after each trace operation, thus a new return address will be pushed onto the stack before returning the
control to the debug engine. Also, note that the interrupt handler is an essential part of the CPU and a pending
interrupt could be granted during single step operation since the IGE bit state present on debug mode entry is
restored for the single step.

DS4830A User’s Guide

 174

21.2.4 – Return
To terminate the debug mode and return the debug engine to background mode, the host must issue a Return
command to the debug engine. This command causes the following actions:

1) Pop the return address from the stack
2) Set the IGE bit to logic 1 if debug mode was activated when IGE=1.
3) Supply the CPU with an instruction addressed by the return address
4) Allow the CPU to execute the normal user program
5) Set the status to 00b (non-debug)

To prevent a possible endless breakpoint matching loop, no break will occur for a breakpoint match on the first
instruction after returning from debug mode to background mode. Returning to background mode also enables all
internal timer functions.

21.2.5 – Debug Mode Special Considerations
The following are special considerations when using Debug Mode.

• Special caution should be exercised when using the Write Register command on register bits that globally
affect system operation (e.g., IGE, STOP). If the write register command is used to invoke stop mode
(setting STOP = 1), the RST pin may be asserted to reset the debug engine and return to the background
mode of operation.

• Single stepping ('Trace') through any IGE bit change operation results in the debug engine overriding the bit
change since it retains the IGE bit setting captured when active debug mode was entered.

• Single stepping ('Trace') into an operation that sets STOP = 1 when IGE = 1 effectively allows enabled
interrupts normally capable of causing exit from stop mode to do so.

• Single stepping ('Trace') through any memory read instruction that reads from the utility ROM (such as 'move
Acc,' @DP[0] with DP[0] set to 8000h) will cause the memory read to return an incorrect value.

• Single stepping ('Trace') cannot be used when executing code from the utility ROM.
• Data memory allocation is important during system development if in-circuit debug is planned. The top 32-

byte memory location may be used by the debug service routine during debug mode. The data contents in
these locations may be altered and cannot be recovered.

• One available stack location is needed for debug mode. If the stack is full when entering debug mode, the
oldest data in the stack will be overwritten.

• Any signal sampling that relies upon the internal system clock (e.g., counter inputs) can be unreliable since
the system clock is turned off inside active debug mode between debug mode commands.

DS4830A User’s Guide

 175

21.3 – In-Circuit Debug Peripheral Registers
The following peripheral registers are used to control the in-circuit debug mode of the DS4830A. Addresses of
registers are given as “Mx[yy],” where x is the module number (from 0 to 5 decimal) and yy is the register index (from
00h to 1Fh hexadecimal). Fields in the bit definition tables are defined as follows:

● Name: Symbolic names of bits or bit fields in this register.
● Reset: The value of each bit in this register following a standard reset. If this field reads “unchanged,” the

given bit is unaffected by standard reset. If this field reads “s,” the given bit does not have a fixed 0 or 1 reset
value because its value is determined by another internal state or external condition.

● POR: If present this field defines the value of each bit in this register following a power-on reset (as opposed
to a standard reset). Some bits are unaffected by standard resets and are set/cleared by POR only.

● Access: Bits can be read-only (r) or read/write (rw). Any special restrictions or conditions that could apply
when reading or writing this bit are detailed in the bit description.

21.3.1 – In-Circuit Debug Temp 0 Register (ICDT0, M2[18h])
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name ICDT0[15:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access s s s s s s s s s s s s s s s s
s = special

This register is read/write accessible by the CPU only in background mode or debug mode. This register is intended
for use by the utility ROM routines as temporary storage to save registers that might otherwise have to be placed in
the stack.

21.3.2 – In-Circuit Debug Temp 1 Register (ICDT1, M2[19h])
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name ICDT1[15:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access s s s s s s s s s s s s s s s s
s = special

This register is read/write accessible by the CPU only in background mode or debug mode. This register is intended
for use by the utility ROM routines as temporary storage to save registers that might otherwise have to be placed in
the stack.

DS4830A User’s Guide

 176

21.3.3 – In-Circuit Debug Control Register (ICDC, M2[1Ah])

Bit 7 6 5 4 3 2 1 0
Name DME - REGE - CMD3 CMD2 CMD1 CMD0
Reset 0 0 0 0 0 0 0 0
Access rs r rs r rs rs rs rs
r = read, s = special

BIT NAME DESCRIPTION
7 DME Debug Mode Enable (DME). When this bit is cleared to 0, background mode commands

may be executed, but breakpoints are disabled. When this bit is set to 1, breakpoints are
enabled while background mode commands still may be entered. This bit may only be set
or cleared from background debug mode. This bit has no meaning for the ROM code.

6 Reserved Reserved. Do not write to this bit.
5 REGE Break-On Register Enable. The REGE bit is used to enable the break-on register function.

When REGE bit is set to 1, BP4 and BP5 are used as register breakpoints. A break occurs
when the content of BP4 is matched with the destination address of the current instruction.
For BP5, a break occurs only on a selected data pattern for a selected destination register
addressed by BP5. The data pattern is determined by the contents in the ICDA and ICDD
register. The REGE bit alone does not enable register breakpoints, but simply changes the
manner in which BP4, BP5 are used. The DME bit still must be set to a logic 1 for any
breakpoint to occur. This bit has no meaning for the ROM code.

4 Reserved Reserved. Do not write to this bit.
3:0 CMD3:0 These bits reflect the current host command in debug mode. These bits are set by the

debug engine and allow the ROM code to determine the course of action
CMD3:0 Action
0000 No operation
0001 Read register
0010 Read data memory
0011 Read stack memory
0100 Write register
0101 Write data memory
1000 Unlock password
1001 Read selected register
Other Reserved

DS4830A User’s Guide

 177

21.3.4 – In-Circuit Debug Flag Register (ICDF, M2[1Bh])
Bit 7 6 5 4 3 2 1 0
Name - - - - PSS1 PSS0 JTAG_SPE TXC
Reset 0 0 0 0 0 0 0 0
Access r r r r rw rw rw rw
r = read, s = special

BIT NAME DESCRIPTION
7:4 Reserved Reserved. Do not write to these bits.
3:2 PSS[1:0] Programming Source Select Bits [1:0]. These bits are used to select a programming interface

during In-System programming when JTAG_SPE is set to 1, otherwise, the logic values of
these bits have no meaning:

PSS1 PSS0 Interface/Action
0 0 JTAG
0 1 I2C Bootloader
1 x Exit Loader

1 JTAG_SPE System Program Enable. The JTAG_SPE bit is used for In-System programming support and
its logical state, when read by the CPU, always reflects the logical-OR of the JTAG_SPE bit
that is write accessible by the CPU and the SPE bit of the System Programming Buffer (SPB)
Register in the TAP Module (which is accessible via JTAG). The logical state of this bit
determines the program flow after a reset. When it is set to logic 1, In-System programming
will be executed by the Utility ROM. When it is cleared to 0, execution will be transferred to
user code if I2C bootloading is not required. This bit allows read/write access by the CPU and
is cleared to 0 only on a power-on reset or Test-Logic-Reset. The JTAG SPE bit will be
cleared by hardware when the ROD bit is set. CPU writes to the JTAG_SPE bit (0 or 1) will
result in clearing of the PSS[1:0] bits.

0 TXC Serial Transfer Complete. This bit is set by hardware at the end of a transfer cycle at the TAP
communication link. The TXC bit helps the debug engine to recognize host requests, either
command or data. This bit is normally set by ROM code to signify or request the sending or
receiving of data. The TXC bit is cleared by the debug engine once set. CPU writes to the
TXC bit results in clearing of the PSS[1:0] bits.

21.3.5 – In-Circuit Debug Buffer Register (ICDB, M2[1Ch])
Bit 7 6 5 4 3 2 1 0
Name ICDB[7:0]
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

This register serves as the parallel holding buffer for the debug shift register of the TAP. Data is read from or written
to ICDB for serial communication between the debug routines and the external host.

21.3.6 – In-Circuit Debug Address Register (ICDA, M2[1Dh])
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name ICDA[15:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r r r r r r r r r r r r

This register is used by the debug engine to store addresses so that ROM code can view that information. This
register is also used by the debug engine as a mask register to mask out don’t care bits in the ICDD register when
BP5 is used as a register breakpoint. When a bit in this register is set to 1, the corresponding bit location in the ICDD
register will be compared to the data being written to the destination register to determine if a break should be
generated. When a bit in this register is cleared, the corresponding bit in the ICDD register becomes a don’t care and
is not compared against the data being written. When all bits in this register are cleared, any updated data pattern
will cause a break when the BP5 register matches the destination register address of the current instruction.

DS4830A User’s Guide

 178

21.3.7 – In-Circuit Debug Data Register (ICDD, M2[1Eh])
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Name ICDD[15:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access r r r r r r r r r r r r r r r r

This register is used by the debug engine to store data or read count so that ROM code can view that information.
This register is also used by the debug engine as a data register for content matching when BP5 is used as a
register breakpoint. In this case, only data bits in this register with their corresponding mask bits in the ICDA register
set will be compared with the updated destination data to determine if a break should be generated.

DS4830A User’s Guide

 179

SECTION 22 – IN-SYSTEM PROGRAMMING
The DS4830A contains an internal bootstrap loader utilizing the JTAG or I2C interfaces. As a result, system software
can be upgraded in-system, eliminating the need for a costly hardware retrofit when software updates are required.
After each device reset, DS4830A ROM code is executed which determines if bootloader operation is desired.
Figure 22-1 provides information on how the DS4830A enters into bootloader operation.

Any Device Reset Occurs

Reset Device.
Begin Boot ROM code

execution at
8000h.

ROM Code enable the
Slave I2C Interface

Is JTAG_SPE
bit set?

Is I2C_SPE
bit set?

Jump to user
code

(flash) at 0000h,

Set PSS{1:0] = 01

Bootloader

Exit Bootloader
Delay 320 Clock Cycles
Set PWL and ROD bits.

Yes

No

Yes

No

Is PSS[1:0]
!= 1X

Exit Loader
Command

Yes

No

Figure 22-1: Entering Bootloader Operation

22.1 – Detailed Description
Following every reset, device ROM code is executed which determines if the DS4830A should enter into a
bootloader mode. First, the ICDF register, which is not cleared by a reset, is read to see if the System Programming
Enable (SPE) bit is set. See the Entering JTAG Bootloader section for more details on setting the SPE bit. If SPE is
set, the DS4830A will enter into bootloader operation.

If SPE is not set, the DS4830A then enables the slave I2C interface. The I2C_SPE bit in the I2C_SPB register is
read to determine if I2C bootloader operation is desired. The I2C_SPB register is not cleared by a reset. See the
Entering I2C Bootloader section for more details on setting the I2C_SPE bit. If I2C_SPE is set, the DS4830A will set
the PSS[1:0] bits to 01, which designates I2C bootloader, and enter bootloader operation.

If none of the preceding conditions have been met, the DS4830A ROM code will be complete. The DS4830A will
then jump to program memory location 0000h and begin normal program execution.

DS4830A User’s Guide

 180

22.1.1 – Password Protection
The DS4830A uses a password to protect the contents of the program memory from simple access and viewing.
The password resides in the 32 bytes of program memory at byte address 0020h through 003Fh. A valid password
is defined as any value that does not contain all 0000h or FFFFh. Following a reset, the Password Lock Bit (PWL) in
the SC register will be set if the DS4830A contains a valid password.

To protect the program memory, DS4830A grants full access to in-system programming, in-application programming
or in-circuit debugging only after a password match has occurred. When a password match occurs, the PWL bit will
be cleared to 0. When bootloading the device, the password can be matched using the Password Match command,
through either the JTAG or I2C interface.

22.1.2 – Entering JTAG Bootloader
To enable the Bootstrap loader and establish a desired communication channel via JTAG, the System Programming
instruction (100b) must be loaded into the TAP instruction register using the IR-Scan sequence. The TAP retains the
System Programming instruction until a new instruction is shifted in or the TAP controller returns to the Test-Logic-
Reset state. See Section 16 –Test Access Port for more information regarding the JTAG port.

Once the instruction is latched in the instruction parallel buffer (IR[2:0]) and is recognized by the TAP controller in the
Update-IR state, a 3-bit data shift register is activated as the communication channel for DR-Scan sequences. This
3-bit shift register formed between the TDI and TDO pins is directly interfaced to the 3-bit Serial Programming Buffer
(SPB). Table 22-1 provides a detailed description of the System Programming Buffer (SPB). The data content of
the SPB is reflected in the ICDF register, which allows read and write access by the CPU. These bits are cleared by
power-on reset or Test-Logic-Reset of the TAP controller.

Table 22-1: System Programming Buffer (SPB)

BIT NAME DESCRIPTION

2:1 PSS[1:0]

Programming Source Select (PSS1:PSS0). These bits select the programming interface
source.

PSS1 PSS0 Programming Source
0 0 JTAG
0 1 I2C
1 x Exit loader

0 SPE

System Programming Enable (SPE). Setting this bit to a logic 1 denotes that JTAG
bootloading is desired upon exiting reset. The logic state of SPE is examined by the Utility
ROM following a reset to determine the program flow. When SPE=1, the Bootstrap
Loader selected by the PSS[1:0] bits will be activated to perform a Bootstrap Loader
function. If SPE=0, the Utility ROM will determine if I2C Bootloading is required before
transferring execution control to the normal user program.

Following a reset, if the System Programming Buffer is set for JTAG bootloading, the bootload routine will be
entered. The host must now load the Debug instruction (010b) into the TAP instruction register (IR[2:0]), which
enables the 10-bit Debug shift register between TDI and TDO. When operating in JTAG bootloader mode, the
debug state machines are disabled and the sole purpose of the debug hardware is to simultaneously transfer the
data byte shifted in from the host to the In-Circuit Debug Buffer Register (ICDB) and transfer the contents of an
internal holding register (loaded by ROM code writes of ICDB) into the shift register for output to the host. The 8
most significant bits of the 10-bit shift register interface directly to the ICDB. The transfer between the shift register
and the ICDB register occurs on the falling edge of TCK at the Update-DR state. The debug hardware additionally
clears the TXC bit in the ICDF register at this point. The ROM loader code controls the status bit output to the host
by asserting TXC=1 when it has valid data to be shifted out.

The 2 least significant bits of the 10-bit shift register are status bits. The JTAG bootloader has the benefit of using
the same status bit handshaking hardware that is used for in-circuit debugging. The description of the status bits is
described in Table 22-2.

Note: When using the JTAG port, the clock rate (TCK) must be kept below 1/8 of the system clock rate.

DS4830A User’s Guide

 181

Table 22-2: JTAG Bootloader Status Bits

BITS 1:0 STATUS CONDITION
00 Reserved Invalid condition.
01 Reserved Invalid condition

10 Loader-Busy ROM Loader is busy executing code or processing the current
command.

11 Loader-Valid ROM Loader is supplying valid output data to the host in current shift
operation.

22.1.3 – Entering I2C Bootloader
The DS4830A also has built-in functionality that allows bootloading over I2C. Bootloading via I2C allows the system to
update the firmware using only the I2C bus without JTAG or firmware intervention. To access the bootloading
function, slave address 34h is used. This slave address is setup by hardware and cannot be changed through
firmware. As long as the Slave I2C port is enabled, which is the default, the DS4830A will always respond to this
slave address without any firmware interaction required. This address should not be used for any purpose other
than the special bootloading features. Table 22-3 details the special functions that can be performed using slave
address 34h.

Table 22-3: Special Functions of Address 34h
COMMAND BYTE ACTION

F0h Sets the I2C_SPE bit in the I2C_SPB register to enable bootloading via I2C. This bit will not
be cleared on device reset.

BBh Executes a reset of the DS4830A when an I2C STOP is received.
All other bytes The I2C_SPE bit in I2C_SPB is cleared. The DS4830A will NACK this byte.

To enter I2C bootloader, the host must first write slave address 34h with data F0h and then issue a STOP command.
When the STOP command is received, the I2C _SPE bit will be set. The DS4830A must then be reset. This can be
done using either the RST pin or by using the I2C self-reset. To do an I2C self-reset, the host needs to write slave
address 34h with data BBh. Upon receiving an I2C STOP, a reset will be performed.

22.1.4 – I2C Bootloader Disable
The DS4830A provides options to disable the bootloader slave address 34h. The device has DEV_NUM register
which is cleared only on POR. The bit 7 of the DEV_NUM controls bootloader slave address. Setting DEV_NUM[7]
disables the slave address. Application in which bootloader address are not required should set the DEV_NUM[7] in
the top of initialization function at the earliest.

DS4830A User’s Guide

 182

22.2 – Bootloader Operation
Once in bootloader mode, the JTAG and I2C interfaces both use the same commands. How these commands are
implemented will be different between the two interfaces. Table 22-4 shows an example command and parameters.
The next two sections will detail how to implement these commands using either the JTAG or I2C interface.

Table 22-4: Example Bootload Command
Byte(s) Command Data In NOP Data Out Return
Input Command Data In 00h 00h 00h
Output X X X Data Out 3Eh

Byte Name Description
Command All bootloader commands begin with a single command byte. The upper four bits of this command

byte define the command family (from 0 to 15) and the lower four bits define the specific command
within that family.

Data In Data bytes that are input to the bootloader that are required for the command. The number of Data
In bytes varies for each command. Some commands do not require any Data In bytes.

NOP The NOP byte is only used for JTAG mode. This is a byte of 00h that is clocked into TDI, while
TDO is ignored.

Data Out Data Out is any data that is returned by the bootloader. The number of Data Out bytes varies for
each command. Some commands do not output any Data Out bytes.

Return A return value of 3Eh is output by the bootloader at the start of first command and following the
successful completion of every command thereafter. If the Return byte is read prior to 3Eh being
loaded by the bootloader, the read will return the data that is currently in the shift register. The
value 3Eh is only loaded into the shift register once. Any subsequent reads will return invalid data.
In JTAG bootload mode, status bits will tell when ROM loader is sending valid 3Eh.

22.2.1 – JTAG Bootloader Protocol
The JTAG port consists of a shift register. As data is clocked into TDI, data will be clocked out of TDO. Each “byte”
on the JTAG port is actually 10 bits. The two least significant bits are the status bits described in Table 22-2. The
data that is input to the device on the TDI pin should have the two status bits set to 0. The following steps are
required for each command.

1) Transmit the Command byte on TDI. Ignore the returned data on TDO.
2) Transmit any Data In bytes on TDI. Ignore the returned data on TDO.
3) Transmit the NOP byte of 00h, on TDI. Ignore the returned data on TDO.
4) Possibly poll returned data until command execution completes.
5) Transmit 00h on TDI for each Data Out byte. Read the Data Out byte on TDO.
6) Transmit 00h on TDI and verify that the Return byte output on TDO is 3Eh.

Some of the bootloader commands, such as the erase and CRC commands require extra time to execute. For these
commands, the two status bits can be used to verify the state of the bootloader. After issuing any of these
commands, the NOP command can continuously be sent to the bootloader. If the returned status bits are 10, the
bootloader is still busy processing the command. If the status bits are 11, the bootloader has completed execution of
the command. The first byte that was returned with status bits 11 will be the first byte of valid returned data from the
bootloader.

DS4830A User’s Guide

 183

22.2.2 – I2C Bootloader Protocol
After entering the I2C bootloader, all I2C communication takes place on the default I2C bootloader slave address 36h.
When writing data to the DS4830A, slave address 36h (R/W bit = 0) is used. To read data from the DS4830A I2C
bootloader, slave address 37h (R/W bit = 1) is used. The I2C bootloader does not return the status bits that are
available from the JTAG bootloader. The following I2C steps are required to send each command

1) Send an I2C start, followed by writing slave address 36h(R/W bit set to write).
2) Write command byte.
3) Write any Data In bytes.
4) The NOP byte is not required for the I2C interface. Sending a NOP byte when using the I2C bootloader will

place the bootloader into an unknown state. Instead, an I2C Restart needs to be issued, followed by writing
slave address 37h (R/W bit set to read).

5) Possibly poll returned data until command execution completes.
6) Read and ACK all Data Out bytes.
7) Read and NACK the Return byte, verify that 3Eh was returned.
8) Send an I2C STOP.

Some of the bootloader commands, such as the erase and CRC commands require extra time to execute. For these
commands, the I2C port can be continuously polled to determine when the command completes. This polling is done
by reading the returned data bytes after sending slave address 37h. The I2C bootloader will return data B7h while it
is currently busy. When data other than B7h is returned, the bootloader is returning valid data. An example of polling
for the “Master Erase” command is shown in Figure 22-2. After sending slave address 37h, the I2C bootloader will
output B7h until the command has finished execution. The I2C master needs to continue reading and returning
ACK’s until 3Eh is returned. The master then NACK’s this byte (3E).

Command
02h AS Slave Address(W)

36h A

Polling
B7h AA A Return

3Eh
S
R

Slave Address(R)
37h A N

A PPolling …..
B7h

KEY
S = START
SR = REPEATED START
P = STOP

A = ACKNOWLEDGE
NA = NOT ACKNOWLEDGE
SHADED = SLAVE TRANSACTION

Polling …..
B7hA

Figure 22-2: I2C Bootloader Polling

Refer to Application Note 5602: In-System Programming Using I2C Bootloader Commands for ISP using the I2C
bootloader.

http://www.maximintegrated.com/AN5602

DS4830A User’s Guide

 184

22.3 – Bootloader Commands
Commands for the DS4830A loader are grouped into families. All bootloader commands begin with a single
command byte. The upper four bits of this command byte define the command family (from 0 to 15), while the lower
four bits define the specific command within that family. The loader command families are shown in Table 22-5.

Table 22-5: Command Families
COMMAND FAMILY FAMILY DESCRIPTION

0 Required
1 Load
2 Dump
3 CRC
4 Verify
5 Load and Verify
E Fixed Length Erase

All commands, except those in Family 0, are password protected. The password must first be matched before these
commands can be executed. This is done using the Password Match command, which will clear the PWL bit if a
match is made.

Bootloader commands that fail for any reason set the bootloader status byte to an error code value describing the
reason for the failure. This status byte can be read by means of the Get Status command.

For proper bootloader operation, all bytes of data listed for the command must be written or read from the
bootloader. This includes the Return byte, and for the I2C bootloader, the Dummy RX byte. If all bytes are not read,
the bootloader will remain in an unknown state even after a new command is sent to the bootloader.

Following are descriptions of the bootloader commands that are available for use by the DS4830A bootloader.

22.3.1 – Command 00h – No Operation

 Byte 1
 Command

Input 00h
Output X

This is a No Operation Command. This command can be sent at any time without the bootloader taking action. This
command is not password protected.

22.3.2 – Command 01h – Exit Loader

 Byte 1
 Command

Input 01h
Output X

This command causes the bootloader to exit. When exiting, the bootloader will clear the JTAG_SPE and I2C_SPE
bits and then perform an internal reset of the device. Following the reset, code execution jumps to the beginning of
application code at address 0000h. This command is not password protected.

22.3.3 – Command 02h – Master Erase

 Byte 1 Byte 2 Byte 3
 Command NOP Return

Input 02h 00h 00h
Output X X 3Eh

This command erases (sets to FFFFh) all words in the program flash memory and writes all words in the data SRAM
to zero. This command is not password protected. After this command completes, the password lock bit is
automatically cleared, allowing access to all bootloader commands. This command requires approximately 40ms to
complete. Polling for a return value of 3Eh can be performed during this execution time to determine when the
master erase has completed.

DS4830A User’s Guide

 185

22.3.4 – Command 03h – Password Match
 Byte 1 Bytes 2 to 33 Byte 34 Byte 35
 Command Data In NOP Return

Input 03h 32-Byte Password 00h 00h
Output X X X 3Eh

This command accepts a 32-byte password value, which is matched against the password in program memory from
byte address 0020h through 003Fh. If the entered value matches the password in program memory, the password
lock bit will be cleared. This command is not password protected.

22.3.5 – Command 04h – Get Status

 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5
 Command NOP Data Out Data Out Return

Input 04h 00h 00h 00h 00h
Output X X Flags Status Code 3Eh

The Status Flags and Status Code returned by the Get Status command are defined in Tables 22-6 and 22-7. This
command is not password protected. The Status Codes will be set whenever an error condition occurs and will only
reflect the last error. The Status Codes will be cleared

• When the bootloader is initially entered
• At the start of execution of all commands except Family 0 commands
• At the start of execution of the Family 0 Master Erase.

Table 22-6: Bootloader Status Flags

FLAG
BIT MEANING

8:3 Reserved.

2

Word/Byte Mode Supported.
0 – The bootloader supports byte mode only.
1 – The bootloader supports word mode as well as byte mode.
(Note: The DS4830A supports byte mode only)

1

Word/Byte Mode.
0 – The bootloader is currently in byte mode for memory reads/writes.
1 – The bootloader is currently in word mode for memory reads/writes.
(Note: The DS4830A supports byte mode only)

0
Password Lock. This bit will match the SC.PWL bit.
0 – The password is unlocked or had a default value; password-protected commands may be used.
1 – The password is locked. Password-protected commands may not be used.

Table 22-7: Bootloader Status Codes

STATUS
VALUE MEANING

00 No Error. The last command completed successfully.

01 Family Not Supported. An attempt was made to use a command from a family which the
bootloader does not support.

02 Invalid Command. An attempt was made to use a nonexistent command within a supported
command family.

03
No Password Match. An attempt was made to use a password-protected command without first
matching a valid password. Or, the Password Match command was called with an incorrect
password value.

04 Bad Parameter. An input parameter passed to the command was out of range or otherwise
invalid.

05 Verify Failed. The verification step failed on a Load/Verify or Verify command.
06 Unknown Register. An attempt was made to read from or write to a nonexistent register.

07 Word Mode Not Supported. An attempt was made to set word mode access, but the bootloader
supports byte mode access only.

08 Master Erase Failed. The bootloader was unable to perform master erase.

DS4830A User’s Guide

 186

22.3.6 – Command 05h – Get Supported Commands
 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
 Command NOP Data Out Data Out Data Out Data Out Return

Input 05h 00h 00h 00h 00h 00h 00h
Output X X SupportL SupportH 00h 00h 3Eh

The SupportL (LSB) and SupportH (MSB) bytes form a 16-bit value that indicates which command families the
bootloader supports. If bit 0 is set to 1, it indicates that Family 0 is supported. If bit 1 is set to 1, it indicates that
Family 1 is supported. The value returned by the DS4830A is 403Fh, indicating that command families 0, 1, 2, 3, 4,
5 and E are supported. This command is not password protected.

22.3.7 – Command 06h – Get Code Size

 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5
 Command NOP Data Out Data Out Return

Input 06h 00h 00h 00h 00h
Output X X SizeL SizeH 3Eh

This command returns SizeH:SizeL, which represents the size of available code memory in words minus 1. The
DS4830A will return a value of 7FFFh, which indicates 32k words of program memory are available. This command
is not password protected.

22.3.8 – Command 07h – Get Data Size

 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5
 Command NOP Data Out Data Out Return

Input 07h 00h 00h 00h 00h
Output X X SizeL SizeH 3Eh

This command returns SizeH:SizeL, which represents the size of available data memory in words minus 1. The
DS4830A will return a value of 07FFh, which indicates 2k words of data memory are available. This command is not
password protected.

22.3.9 – Command 08h – Get Loader Version

 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5
 Command NOP Data Out Data Out Return

Input 08h 00h 00h 00h 00h
Output X X VersionL VersionH 3Eh

This command returns the device’s bootloader version. The format of the version is VersionH.VersionL. For
example, if VersionL returns 01h and VersionH returns 01h, this corresponds to bootloader version 1.1. This
command is not password protected.

22.3.10 – Command 09h – Get Utility ROM Version

 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5
 Command NOP Data Out Data Out Return

Input 09h 00h 00h 00h 00h
Output X X VersionL VersionH 3Eh

This command returns the device’s ROM code version. The format of the ROM version is VersionH.VersionL. For
example, if VersionL returns 00h and VersionH returns 01h, this corresponds to ROM version 1.0. This command is
not password protected.

DS4830A User’s Guide

 187

22.3.11 – Command 10h – Load Code
 Byte 1 Byte 2 Byte 3 Byte 4 (Length)

Bytes
Byte

Length+5
Byte

Length+6
 Command Data In Data In Data In Data In NOP Return
Input 10h Length AddressL AddressH Data to load 00h 00h
Output X X X X X X 3Eh

This command programs (Length) bytes of data into the program flash starting at byte address
(AddressH:AddressL). The bootloader writes one 16-bit word to flash at a time. The low bit of the address will always
be forced to zero because instructions in program flash are word aligned. If an odd number of bytes are input, the
final word written to the program flash will have its most significant byte set to 00h. Memory locations in flash that
have been previously loaded must be erased (Master Erase or Page Erase Command) before they can be loaded
with a new value. The DS4830A uses a little-endian memory architecture where the least significant byte of each
word is loaded first. For example, if you load bytes (11h, 22h, 33h, 44h) starting at address 0000h, the first two words
of program space will be written to 2211h, 4433h. This command is password protected.

The time required to write 1 word of data to flash is approximately 80µs. To guarantee correct programming, a
bootloading program will need to ensure that there is at least 100µs of time between when the bootloader receives
two words of data. The easiest way to do this is to limit the clock rate to 100kHz. The time to transmit one word of
data with a 100kHz clock exceeds 100µs, thus giving the previously transmitted word time to be programmed into
flash prior to processing the next word. If a faster clock rate is used, delays will need to be added to ensure that
words are not transmitting at rates faster than 100µs.

The JTAG bootloader also supports polling using the status bits as a method to determine when a word has
successfully been written into flash. When sending the first two bytes of program data to load, the status bits should
return as 11 to signify that the bootloader is valid. After sending the 2nd byte, the bootloader will begin writing this
first word to flash and will be busy. If a 3rd byte of data is written while the bootloader is busy programming the first
word, the status bits will return as 10, which is loader busy. Upon receiving a status of 10, the 3rd byte needs to be
sent again until the status bits return as 11, or loader valid. When this code is returned the 3rd byte has been
received and the 4th byte can now be sent. If using the JTAG bootloader with a clock faster than 100kHz, this polling
method should be used for every byte that is transmit to the bootloader.

22.3.12 – Command 11h – Load Data

 Byte 1 Byte 2 Byte 3 Byte 4 (Length)
Bytes

Byte
Length+5

Byte
Length+6

 Command Data In Data In Data In Data In NOP Return
Input 11h Length AddressL AddressH Data to load 00h 00h
Output X X X X X X 3Eh

This command writes (Length) bytes of data into the data SRAM starting at byte address (AddressH:AddressL). The
DS4830A uses a little-endian memory architecture where the least significant byte of each word is loaded first. For
example, if you load bytes (11h, 22h, 33h, 44h) starting at address 0000h, the first two words of memory space will
be written to 2211h, 4433h. This command is password protected.

22.3.13 – Command 20h – Dump Code

 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 5 Byte 6 Length
Bytes

Byte
Length+7

 Command Data In Data In Data In Data In Data In NOP Data Out Return
Input 20h 2 AddrL AddrH LengthL LengthH 00h 00h 00h

Output X X X X X X X Memory 3Eh

This command returns the contents of the program flash memory. The memory dump begins at byte address
AddrH:AddrL and will contain LengthH:LengthL bytes. This command is password protected.

DS4830A User’s Guide

 188

22.3.14 – Command 21h – Dump Data
 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 5 Byte 6 Length

Bytes
Byte

Length+7
 Command Data In Data In Data In Data In Data In NOP Data Out Return

Input 21h 2 AddrL AddrH LengthL LengthH 00h 00h 00h
Output X X X X X X X Memory 3Eh

This command returns the contents of the SRAM memory. The memory dump begins at byte address AddrH:AddrL
and will contain LengthH:LengthL bytes. This command is password protected.

22.3.15 – Command 30h – CRC Code

 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte
7

Byte 8 Byte 9 Byte
10

 Command Data In Data In Data In Data In Data In NOP Data
Out

Data
Out

Return

Input 30h 2 AddrL AddrH LengthL LengthH 00h 00h 00h 00h
Output X X X X X X X CRCL CRCH 3Eh

This command returns the CRC-16 value (CRCH:CRCL) of the (LengthH:LengthL) bytes of program flash starting at
(AddrH:AddrL). The formula for the CRC calculation is X16 + X15 + X2 + 1. This command is password protected.

The CRC calculation takes approximately 45 system clock cycles per byte (4.5µs/byte). During this time polling
should be performed to determine when the loader has finished executing the CRC calculation. If using the I2C
loader, user should wait for time according to given length and read CRCL, CRCH, 3Eh. If using the JTAG loader,
the JTAG status bits can be used to determine when the CRC calculation is complete.

22.3.16 – Command 31h – CRC Data

 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte
7

Byte 8 Byte 9 Byte
10

 Command Data In Data In Data In Data In Data In NOP Data
Out

Data
Out

Return

Input 31h 2 AddrL AddrH LengthL LengthH 00h 00h 00h 00h
Output X X X X X X X CRCL CRCH 3Eh

This command returns the CRC-16 value (CRCH:CRCL) of the (LengthH:LengthL) bytes of data memory starting at
(AddrH:AddrL). The formula for the CRC calculation is X16 + X15 + X2 + 1. This command is password protected.

The CRC calculation takes approximately 45 system clock cycles per byte (4.5µs/byte). During this time polling
should be performed to determine when the loader has finished executing the CRC calculation. If using the I2C
loader, user should wait for time according to given length and read CRCL, CRCH, 3Eh. If using the JTAG loader,
the JTAG status bits can be used to determine when the CRC calculation is complete.

DS4830A User’s Guide

 189

22.3.17 – Command 40h – Verify Code
 Byte 1 Byte 2 Byte 3 Byte 4 (Length) Bytes Byte

Length+5
Byte

Length+6
 Command Data In Data In Data In Data In NOP Return

Input 40h Length AddrL AddrH Data to Verify 00h 00h
Output X X X X X X 3Eh

This command operates in the same manner as the Load Code command, except that instead of programming the
input data into flash memory, it verifies that the input data matches the data already in code space. If the data does
not match, the status code is set to reflect this failure. This command is password protected.

22.3.18 – Command 41h – Verify Data

 Byte 1 Byte 2 Byte 3 Byte 4 (Length) Bytes Byte
Length+5

Byte
Length+6

 Command Data In Data In Data In Data In NOP Return
Input 41h Length AddrL AddrH Data to Verify 00h 00h

Output X X X X X X 3Eh

This command operates in the same manner as the Load Data command, except that instead of writing the input
data into SRAM, it verifies that the input data matches the data already in data space. If the data does not match, the
status code is set to reflect this failure. This command is password protected.

22.3.19 – Command 50h – Load and Verify Code

 Byte 1 Byte 2 Byte 3 Byte 4 (Length) Bytes Byte
Length+5

Byte
Length+6

 Command Data In Data In Data In Data In NOP Return
Input 50h Length AddrL AddrH Data to load and verify 00h 00h

Output X X X X X X 3Eh

This command provides the combined functionality of the Load Code and Verify Data commands. After each word of
data is written to data memory, the loader will read this memory location and verify that the data matches the input
data. If the verification fails, the status code will be set to reflect this failure. All the guidelines that are listed for the
Load Code command must be followed for the Load and Verify Code command. This command is password
protected.

22.3.20 – Command 51h – Load and Verify Data

 Byte 1 Byte 2 Byte 3 Byte 4 (Length) Bytes Byte
Length+5

Byte
Length+6

 Command Data In Data In Data In Data In NOP Return
Input 51h Length AddrL AddrH Data to load and verify 00h 00h

Output X X X X X X 3Eh

This command provides the combined functionality of the Load Data and Verify Data commands. After each word of
data is written to SRAM memory, the loader will read this memory location and verify that the data matches the input
data. If the verification fails, the status code will be set to reflect this failure. The guidelines that are listed for the
Load Data command must be followed for the Load and Verify Data command. This command is password
protected.

22.3.21 – Command E0h – Code Page Erase

 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
 Command Data In Data In Data In NOP Return

Input E0h 0 PageNum 0 00h 00h
Output X X X X X 3Eh

This command erases (programs to FFFFh) all words in a 256 word (512 byte) page of the program flash memory.
The DS4830A has 128 pages of flash. The input PageNum indicates which page to erase. For example,
PageNum=0 would erase byte addresses 000h through 1FFh and PageNum=1 would erase byte addresses 200h
through 3FFh. This command requires approximately 26ms to complete. Polling can be performed during this
execution time to determine when the page erase has completed. This command is password protected.

DS4830A User’s Guide

 190

SECTION 23 – PROGRAMMING
The following section provides a programming overview of the DS4830A. For full details on the instruction set, as
well as System Register and Peripheral Register detailed bit descriptions, see the appropriate sections in this
user’s guide.

23.1 – Addressing Modes
The instruction set for the DS4830A provides three different addressing modes: direct, indirect and immediate.

The direct addressing mode can be used to specify either source or destination registers, such as:

move A[0], A[1] ; copy accumulator 1 to accumulator 0

 push A[0] ; push accumulator 0 on the stack
 add A[1] ; add accumulator 1 to the active accumulator

Direct addressing is also used to specify addressable bits within registers.

 move C, Acc.0 ; copy bit zero of the active accumulator to the carry flag
 move PO0.3, #1 ; set bit three of port 0 Output register

Indirect addressing, in which a register contains a source or destination address, is used only in a few cases.

 move @DP[0], A[0] ; copy accumulator 0 to the data memory location pointed to by data pointer 0
 move A[0], @SP-- ; where @SP-- is used to pop the data pointed to by the stack pointer register

Immediate addressing is used to provide values to be directly loaded into registers or used as operands.

 move A[0], #10h ; set accumulator 1 to 10h/16d

23.2 – Prefixing Operations
All instructions on the DS4830A are 16 bits long and execute in a single cycle. However, some operations require
more data than can be specified in a single cycle or require that high order register index bits be set to achieve the
desired transfer. In these cases, the prefix register module PFX is loaded with temporary data and/or required
register index bits to be used by the following instruction. The PFX module only holds loaded data for a single cycle
before it clears to zero.

Instruction prefixing is required for the following operations, which effectively makes them two-cycle operations.

• When providing a 16-bit immediate value for an operation (e.g. loading a 16-bit register, ALU operation,

supplying an absolute program branch destination), the PFX module must be loaded in the previous cycle with
the high byte of the 16-bit immediate value unless that high byte is zero. One exception to this rule is when
supplying an absolute branch destination to 0023h. In this case, PFX still must be written with 00h. Otherwise,
the branch instruction would be considered a relative one instead of the desired absolute branch.

• When selecting registers with indexes greater than 07h within a module as destinations for a transfer or registers
with indexes greater than 0Fh within a module as sources, the PFX[n] register must be loaded in the previous
cycle. This can be combined with the previous item.

Generally, prefixing operations can be inserted automatically by the assembler as needed, so that (for example)

 move DP[0], #1234h

actually assembles as

 move PFX[0], #12h
 move DP[0], #34h

However, the operation

 move DP[0], #0055h

does not require a prefixing operation even though the register DP[0] is 16-bit. This is because the prefix value
defaults to zero, so the line move PFX[0], #00h is not required.

DS4830A User’s Guide

 191

23.3 – Reading and Writing Registers
All functions in the DS4830A are accessed through registers, either directly or indirectly. This section discusses
loading registers with immediate values and transferring values between registers of the same size and different
sizes.

23.3.1 – Loading an 8-Bit Register with an Immediate Value
Any writeable 8-bit register with a sub-index from 0h to 7h within its module can be loaded with an immediate value
in a single cycle using the MOVE instruction.

 move AP, #05h ; load accumulator pointer register with 5 hex

Writeable 8-bit registers with sub-indexes 8h and higher can be loaded with an immediate value using MOVE as
well, but an additional cycle is required to set the prefix value for the destination.

 move WDCN, #33h ; assembles to: move PFX[2], #00h
 ; move (WDCN-80h), #33h

23.3.2 – Loading a 16-Bit Register with a 16-Bit Immediate Value
Any writeable 16-bit register with a sub-index from 0h to 07h can be loaded with an immediate value in a single cycle
if the high byte of that immediate value is zero.

 move LC[0], #0010h ; prefix defaults to zero for high byte

If the high byte of that immediate value is not zero or if the 16-bit destination sub-index is greater than 7h, an extra
cycle is required to load the prefix value for the high byte and/or the high order register index bits.

 ; high byte <> #00h
 move LC[0], #0110h ; assembles to: move PFX[0], #01h
 ; move LC[0], #10h

 ; destination sub-index > 7h
 move A[8], #0034h ; assembles to: move PFX[2], #00h
 ; move (A[8]-80h), #34h

23.3.3 – Moving Values Between Registers of the Same Size
Moving data between same-size registers can be done in a single-cycle MOVE if the destination register’s index is
from 0h to 7h and the source register index is between 0h and Fh.

 move A[0], A[8] ; copy accumulator 8 to accumulator 0
 move LC[0], LC[1] ; copy loop counter 1 to loop counter 0

If the destination register’s index is greater than 7h or if the source register index is greater than Fh, prefixing is
required.

 move A[15], A[0] ; assembles to: move PFX[2], #00h
 ; move (A[15]-80h), A[0]

23.3.4 – Moving Values Between Registers of Different Sizes
Before covering some transfer scenarios that might arise, a special register must be introduced that will be utilized in
many of these cases. The 16-bit General Register (GR) is expressly provided for performing byte singulation of 16-
bit words. The high and low bytes of GR are individually accessible in the GRH and GRL registers respectively. A
read-only GRS register makes a byte-swapped version of GR accessible and the GRXL register provides a sign-
extended version of GRL.

8-Bit Destination  Low Byte (16-Bit Source)
The simplest transfer possibility would be loading an 8-bit register with the low byte of a 16-bit register. This transfer
does not require use of GR and requires a prefix only if the destination or source register are outside of the single
cycle write or read regions, 0-7h and 0-Fh, respectively.

 move OFFS, LC[0] ; copy the low byte of LC[0] to the OFFS register
 move IMR, @DP[1] ; copy the low byte @DP[1] to the IMR register
 move WDCN, LC[0] ; assembles to: move PFX[2], #00h
 ; move (WDCON-80h), LC[0]

8-Bit Destination  High Byte (16-Bit Source)
If, however, we needed to load an 8-bit register with the high byte of a 16-bit source, it would be best to use the GR
register. Transferring the 16-bit source to the GR register adds a single cycle.

DS4830A User’s Guide

 192

 move GR, LC[0] ; move LC[0] to the GR register
 move IC, GRH ; copy the high byte into the IC register

16-Bit Destination  Concatenation (8-Bit Source, 8-Bit Source)
Two 8-bit source registers can be concatenated and stored into a 16-bit destination by using the prefix register to
hold the high order byte for the concatenated transfer. An additional cycle may be required if either source byte
register index is greater than 0Fh.

 move PFX[0], IC ; load high order source byte IC into PFX
 move @++SP, AP ; store @DP[0] the concatenation of IC:AP

 ; 16-bit destination sub-index: dst=08h
 ; 8-bit source sub-indexes:
 ; high=10h, low=11h
 move PFX[1], #00h ;
 move PFX[3], high ; PFX=00:high
 move dst, low ; dst=high:low

Low (16-Bit Destination)  8-Bit Source
To modify only the low byte of a given 16-bit destination, the 16-bit register should be moved into the GR register
such that the high byte can be singulated and the low byte written exclusively. An additional cycle is required if the
destination index is greater than 0Fh.

move GR, DP[0] ; move DP[0] to the GR register
move PFX[0], GRH ; get the high byte of DP[0] via GRH
move DP[0], #20h ; store the new DP[0] value

 ; 16-bit destination sub-index: dst=10h
 ; 8-bit source sub-index: src=11h
move PFX[1], #00h ;
move GR, dst ; read dst word to the GR register
move PFX[5], GRH ; get the high byte of dst via GRH
move dst, src ; store the new dst value

High (16-Bit Destination)  8-Bit Source
To modify only the high byte of a given 16-bit destination, the 16-bit register should be moved into the GR register
such that the low byte can be singulated and the high byte can be written exclusively. Additional cycles are required
if the destination index is greater than 0Fh or if the source index is greater than 0Fh.

move GR, DP[0] ; move DP[0] to the GR register
move PFX[0], #20h ; get the high byte of DP[0] via GRH
move DP[0], GRL ; store the new DP[0] value

 ; 16-bit destination sub-index: dst=10h
 ; 8-bit source sub-index: src=11h
move PFX[1], #00h ;
move GR, dst ; read dst word to the GR register
move PFX[1], #00h
move PFX[4], src ; get the new src byte
move dst, GRL ; store the new dst value

If the high byte needs to be cleared to 00h, the operation can be shortened by transferring only the GRL byte to the
16-bit destination (example follows):

move GR, DP[0] ; move DP[0] to the GR register
move DP[0], GRL ; store the new DP[0] value, 00h used for high byte

23.4 – Reading and Writing Register Bits
The MOVE instruction can also be used to directly set or clear any one of the lowest 8 bits of a peripheral register in
module 0h-5h or a system register in module 8h. The set or clear operation will not affect the upper byte of a 16-bit
register that is the target of the set or clear operation. If a set or clear instruction is used on a destination register that
does not support this type of operation, the register high byte will be written with the prefix data and the low byte will
be written with the bit mask (i.e. all 0’s with a single 1 for the set bit operation or all ones with a single 0 for the clear
bit operation).

DS4830A User’s Guide

 193

Register bits may be set or cleared individually using the MOVE instruction as follows.

 move IGE, #1 ; set IGE (Interrupt Global Enable) bit

move APC.6, #0 ; clear IDS bit (APC.6)

As with other instructions, prefixing is required to select destination registers beyond index 07h.

The MOVE instruction may also be used to transfer any one of the lowest 8 bits from a register source or any bit of
the active accumulator (Acc) to the Carry flag. There is no restriction on the source register module for the ‘MOVE C,
src.bit’ instruction.

move C, IIR.3 ; copy IIR.3 to Carry
move C, Acc.7 ; copy Acc.7 to Carry

Prefixing is required to select source registers beyond index 15h.

23.5 – Using the Arithmetic and Logic Unit
The DS4830A provides a 16-bit Arithmetic and Logic Unit (ALU) which allows operations to be performed between
the active accumulator and any other register. The DS4830A is equipped with sixteen 16-bit working accumulators.

23.5.1 – Selecting the Active Accumulator
Any of the sixteen accumulator registers A[0] through A[15] may be selected as the active accumulator by setting the
low four bits of the Accumulator Pointer Register (AP) to the index of the accumulator register you want to select.

move AP, #01h ; select A[1] as the active accumulator
move AP, #0Fh ; select A[15] as the active accumulator

The current active accumulator can be accessed as the Acc register, which is also the register used as the implicit
destination for all arithmetic and logical operations.

move A[0], #55h ; set A[0] = 0055 hex

move AP, #00h ; select A[0] as active accumulator
move Acc, #55h ; set A[0] = 0055 hex

23.5.2 – Enabling Auto-Increment and Auto-Decrement
The accumulator pointer AP can be set to automatically increment or decrement after each arithmetic or logical
operation. This is useful for operations involving a number of accumulator registers, such as adding or subtracting
two multibyte integers. If auto-increment/decrement is enabled, the AP register will increment or decrement after any
of the following operations:

• ADD src (Add source to active accumulator)
• ADDC src (Add source to active accumulator with carry)
• SUB src (Subtract source from active accumulator)
• SUBB src (Subtract source from active accumulator with borrow)
• AND src (Logical AND active accumulator with source)
• OR src (Logical OR active accumulator with source)
• XOR src (Logical XOR active accumulator with source)
• CPL (Bitwise complement active accumulator)
• NEG (Negate active accumulator)
• SLA (Arithmetic shift left on active accumulator)
• SLA2 (Arithmetic shift left active accumulator 2 bit positions)
• SLA4 (Arithmetic shift left active accumulator 4 bit positions)
• SRA (Arithmetic shift right on active accumulator)
• SRA2 (Arithmetic shift right active accumulator 2 bit positions)
• SRA4 (Arithmetic shift right active accumulator 4 bit positions)
• RL (Rotate active accumulator left)
• RLC (Rotate active accumulator left through Carry flag)
• RR (Rotate active accumulator right)
• RRC (Rotate active accumulator right through Carry flag)
• SR (Logical shift active accumulator right)

DS4830A User’s Guide

 194

• MOVE Acc, src (Copy data from source to active accumulator)
• MOVE dst, Acc (Copy data from active accumulator to destination)
• MOVE Acc, Acc (Recirculation of active accumulator contents)
• XCHN (Exchange nibbles within each byte of active accumulator)
• XCH (Exchange active accumulator bytes)

The active accumulator may not be the source in any instruction where it is also the implicit destination.

There is an additional notation that can be used to refer to the active accumulator for the instruction “MOVE dst,
Acc”. If the instruction is instead written as “MOVE dst, A[AP]”, the source value is still the active accumulator, but no
AP auto-increment or auto-decrement function will take place, even if this function is enabled. Note that the active
accumulator may not be the destination for the MOVE dst, A[AP] instruction (i.e. MOVE Acc, A[AP] is prohibited).

So, the two instructions

move A[7], Acc
move A[7], A[AP]

are equivalent except that the first instruction triggers auto-inc/dec (if it is enabled), while the second one will never
do so.

The Accumulator Pointer Control Register (APC) controls the automatic increment/decrement mode as well as
selects the range of bits (modulo) in the AP register that will be incremented or decremented. There are nine
different unique settings for the APC register, as listed in Table 23-1.

Table 23-1. Accumulator Pointer Control Register Settings

APC.2
(MOD2)

APC.1
(MOD1)

APC.0
(MOD0)

APC.6
(IDS) APC AUTO-INCREMENT/-DECREMENT SETTING

0 0 0 0 00h No auto-increment/decrement (default mode)
0 0 1 0 01h Increment bit 0 of AP (modulo 2)
0 0 1 1 41h Decrement bit 0 of AP (modulo 2)
0 1 0 0 02h Increment bits [1:0] of AP (modulo 4)
0 1 0 1 42h Decrement bits [1:0] of AP (modulo 4)
0 1 1 0 03h Increment bits [2:0] of AP (modulo 8)
0 1 1 1 43h Decrement bits [2:0] of AP (modulo 8)
1 0 0 0 04h Increment all 4 bits of AP (modulo 16)
1 0 0 1 44h Decrement all 4 bits of AP (modulo 16)

For the modulo increment or decrement operation, the selected range of bits in AP are incremented or decremented.
However, if these bits roll over or under, they simply wrap around without affecting the remaining bits in the
accumulator pointer. So, the operations can be defined as follows:

• Increment modulo 2: AP = AP[3:1] + ((AP[0] + 1) mod 2)
• Decrement modulo 2: AP = AP[3:1] + ((AP[0] – 1) mod 2)
• Increment modulo 4: AP = AP[3:2] + ((AP[1:0] + 1) mod 4)
• Decrement modulo 4: AP = AP[3:2] + ((AP[1:0] – 1) mod 4)
• Increment modulo 8: AP = AP[3] + ((AP[2:0] + 1) mod 8)
• Decrement modulo 8: AP = AP[3] + ((AP[2:0] – 1) mod 8)
• Increment modulo 16: AP = (AP + 1) mod 16
• Decrement modulo 16: AP = (AP – 1) mod 16

For this example, assume that all 16 accumulator registers are initially set to zero.

move AP, #02h ; select A[2] as active accumulator
move APC, #02h ; auto-increment AP[1:0] modulo 4
 ; AP A[0] A[1] A[2] A[3]
 ; 02 0000 0000 0000 0000
add #01h ; 03 0000 0000 0001 0000
add #02h ; 00 0000 0000 0001 0002
add #03h ; 01 0003 0000 0001 0002
add #04h ; 02 0003 0004 0001 0002
add #05h ; 03 0003 0004 0006 0002

DS4830A User’s Guide

 195

23.5.3 – ALU Operations Using the Active Accumulator and a Source
The following arithmetic and logical operations can use any register or immediate value as a source. The active
accumulator Acc is always used as the second operand and the implicit destination. Also, Acc may not be used as
the source for any of these operations.

add A[4] ; Acc = Acc + A[4]
addc #32h ; Acc = Acc + 0032h + Carry
sub A[15] ; Acc = Acc – A[15]
subb A[1] ; Acc = Acc – A[1] - Carry
cmp #00h ; If (Acc == 0000h), set Equals flag
and A[0] ; Acc = Acc AND A[0]
or #55h ; Acc = Acc OR
xor A[1] ; Acc = Acc XOR A[1]

23.5.4 – ALU Operations Using Only the Active Accumulator
The following arithmetic and logical operations operate only on the active accumulator.

cpl ; Acc = NOT Acc
neg ; Acc = (NOT Acc) + 1
rl ; Rotate accumulator left (not using Carry)
rlc ; Rotate accumulator left through Carry
rr ; Rotate accumulator right (not using Carry)
rrc ; Rotate accumulator right through Carry
sla ; Shift accumulator left arithmetically once
sla2 ; Shift accumulator left arithmetically twice
sla4 ; Shift accumulator left arithmetically four times
sr ; Shift accumulator right, set Carry to Acc.0, set Acc.15 to zero
sra ; Shift accumulator right arithmetically once
sra2 ; Shift accumulator right arithmetically twice
sra4 ; Shift accumulator right arithmetically four times
xchn ; Swap low and high nibbles of each Acc byte
xch ; Swap low byte and high byte of Acc

23.5.5 – ALU Bit Operations Using Only the Active Accumulator
The following operations operate on single bits of the current active accumulator in conjunction with the Carry flag.
Any of these operations may use an Acc bit from 0 to 15.

move C, Acc.0 ; copy bit 0 of accumulator to Carry
move Acc.5, C ; copy Carry to bit 5 of accumulator
and Acc.3 ; Acc.3 = Acc.3 AND Carry
or Acc.0 ; Acc.0 = Acc.0 OR Carry
xor Acc.1 ; Acc.1 = Acc.1 OR Carry

None of the above bit operations will cause the auto-increment, auto-decrement, or modulo operations defined by
the accumulator pointer control (APC) register.

23.5.6 – Example: Adding Two 4-Byte Numbers Using Auto-Increment

move A[0], #5678h ; First number – 12345678h
move A[1], #1234h
move A[2], #0AAAAh ; Second number – 0AAAAAAAh
move A[3], #0AAAh
move APC, #81h ; Active Acc = A[0], increment low bit = mod 2
add A[2] ; A[0] = 5678h + AAAAh = 0122h + Carry
addc A[3] ; A[1] = 1234h + AAAh + 1 = 1CDFh

; 12345678h + 0AAAAAAAh = 1CDF0122h

23.6 – Processor Status Flag Operations
The Processor Status Flag (PSF) register contains five flags that are used to indicate and store the results of
arithmetic and logical operations. Four of these flags can be used for conditional program branching.

23.6.1 – Sign Flag
The Sign flag (PSF.6) reflects the current state of the most significant bit of the active accumulator, (Acc.15). If
signed arithmetic is being used, this flag indicates whether the value in the accumulator is positive or negative.

DS4830A User’s Guide

 196

Since the Sign flag is a dynamic reflection of the high bit of the active accumulator, any instruction that changes the
value in the active accumulator can potentially change the value of the Sign flag. Also, any instruction that changes
which accumulator is the active one (including AP auto-increment/decrement) can also change the Sign flag.

The following operation uses the Sign flag:

JUMP S, src ; Jump if Sign flag is set

23.6.2 – Zero Flag
The Zero flag (PSF.7) is a dynamic flag that reflects the current state of the active accumulator, Acc. If all bits in the
active accumulator are zero, the Zero flag will equal 1. Otherwise, it will equal 0.

Since the Zero flag is a dynamic reflection of (Acc == 0), any instruction that changes the value in the active
accumulator can potentially change the value of the Zero flag. Also, any instruction that changes which accumulator
is the active one (including AP auto-increment/decrement) can also change the Zero flag.

The following operations use the Zero flag:

JUMP Z, src ; Jump if Zero flag is set
JUMP NZ, src ; Jump if Zero flag is cleared

23.6.3 – Equals Flag
The Equals flag (PSF.0) is a static flag set by the CMP instruction. When the source given to the CMP instruction is
equal to the active accumulator, the Equals flag is set to 1. When the source is different from the active accumulator,
the Equals flag is cleared to 0.

The following instructions use the value of the Equals flag. Note that the ‘src’ for the JUMP E/NE instructions must be
immediate.

JUMP E, src ; Jump if Equals flag is set
JUMP NE, src ; Jump if Equals flag is cleared

In addition to the CMP instruction, any instruction using PSF as the destination can alter the Equals flag.

23.6.4 – Carry Flag
The Carry flag (PSF.1) is a static flag indicating that a carry or borrow bit resulted from the last ADD/ADDC or
SUB/SUBB operation. Unlike the other status flags, it can be set or cleared explicitly and is also used as a generic bit
operand by many other instructions.

The following instructions can alter the Carry flag:

• ADD src (Add source to active accumulator)
• ADDC src (Add source and Carry to active accumulator)
• SUB src (Subtract source from active accumulator)
• SUBB src (Subtract source and Carry from active accumulator)
• SLA, SLA2, SLA4 (Arithmetic shift left active accumulator)
• SRA, SRA2, SRA4 (Arithmetic shift right active accumulator)
• SR (Shift active accumulator right)
• RLC / RRC (Rotate active accumulator left / right through Carry)
• MOVE C, Acc. (Set Carry to selected active accumulator bit)
• MOVE C, #i (Explicitly set, i=1, or clear, i=0, the Carry flag)
• CPL C (Complement Carry)
• MOVE C, src. (Copy bit addressable register bit to Carry)
• any instruction using PSF as the destination

The following instructions use the value of the Carry flag:

• ADDC src (Add source and Carry to active accumulator)
• SUBB src (Subtract source and Carry from active accumulator)
• RLC / RRC (Rotate active accumulator left / right through Carry)
• CPL C (Complement Carry)
• MOVE Acc., C (Set selected active accumulator bit to Carry)
• AND Acc. (Carry = Carry AND selected active accumulator bit)
• OR Acc. (Carry = Carry OR selected active accumulator bit)

DS4830A User’s Guide

 197

• XOR Acc. (Carry = Carry XOR selected active accumulator bit)
• JUMP C, src (Jump if Carry flag is set)
• JUMP NC, src (Jump if Carry flag is cleared)

23.6.5 – Overflow Flag
The Overflow flag (PSF.2) is a static flag indicating that the carry or borrow bit (Carry status Flag) resulting from the
last ADD/ADDC or SUB/SUBB operation but did not match the carry or borrow of the high order bit of the active
accumulator. The overflow flag is useful when performing signed arithmetic operations.

The following instructions can alter the Overflow flag:

• ADD src (Add source to active accumulator)
• ADDC src (Add source and Carry to active accumulator)
• SUB src (Subtract source from active accumulator)
• SUBB src (Subtract source and Carry from active accumulator)

23.7 – Controlling Program Flow
The DS4830A provides several options to control program flow and branching. Jumps may be unconditional,
conditional, relative or absolute. Subroutine calls store the return address on the hardware stack for later return.
Built-in counters and address registers are provided to control looping operations.

23.7.1 – Obtaining the Next Execution Address
The address of the next instruction to be executed can be read at any time by reading the Instruction Pointer (IP)
register. This can be particularly useful for initializing loops. Note that the value returned is actually the address of
the current instruction plus 1, so this will be the address of the next instruction executed as long as the current
instruction does not cause a jump.

23.7.2 – Unconditional Jumps
An unconditional jump can be relative (IP +127/-128 words) or absolute (to anywhere in program space). Relative
jumps must use an 8-bit immediate operand, such as

 Label1: ; must be within +127/-128 words of the JUMP

jump Label1

Absolute jumps may use a 16-bit immediate operand, a 16-bit register, or an 8-bit register.

 jump LongJump ; assembles to: move PFX[0], #high(LongJump)
 ; jump #low(LongJump)
 jump DP[0] ; absolute jump to the address in DP[0]

If an 8-bit register is used as the jump destination, the prefix value is used as the high byte of the address and the
register is used as the low byte.

DS4830A User’s Guide

 198

23.7.3 – Conditional Jumps
Conditional jumps transfer program execution based on the value of one of the status flags (C, E, Z, S). Except
where noted for JUMP E and JUMP NE, the absolute and relative operands allowed are the same as for the
unconditional JUMP command.

 jump c, Label1 ; jump to Label1 if Carry is set
 jump nc, LongJump ; jump to LongJump if Carry is not set
 jump z, LC[0] ; jump to 16-bit register destination if Zero is set
 jump nz, Label1 ; jump to Label1 if Zero is not set (Acc<>0)
 jump s, A[2] ; jump to A[2] if Sign flag is set
 jump e, Label1 ; jump to Label1 if Equal is set
 jump ne, Label1 ; jump to Label1 if Equal is cleared

JUMP E and JUMP NE may only use immediate destinations.

23.7.4 – Calling Subroutines
The CALL instruction works the same as the unconditional JUMP, except that the next execution address is pushed
on the stack before transferring program execution to the branch address. The RET instruction is used to return from
a normal call, and RETI is used to return from an interrupt handler routine.

 call Label1 ; if Label1 is relative, assembles to : call #immediate
 call LongCall ; assembles to: move PFX[0], #high(LongCall)
 ; call #low(LongCall)
 call LC[0] ; call to address in LC[0]

 LongCall:
 ret ; return from subroutine

23.7.5 – Looping Operations
Looping over a section of code can be performed by using the conditional jump instructions. However, there is built-
in functionality, in the form of the ‘DJNZ LC[n], src’ instruction, to support faster, more compact looping code with
separate loop counters. The 16-bit registers LC[0], and LC[1] are used to store these loop counts. The ‘DJNZ LC[n],
src’ instruction automatically decrements the associated loop counter register and jumps to the loop address
specified by src if the loop counter has not reached 0.

To initialize a loop, set the LC[n] register to the count you wish to use before entering the loop’s main body.
The desired loop address should be supplied in the src operand of the ‘DJNZ LC[n], src’ instruction. When the
supplied loop address is relative (+127/-128 words) to the DJNZ LC[n] instruction, as is typically the case, the
assembler automatically calculates the relative offset and inserts this immediate value in the object code.

 move LC[1], #10h ; loop 16 times
 LoopTop: ; loop addr relative to djnz LC[n],src instruction

 call LoopSub
 djnz LC[1], LoopTop ; decrement LC[1] and jump if nonzero

When the supplied loop address is outside of the relative jump range, the prefix register (PFX[0]) is used to supply
the high byte of the loop address as required.

 move LC[1], #10h ; loop 16 times
 LoopTop: ; loop addr not relative to djnz LC[n],src

 call LoopSub
 ...
 djnz LC[1], LoopTop ; decrement LC[1] and jump if nonzero
 ; assembles to: move PFX[0], #high(LoopTop)
 ; djnz LC[1], #low(LoopTop)

If loop execution speed is critical and a relative jump cannot be used, one might consider preloading an internal 16-
bit register with the src loop address for the ‘DJNZ LC[n], src’ loop. This ensures that the prefix register will not be
needed to supply the loop address and always yields the fastest execution of the DJNZ instruction.

 move LC[0], #LoopTop ; using LC[0] as address holding register
 ; assembles to: move PFX[0], #high(LoopTop)
 ; move LC[0], #low(LoopTop)
 move LC[1], #10h ; loop 16 times
 ...

 LoopTop: ; loop address not relative to djnz LC[n],src
 call LoopSub
 ...
 djnz LC[1], LC[0] ; decrement LC[1] and jump if nonzero

DS4830A User’s Guide

 199

If opting to preload the loop address to an internal 16-bit register, the most time and code efficient means is by
performing the load in the instruction just prior to the top of the loop:

 move LC[1], #10h ; Set loop counter to 16
 move LC[0], IP ; Set loop address to the next address

 LoopTop: ; loop addr not relative to djnz LC[n],src
 ...

23.7.6 – Conditional Returns
Similar to the conditional jumps, the DS4830A microcontroller also supports a set of conditional return operations.
Based upon the value of one of the status flags, the CPU can conditionally pop the stack and begin execution at the
address popped from the stack. If the condition is not true, the conditional return instruction does not pop the stack
and does not change the instruction pointer. The following conditional return operations are supported:

RET C ; if C=1, a RET is executed
RET NC ; if C=0, a RET is executed
RET Z ; if Z=1 (Acc=00h), a RET is executed
RET NZ ; if Z=0 (Acc<>00h), a RET is executed
RET S ; if S=1, a RET is executed

23.8 – Handling Interrupts
Handling interrupts in the DS4830A microcontroller is a three-part process.

First, the location of the interrupt handling routine must be set by writing the address to the 16-bit Interrupt Vector
(IV) register. This register defaults to 0000h on reset, but this will usually not be the desired location since this will
often be the location of reset / power-up code.

 move IV, IntHandler ; move PFX[0], #high(IntHandler)
 ; move IV, #low(IntHandler)
 ; PFX[0] write not needed if IntHandler addr=0023h

Next, the interrupt must be enabled. For any interrupts to be handled, the IGE bit in the Interrupt and Control register
(IC) must first be set to 1. Next, the interrupt itself must be enabled at the module level and locally within the module
itself. The module interrupt enable is located in the Interrupt Mask register, while the location of the local interrupt
enable will vary depending on the module in which the interrupt source is located.

Once the interrupt handler receives the interrupt, the Interrupt in Service (INS) bit will be set by hardware to block
further interrupts, and execution control is transferred to the interrupt service routine. Within the interrupt service
routine, the source of the interrupt must be determined. Since all interrupts go to the same interrupt service routine,
the Interrupt Identification Register (IIR) must be examined to determine which module initiated the interrupt. For
example, the II0 (IIR.0) bit will be set if there is a pending interrupt from module 0. These bits cannot be cleared
directly; instead, the appropriate bit flag in the module must be cleared once the interrupt is handled.

INS is set automatically on entry to the interrupt handler and cleared automatically on exit (RETI).

 IntHandler:
 push PSF ; save C since used in identification process
 move C, IIR.X ; check highest priority flag in IIR
 jump C, ISR_X ; if IIR.X is set, interrupt from module X
 move C, IIR.Y ; check next highest priority int source
 jump C, ISR_Y ; if IIR.Y is set, interrupt from module Y
 ...
 ISR_X:
 ...
 reti

To support high priority interrupts while servicing another interrupt source, the IMR register may be used to create a
user-defined prioritization. The IMR mask register should not be utilized when the highest priority interrupt is being
serviced because the highest priority interrupt should never be interrupted. This is default condition when a hardware
branch is made the Interrupt Vector address (INS is set to 1 by hardware and all other interrupt sources are blocked).
The code below demonstrates how to use IMR to allow other interrupts.

 ISR_Z:

pop PSF ; restore PSF
push IMR ; save current interrupt mask
move IMR, #int_mask ; new mask to allow only higher priority ints
move INS, #0 ; re-enable interrupts

DS4830A User’s Guide

 200

 ...
(interrupt servicing code)
...
pop IMR ; restore previous interrupt mask
ret ; back to code or lower priority interrupt

Note that configuring a given IMR register mask bit to '0' only prevents interrupt conditions from the corresponding
module or system from generating an interrupt request. Configuring an IMR mask bit to '0' does not prevent the
corresponding IIR system or module identification flag from being set. This means that when using the IMR mask
register functionality to block interrupts, there may be cases when both the mask (IMR.x) and identifier (IIR.x) bits
should be considered when determining if the corresponding peripheral should be serviced.

23.8.1 – Conditional Return from Interrupt
Similar to the conditional returns, the DS4830A microcontroller also supports a set of conditional return from interrupt
operation. Based upon the value of one of the status flags, the CPU can conditionally pop the stack, clear the INS bit
to 0, and begin execution at the address popped from the stack. If the condition is not true, the conditional return
from interrupt instruction leaves the INS bit unchanged, does not pop the stack and does not change the instruction
pointer. The following conditional return from interrupt operations are supported:

RETI C ; if C=1, a RETI is executed
RETI NC ; if C=0, a RETI is executed
RETI Z ; if Z=1 (Acc=00h), a RETI is executed
RETI NZ ; if Z=0 (Acc<>00h), a RETI is executed
RETI S ; if S=1, a RETI is executed

23.9 – Accessing the Stack
The hardware stack is used automatically by the CALL, RET and RETI instructions, but it can also be used explicitly
to store and retrieve data. All values stored on the stack are 16 bits wide.

The PUSH instruction increments the stack pointer SP and then stores a value on the stack. When pushing a 16-bit
value onto the stack, the entire value is stored. However, when pushing an 8-bit value onto the stack, the high byte
stored on the stack comes from the prefix register. The @++SP stack access mnemonic is the associated
destination specifier that generates this push behavior, thus the following two instruction sequences are equivalent:

move PFX[0], IC
push PSF ; stored on stack: IC:PSF

move PFX[0], IC
move @++SP, PSF ; stored on stack: IC:PSF

The POP instruction removes a value from the stack and then decrements the stack pointer. The @SP-- stack
access mnemonic is the associated source specifier that generates this behavior, thus the following two instructions
are equivalent:

 pop PSF
 move PSF, @SP--

The POPI instruction is equivalent to the POP instruction but additionally clears the INS bit to ‘0’. Thus, the following
two instructions would be equivalent:

 popi IP
 reti

The @SP-- mnemonic can be utilized by the DS4830A microcontroller so that stack values may be used directly by
ALU operations (e.g. ADD src, XOR src, etc.) without requiring that the value be first popped into an intermediate
register or accumulator.

 add @SP-- ; sum the last three words pushed onto the stack
 add @SP-- ; with Acc, disregarding overflow
 add @SP--

The stack pointer SP can be set explicitly. For a DS4830A, which has a stack depth of 16 words, only the lowest
four bits are used and setting SP to 0Fh will return it to its reset state.

DS4830A User’s Guide

 201

Since the stack is 16 bits wide, it is possible to store two 8-bit register values on it in a single location. This allows
more efficient use of the stack if it is being used to save and restore registers at the start and end of a subroutine.

 SubOne:
 move PFX[0], IC
 push PSF ; store IC:PSF on the stack
 ...
 pop GR ; 16-bit register
 move IC, GRH ; IC was stored as high byte
 move PSF, GRL ; PSF was stored as low byte
 ret

23.10 – Accessing Data Memory
Data memory is accessed through the data pointer registers DP[0] and DP[1] or the Frame Pointer BP[Offs]. Once
one of these registers is set to a location in data memory, that location can be read or written as follows, using the
mnemonic @DP[0], @DP[1] or @BP[OFFS] as a source or destination.

move DP[0], #0000h ; set pointer to location 0000h
move A[0], @DP[0] ; read from data memory
move @DP[0], #55h ; write to data memory

Either of the data pointers may be post-incremented or post-decremented following any read or may be pre-
incremented or pre-decremented before any write access by using the following syntax.

 move A[0], @DP[0]++ ; increment DP[0] after read
 move @++DP[0], A[1] ; increment DP[0] before write
 move A[5], @DP[1]-- ; decrement DP[1] after read
 move @--DP[1], #00h ; decrement DP[1] before write

The Frame Pointer (BP[OFFS]) is actually comprised of a base pointer (BP) and an offset from the base pointer
(OFFS). For the frame pointer, the offset register (OFFS) is the target of any increment or decrement operation. The
base pointer (BP) is unaffected by increment and decrement operations on the Frame Pointer. Similar to DP[n], the
OFFS register may be pre-incremented/decremented when writing to data memory and may be post-
incremented/decremented when reading from data memory.

 move A[0], @BP[OFFS--] ; decrement OFFS after read
 move @BP[++OFFS], A[1] ; increment OFFS before write

All three data pointers support both byte and word access to data memory. Each data pointer has its own word/byte
select (WBSn) special function register bit to control the access mode associated with the data pointer. These three
register bits (WBS2 which controls BP[Offs] access, WBS1 which controls DP[1] access and WBS0 which control
DP[0] access) reside in the Data Pointer Control (DPC) register. When a given WBSn control bit is configured to 1,
the associated pointer is operated in the word access mode. When the WBSn bit is configured to 0, the pointer is
operated in the byte access mode. Word access mode allows addressing of 64k words of memory while byte access
mode allows addressing of 64k bytes of memory.

Each data pointer (DP[n]) and Frame Pointer base, BP register) is actually implemented internally as a 17-bit register
(e.g. 16:0). The Frame Pointer offset register (OFFS) is implemented internally as a 9-bit register (e.g.8:0). The
WBSn bit for the respective pointer controls whether the highest 16 bits (16:1) of the pointer are in use, as is the
case for word mode (WBSn = 1) or whether the lowest 16 bits (15:0) are in use, as will be the case for byte mode
(WBSn = 0). The WBS2 bit also controls whether the high 8 bits (8:1) of the offset register are in use (WBS2 = 1) or
the low 8 bits (7:0) are used (WBS2 = 0). All data pointer register reads, writes, auto-increment/decrement
operations occur with respect to the current WBSn selection. Data pointer increment and decrement operations only
affect those bits specific to the current word or byte addressing mode (e.g., incrementing a byte mode data pointer
from FFFFh does not carry into the internal high order bit that is utilized only for word mode data pointer access).
Switching from byte to word access mode or vice versa does not alter the data pointer contents. Therefore, it is
important to maintain the consistency of data pointer address value within the given access mode.

move WBS0, #0 ; DP[0] in byte mode
move DP[0], #1 ; DP[0]=0001h (byte mode, index 1)
move WBS0, #1 ; DP[0] in word mode, byte mode lsbit not visible
move DP[0], #1 ; DP[0]=0001h (word mode, index 1)
move WBS0, #0 ; DP[0] in byte mode
move GR, DP[0] ; GR = 0003h (word index 1, byte index 1)

The three pointers share a single read/write port on the data memory and thus, the user must knowingly activate a
desired pointer before using it for data memory read operations. This can be done explicitly using the data pointer

DS4830A User’s Guide

 202

select bits (SDPS1:0; DPC.1:0), or implicitly by writing to the DP[n], BP or OFFS registers. Any indirect memory
write operation using a data pointer will set the SDPS bits, thus activating the write pointer as the active source
pointer.

move SDPS1, #1 ; (explicit) selection of FP as the pointer
move DP[0], src ; (implicit) selection of DP[0]; set SDPS1:0=00b
move DP[1], DP[1] ; (implicit) selection of DP[1]; set SDPS1:0=01b
move OFFS, src ; (implicit) selection of FP; set SDPS1=1
move WBS1, #0 ; (implicit) selection of byte access for DP[1]

Once the pointer selection has been made, it will remain in effect until:

• the source data pointer select bits are changed via the explicit or implicit methods described above (i.e.
another data pointer is selected for use).

• the memory to which the active source data pointer is addressing is enabled for code fetching using the
Instruction Pointer, or

• a memory write operation is performed using a data pointer other than the current active source pointer.

move DP[1], DP[1] ; select DP[1] as the active pointer
move dst, @DP[1] ; read from pointer
move @DP[1], src ; write using a data pointer
 ; DP[0] is needed
move DP[0], DP[0] ; select DP[0] as the active pointer

To simplify data pointer increment / decrement operations without disturbing register data, a virtual NUL destination
has been assigned to system module 6, sub-index 7 to serve as a bit bucket. Data pointer increment / decrement
operations can be done as follows without altering the contents of any other register:

move NUL, @DP[0]++ ; increment DP[0]
move NUL, @DP[0]-- ; decrement DP[0]

The following data pointer related instructions are invalid:

 move @++DP[0], @DP[0]++
 move @++DP[1], @DP[1]++
 move @BP[++Offs], @BP[Offs++]
 move @--DP[0], @DP[0]--
 move @--DP[1], @DP[1]--
 move @BP[--Offs], @BP[Offs--]
 move @++DP[0], @DP[0]--
 move @++DP[1], @DP[1]--
 move @BP[++Offs], @BP[Offs--]
 move @--DP[0], @DP[0]++
 move @--DP[1], @DP[1]++
 move @BP[--Offs], @BP[Offs++]
 move @DP[0], @DP[0]++
 move @DP[1], @DP[1]++
 move @BP[Offs], @BP[Offs++]
 move @DP[0], @DP[0]--
 move @DP[1], @DP[1]--
 move @BP[Offs], @BP[Offs--]
 move DP[0], @DP[0]++
 move DP[0], @DP[0]--
 move DP[1], @DP[1]++
 move DP[1], @DP[1]--
 move Offs, @BP[Offs--]
 move Offs, @BP[Offs++]

DS4830A User’s Guide

 203

SECTION 24 – INSTRUCTION SET
Table 24-1. Instruction Set Summary

MNEMONIC DESCRIPTION 16-BIT INSTRUCTION

WORD
STATUS

BITS
AFFECTED

AP
INC/DEC NOTES

LO
G

IC
A

L
O

P
E

R
A

TI
O

N
S

AND src Acc  Acc AND src f001 1010 ssss ssss S, Z Y 1
OR src Acc  Acc OR src f010 1010 ssss ssss S, Z Y 1
XOR src Acc  Acc XOR src f011 1010 ssss ssss S, Z Y 1
CPL Acc  ~Acc 1000 1010 0001 1010 S, Z Y
NEG Acc  ~Acc + 1 1000 1010 1001 1010 S, Z Y
SLA Shift Acc left arithmetically 1000 1010 0010 1010 C, S, Z Y
SLA2 Shift Acc left arithmetically twice 1000 1010 0011 1010 C, S, Z Y
SLA4 Shift Acc left arithmetically four times 1000 1010 0110 1010 C, S, Z Y
RL Rotate Acc left (w/o C) 1000 1010 0100 1010 S Y
RLC Rotate Acc left (through C) 1000 1010 0101 1010 C, S, Z Y
SRA Shift Acc right arithmetically 1000 1010 1111 1010 C, Z Y
SRA2 Shift Acc right arithmetically twice 1000 1010 1110 1010 C, Z Y
SRA4 Shift Acc right arithmetically four times 1000 1010 1011 1010 C, Z Y
SR Shift Acc right (0  msbit) 1000 1010 1010 1010 C, S, Z Y
RR Rotate Acc right (w/o C) 1000 1010 1100 1010 S Y
RRC Rotate Acc right (though C) 1000 1010 1101 1010 C, S, Z Y

B
IT

 O
P

E
R

A
TI

O
N

S

MOVE C, Acc. C  Acc. 1110 1010 bbbb 1010 C
MOVE C, #0 C  0 1101 1010 0000 1010 C
MOVE C, #1 C  1 1101 1010 0001 1010 C
CPL C C  ~C 1101 1010 0010 1010 C
MOVE Acc., C Acc.  C 1111 1010 bbbb 1010 S, Z
AND Acc. C  C AND Acc. 1001 1010 bbbb 1010 C
OR Acc. C  C OR Acc. 1010 1010 bbbb 1010 C
XOR Acc. C  C XOR Acc. 1011 1010 bbbb 1010 C
MOVE dst., #1 dst.  1 1ddd dddd 1bbb 0111 C,E 2
MOVE dst., #0 dst.  0 1ddd dddd 0bbb 0111 C,E 2
MOVE C, src. C  src. fbbb 0111 ssss ssss C

M
A

TH
 ADD src Acc  Acc + src f100 1010 ssss ssss C, S, Z, OV Y 1

ADDC src Acc  Acc + (src + C) f110 1010 ssss ssss C, S, Z, OV Y 1
SUB src Acc  Acc – src f101 1010 ssss ssss C, S, Z, OV Y 1
SUBB src Acc  Acc – (src + C) f111 1010 ssss ssss C, S, Z, OV Y 1

B
R

A
N

C
H

IN
G

{L/S}JUMP src IP  IP + src or src f000 1100 ssss ssss 6
{L/S}JUMP C, src If C=1, IP  (IP + src) or src f010 1100 ssss ssss 6
{L/S}JUMP NC, src If C=0, IP  (IP + src) or src f110 1100 ssss ssss 6
{L/S}JUMP Z, src If Z=1, IP  (IP + src) or src f001 1100 ssss ssss 6
{L/S}JUMP NZ, src If Z=0, IP  (IP + src) or src f101 1100 ssss ssss 6
{L/S}JUMP E, src If E=1, IP  (IP + src) or src 0011 1100 ssss ssss 6
{L/S}JUMP NE, src If E=0, IP  (IP + src) or src 0111 1100 ssss ssss 6
{L/S}JUMP S, src If S=1, IP  (IP + src) or src f100 1100 ssss ssss 6
{L/S}DJNZ LC[n], src If --LC[n] <> 0, IP (IP + src) or src f10n 1101 ssss ssss 6
{L/S}CALL src @++SP  IP+1; IP  (IP+src) or src f011 1101 ssss ssss 6,7
RET IP  @SP-- 1000 1100 0000 1101
RET C If C=1, IP  @SP-- 1010 1100 0000 1101
RET NC If C=0, IP  @SP-- 1110 1100 0000 1101
RET Z If Z=1, IP  @SP-- 1001 1100 0000 1101
RET NZ If Z=0, IP  @SP-- 1101 1100 0000 1101
RET S If S=1, IP  @SP-- 1100 1100 0000 1101
RETI IP  @SP-- ; INS 0 1000 1100 1000 1101
RETI C If C=1, IP  @SP-- ; INS 0 1010 1100 1000 1101
RETI NC If C=0, IP  @SP-- ; INS 0 1110 1100 1000 1101
RETI Z If Z=1, IP  @SP-- ; INS 0 1001 1100 1000 1101
RETI NZ If Z=0, IP  @SP-- ; INS 0 1101 1100 1000 1101
RETI S If S=1, IP  @SP-- ; INS 0 1100 1100 1000 1101

D
A

TA

TR
A

N
S

FE
R

 XCH Swap Acc bytes 1000 1010 1000 1010 S Y
XCHN Swap nibbles in each Acc byte 1000 1010 0111 1010 S Y
MOVE dst, src dst  src fddd dddd ssss ssss C,S,Z,E (Note 8) 7,8
PUSH src @++SP  src f000 1101 ssss ssss 7
POP dst dst  @SP-- 1ddd dddd 0000 1101 C,S,Z,E 7
POPI dst dst  @SP-- ; INS  0 1ddd dddd 1000 1101 C,S,Z,E 7

 CMP src E  (Acc = src) f111 1000 ssss ssss E
 NOP No operation 1101 1010 0011 1010

Note 1: The active accumulator (Acc) is not allowed as the src in operations where it is the implicit destination.
Note 2: Only module 8 and modules 0-5 are supported by these single-cycle bit operations. Potentially affects C or E if PSF register is the

destination. Potentially affects S and/or Z if AP or APC is the destination.
Note 3: The terms Acc and A[AP] can be used interchangeably to denote the active accumulator.

DS4830A User’s Guide

 204

Note 4: Any index represented by or found inside [] brackets is considered variable, but required.
Note 5: The active accumulator (Acc) is not allowed as the dst if A[AP] is specified as the src.
Note 6: The '{L/S}' prefix is optional.
Note 7: Instructions that attempt to simultaneously push/pop the stack (e.g. PUSH @SP--, PUSH @SPI--, POP @++SP, POPI @++SP) or modify

SP in a conflicting manner (e.g., MOVE SP, @SP--) are invalid.
Note 8: Special cases: If ‘MOVE APC, Acc’ sets the APC.CLR bit, AP will be cleared, overriding any auto-inc/dec/modulo operation specified for

AP. If ‘MOVE AP, Acc’ causes an auto-inc/dec/modulo operation on AP, this overrides the specified data transfer (i.e., Acc will not be
transferred to AP).

ADD / ADDC src Add / Add with Carry

Description: The ADD instruction sums the active accumulator (Acc or A[AP]) and the specified src data

and stores the result back to the active accumulator. The ADDC instruction additionally
includes the Carry (C) Status Flag in the summation. For the complete list of src specifiers,
reference the MOVE instruction. Because the source field is limited to 8 bits, the PFX[n]
register is used to supply the high-byte of data for 16 bit sources.

Status Flags: C, S, Z, OV

ADD
Operation: Acc  Acc + src

Encoding: 15 0

f100 1010 ssss ssss

Example(s): ; Acc = 2345h for each example

ADD A[3] ; A[3]=FF0Fh
 ;  Acc =2254h,C=1, Z=0, S=0, OV=0
ADD #0C0h ;  Acc =2405h,C=0, Z=0, S=0, OV=0
ADD A[4] ; A[4]=C000h
 ;  Acc = E345h, C=0, Z=0, S=1, OV=0
ADD A[5] ; A[5]=6789h
 ;  Acc = 8ACEh, C=0, Z=0, S=1, OV=1

ADDC
Operation: Acc  Acc + C + src

Encoding: 15 0

f110 1010 ssss ssss

Example(s): ; Acc = 2345h for each example

ADDC A[3] ; A[3] = DCBAh, C=1
 ;  Acc = 0000h, C=1, Z=1, S=0, OV=0
ADDC @DP[0]-- ; @DP[0] = 00EEh, C=1

 ;  Acc = 2434h, C=0, Z=0, S=0, OV=0

Special Notes: The active accumulator (Acc) is not allowed as the src for these operations.

DS4830A User’s Guide

 205

AND src Logical AND

Description: Performs a logical-AND between the active accumulator (Acc) and the specified src data.

For the complete list of src specifiers, reference the MOVE instruction. Because the source
field is limited to 8 bits, the PFX[n] register is used to supply the high-byte of data for 16
bit sources.

Status Flags: S, Z

Operation: Acc  Acc AND src

Encoding: 15 0

f001 1010 ssss ssss

Example(s): ; Acc = 2345h for each example

AND A[3] ; A[3]=0F0Fh
 ;  Acc = 0305h, S=0, Z=0
AND #33h ;  Acc = 0001h
AND #2233h ; generates object code below

; MOVE PFX[0], #22h (smart-prefixing)
; AND #33h
;  Acc = 2201h

MOVE PFX[0], #0Fh
 AND M0[8] ; M0[8]=0Fh (assume M0[8] is an 8-bit register)

;  Acc = 0305h

Special Notes: The active accumulator (Acc) is not allowed as the src for this operation.

AND Acc. Logical AND Carry Flag with Accumulator Bit

Description: Performs a logical-AND between the Carry (C) status flag and a specified bit of the active

accumulator (Acc.) and returns the result to the Carry.

Status Flags: C

Operation: C  C AND Acc.

Encoding: 15 0

1001 1010 bbbb 1010

Example(s): ; Acc = 2345h, C=1 at start

AND Acc.0 ; Acc.0=1  C=1
AND Acc.1 ; Acc.1=0  C=0
AND C, Acc.8 ; Acc.8=1  C=0

DS4830A User’s Guide

 206

{L/S}CALL src {Long/Short} Call to Subroutine

Description: Performs a call to the subroutine destination specified by src. The CALL instruction uses an

8-bit immediate src to perform a relative short call (IP +127/-128 words). The CALL
instruction uses a 16-bit immediate src to perform an absolute long CALL to the specified
16-bit address. The PFX[0] register is used to supply the high byte of a 16-bit immediate
address for the absolute long CALL. Using the optional ‘L’ prefix (i.e. LCALL) will result in
an absolute long call and use of the PFX[0] register. Using the optional ‘S’ prefix (i.e.
SCALL) will attempt to generate a relative short call, but will be flagged by the assembler if
the destination is out or range. Specifying an internal register src (no matter whether 8-bit or
16-bit) always produces an absolute CALL to a 16-bit address, thus the ‘L’ and ‘S’ prefixes
should not be used. The PFX[n] register value is used to supply the high address byte when
an 8-bit register src is specified.

Status Flags: None

Operation: @++SP  IP + 1 PUSH

IP  src Absolute CALL
IP  IP + src Relative CALL

Encoding: 15 0

f011 1101 ssss ssss

Example(s): CALL label1 ; relative call to label1 (must be within IP +127/ -

; 128 address range)
CALL label1 ; absolute call to label1 = 0120h

; MOVE PFX[0], #01h
 ; CALL #20h.
CALL DP[0] ; DP[0] holds 16-bit address of subroutine
CALL M0[0] ; assume M0[0] is an 8-bit register

; absolute call to addr16
 ; high(addr16)=00h (PFX[0])
 ; low (addr16)=M0[0]
 MOVE PFX[0], #22h ;

CALL M0[0] ; assume M0[0] is an 8-bit register
 ; high(addr16)=22h (PFX[0])
 ; low (addr16)=M0[0]

 LCALL label1 ; label=0120h and is relative to this instruction
 ; absolute call is forced by use of ‘L’ prefix
 ; MOVE PFX[0], #01h
 ; CALL #20h
 SCALL label1 ; relative offset for label1 calculated and used
 ; if label1 is not relative, assembler will generate an error
 SCALL #10h ; relative offset of #10h is used directly by the CALL

DS4830A User’s Guide

 207

CMP src Compare Accumulator

Description: Compare for equality between the active accumulator and the least significant byte of the

specified src. Because the source is limited to 8 bits, the PFX[n] register is used to supply
the high-byte of data for 16 bit sources.

Status Flags: E

Operation: Acc = src: E  1

Acc <> src: E  0

Encoding: 15 0

f111 1000 Ssss ssss

Example(s): CMP #45h ; Acc = 0145h, E=0
 CMP #145h ; PFX[0] register used

; MOVE PFX[0], #01h (smart-prefixing)
 ; CMP #45h E=1

CPL Complement Acc

Description: Performs a logical bitwise complement (1’s complement) on the active accumulator (Acc or

A[AP]) and returns the result to the active accumulator.

Status Flags: S, Z

Operation: Acc  ~Acc

Encoding: 15 0

1000 1010 0001 1010

Example(s): ; Acc = FFFFh, S=1, Z=0

CPL ; Acc  0000h, S=0, Z=1
; Acc = 0990h, S=0, Z=0

CPL ; Acc  F66Fh, S=1, Z=0

CPL C Complement Carry Flag

Description: Logically complements the Carry (C) Flag.

Status Flag: C

Operation: C  ~C

Encoding: 15 0

1101 1010 0010 1010

Example(s): ; C = 0

CPL C ; C  1

DS4830A User’s Guide

 208

{L/S}DJNZ LC[n], src Decrement Counter, {Long/Short} Jump Not Zero

Description: The DJNZ LC[n], src instruction performs a conditional branch based upon the associated

Loop Counter (LC[n]) register. The DJNZ LC[n], src instruction decrements the LC[n] loop
counter and branches to the address defined by src if the decremented counter has not
reached 0000h. Program branches can be relative or absolute depending upon the src
specifier and may be qualified by using the ‘L’ or ‘S’ prefixes as documented in the JUMP
src opcode.

Status Flags: None

Operation: LC[n]  LC[n] –1

 LC[n] <> 0: IP  IP + src (relative) –or— src (absolute)
 LC[n] = 0: IP  IP + 1

Encoding: 15 0

f10n 1101 ssss ssss

Example(s): MOVE LC[1], #10h ; counter = 10h

Loop:
ADD @DP[0]++ ; add data memory contents to Acc, post-inc DP[0]
DJNZ LC[1], Loop ; 16 times before falling through

DS4830A User’s Guide

 209

{L/S} JUMP src Unconditional {Long/Short} Jump

Description: Performs an unconditional jump as determined by the src specifier. The JUMP instruction

uses an 8-bit immediate src to perform a relative jump (IP +127/-128 words). The JUMP
instruction uses a 16-bit immediate src to perform an absolute JUMP to the specified 16-bit
address. The PFX[0] register is used to supply the high byte of a 16-bit immediate address
for the absolute JUMP. Using the optional ‘L’ prefix (i.e. LJUMP) will result in an absolute
long jump and use of the PFX[0] register. Using the optional ‘S’ prefix (i.e. SJUMP) will
attempt to generate a relative short jump, but will be flagged by the assembler if the
destination is out or range. Specifying an internal register src (no matter whether 8-bit or 16-
bit) always produces an absolute JUMP to a 16-bit address, thus the ‘L’ and ‘S’ prefixes
should not be used. The PFX[n] register value is used to supply the high address byte when
an 8-bit register src is specified.

Status Flags: None

Operation: IP  src Absolute JUMP

IP  IP + src Relative JUMP

Encoding: 15 0

f000 1100 ssss ssss

Example(s): JUMP label1 ; relative jump to label1 (must be within range
 ; IP +127/-128 words)

JUMP label1 ; absolute jump to label1= 0400h
; MOVE PFX[0], #04h

 ; JUMP #00h
JUMP DP[0] ; absolute jump to addr16 DP[0]

 JUMP M0[0] ; assume M0[0] is an 8-bit register
 ; absolute jump to addr16
 ; high(addr16)=00h (PFX[0])
 ; low (addr16)=M0[0]

 LJUMP label1 ; label=0120h and is relative to this instruction
 ; absolute jump is forced by use of ‘L’ prefix
 ; MOVE PFX[0], #01h
 ; JUMP #20h
 SJUMP label1 ; relative offset for label1 calculated and used
 ; if label1 is not relative, assembler will generate an error
 SJUMP #10h ; relative offset of #10h is used directly by the JUMP

DS4830A User’s Guide

 210

{L/S} JUMP C / {L/S} JUMP NC, src Conditional {Long/Short} Jump on Status Flag
{L/S} JUMP Z / {L/S} JUMP NZ, src
{L/S} JUMP E / {L/S} JUMP NE, src
{L/S} JUMP S, src

Description: Performs conditional branching based upon the state of a specific processor status flag.

JUMP C results in a branch if the Carry flag is set while JUMP NC branches if the Carry flag
is clear. JUMP Z results in a branch if the Zero flag is set while JUMP NZ branches if the
Zero flag is clear. JUMP E results in a branch if the Equal flag is set while JUMP NE
branches if the Equal flag is clear. JUMP S results in a branch if the Sign flag is set.
Program branches can be relative or absolute depending upon the src specifier and may be
qualified by using the ‘L’ or ‘S’ prefixes as documented in the JUMP src opcode. Special src
restrictions apply to JUMP E and JUMP NE.

Status Flags: None

JUMP C
Operation: C=1: IP  IP + src (relative) –or— src (absolute)
 C=0: IP  IP + 1

Encoding: 15 0

f010 1100 ssss ssss

Example(s): JUMP C, label1 ; C=0, branch not taken

JUMP NC
Operation: C=0: IP  IP + src (relative) –or— src (absolute)
 C=1: IP  IP +1

Encoding: 15 0

f010 1100 ssss ssss

Example(s): JUMP NC, label1 ; C=0, branch taken

JUMP Z
Operation: Z=1: IP  IP + src
 Z=0: IP  IP + 1

Encoding: 15 0

f001 1100 ssss ssss

Example(s): JUMP Z, label1 ; Z=1, branch taken

DS4830A User’s Guide

 211

JUMP NZ
Operation: Z=0: IP  IP + src (relative) –or— src (absolute)
 Z=1: IP  IP + 1

Encoding: 15 0

f101 1100 ssss ssss

Example(s): JUMP NZ, label1 ; Z=1, branch not taken

JUMP E
Operation: E=1: IP  IP + src (relative) –or— src (absolute)
 E=0: IP  IP + 1

Encoding: 15 0

0011 1100 ssss ssss

Example(s): JUMP E, label1 ; E=1, branch taken

Special Notes: The src specifier must be immediate data.

JUMP NE
Operation: E=0: IP  IP + src (relative) –or— src (absolute)
 E=1: IP  IP + 1

Encoding: 15 0

0111 1100 ssss ssss

Example(s): JUMP NE, label1 ; E=1, branch not taken

Special Notes: The src specifier must be immediate data.

JUMP S
Operation: S=1: IP  IP + src (relative) –or— src (absolute)
 S=0: IP  IP + 1

Encoding: 15 0

f100 1100 ssss ssss

Example(s): JUMP S, label1 ; S=0, branch not taken

DS4830A User’s Guide

 212

MOVE dst, src Move Data

Description: Moves data from a specified source (src) to a specified destination (dst). A list of defined

source, destination specifiers is given in the table below. Also, since src can be either 8-bit
(byte) or 16-bit (word) data, the rules governing data transfer are also explained below in the
encoding section.

Status Flags: S, Z (if dst is Acc or AP or APC)
 C, E (if dst is PSF)

Operation: dst  src

Encoding: 15 0

fddd dddd ssss ssss

Source Specifier Codes

src
src Bit
Encoding
f ssss ssss

16 or
8 Bits Description

#k 0 kkkk kkkk 8 kkkkkkkk = immediate (literal) data
MN[n] 1 nnnn

0NNN 8/16 nnnn selects one of first 16 registers in module NNN; where NNN= 0-5. Access to
2nd 16 using PFX[n].

AP 1 0000 1000 8 Accumulator Pointer
APC 1 0001 1000 8 Accumulator Pointer Control
PSF 1 0100 1000 8 Processor Status Flag Register
IC 1 0101 1000 8 Interrupt and Control Register
IMR 1 0110 1000 8 Interrupt Mask Register
SC 1 1000 1000 8 System Control Register
IIR 1 1011 1000 8 Interrupt Identification Register
CKCN 1 1110 1000 8 Clock Control Register
WDCN 1 1111 1000 8 Watchdog Control Register
A[n] 1 nnnn 1001 16 nnnn selects one of 16 accumulators
Acc 1 0000 1010 16 Active Accumulator = A[AP]. Update AP per APC
A[AP] 1 0001 1010 16 Active Accumulator = A[AP]. No change to AP
IP 1 0000 1100 16 Instruction Pointer
@SP-- 1 0000 1101 16 16-bit word @SP, post-decrement SP
SP 1 0001 1101 16 Stack Pointer
IV 1 0010 1101 16 Interrupt Vector
LC[n] 1 011n 1101 16 n selects one of 2 loop counter registers
@SPI-- 1 1000 1101 16 16-bit word @SP, post-decrement SP, INS=0
@BP[Offs] 1 0000 1110 8/16 Data memory @BP[Offs]
@BP[Offs++] 1 0001 1110 8/16 Data memory @BP[Offs]; post increment OFFS
@BP[Offs--] 1 0010 1110 8/16 Data memory @BP[Offs]; post decrement OFFS
OFFS 1 0011 1110 8 Frame Pointer Offset from Base Pointer (BP)
DPC 1 0100 1110 16 Data Pointer Control Register
GR 1 0101 1110 16 General Register
GRL 1 0110 1110 8 Low byte of GR register
BP 1 0111 1110 16 Frame Pointer Base Pointer (BP)
GRS 1 1000 1110 16 Byte-swapped GR register
GRH 1 1001 1110 8 High byte of GR register
GRXL 1 1010 1110 16 Sign Extended low byte of GR register
FP 1 1011 1110 16 Frame Pointer (BP[Offs])
@DP[n] 1 0n00 1111 8/16 Data memory @DP[n]
@DP[n]++ 1 0n01 1111 8/16 Data memory @DP[n], post increment DP[n]
@DP[n]-- 1 0n10 1111 8/16 Data memory @DP[n], post decrement DP[n]
DP[n] 1 0n11 1111 16 n selects 1 of 2 data pointers

DS4830A User’s Guide

 213

MOVE dst, src
(continued)
Destinati
on
Specifier
Codesdst

dst Bit
Encoding
ddd dddd

16 or 8
Bits Description

NUL 111 0110 8/16 Null (virtual) destination. Intended as a bit bucket to assist software with pointer
increments/decrements.

MN[n] nnn 0NNN 8/16 nnnn selects one of first 8 registers in module NNN; where NNN= 0-5. Access to next 24 using
PFX[n].

AP 000 1000 8 Accumulator Pointer
APC 001 1000 8 Accumulator Pointer Control
PSF 100 1000 8 Processor Status Flag Register
IC 101 1000 8 Interrupt and Control Register
IMR 110 1000 8 Interrupt Mask Register
A[n] nnn 1001 16 nnn selects 1 of first 8 accumulators: A[0]..A[7]
Acc 000 1010 16 Active Accumulator = A[AP].
PFX[n] nnn 1011 8 nnn selects one of 8 Prefix Registers
@++SP 000 1101 16 16-bit word @SP, pre-increment SP
SP 001 1101 16 Stack Pointer
IV 010 1101 16 Interrupt Vector
LC[n] 11n 1101 16 n selects one of 2 loop counter registers
@BP[Offs] 000 1110 8/16 Data memory @BP[Offs]
@BP[++Offs] 001 1110 8/16 Data memory @BP[Offs]; pre increment OFFS
@BP[--Offs] 010 1110 8/16 Data memory @BP[Offs]; pre decrement OFFS
OFFS 011 1110 8 Frame Pointer Offset from Base Pointer (BP)
DPC 100 1110 16 Data Pointer Control Register
GR 101 1110 16 General Register
GRL 110 1110 8 Low byte of GR register
BP 111 1110 16 Frame Pointer Base Pointer (BP)
@DP[n] n00 1111 8/16 Data memory @DP[n]
@++DP[n] n01 1111 8/16 Data memory @DP[n], pre increment DP[n]
@--DP[n] n10 1111 8/16 Data memory @DP[n], pre decrement DP[n]
DP[n] n11 1111 16 n selects one of 2 data pointers

 2-Cycle Destination Access Using PFX[n] register (see Special Notes)
SC 000 1000 8 System Control Register
CKCN 110 1000 8 Clock Control Register
WDCN 111 1000 8 Watchdog Control Register
A[n] nnn 1001 16 nnn selects 1 of second 8 accumulators A[8]..A[15]
GRH 001 1110 8 High byte of GR register

Data Transfer Rules

dst (16-bit)  src (16-bit): dst[15:0]  src[15:0]
dst (8-bit)  src (8-bit): dst[7:0]  src[7:0]

 dst (16-bit)  src (8-bit): dst[15:8]  00h *
 dst[7:0]  src[7:0]

dst (8-bit)  src (16-bit): dst[7:0]  src[7:0]

* Note: The PFX[0] register may be used to supply a separate high order data byte for this type of transfer.

DS4830A User’s Guide

 214

Example(s): MOVE A[0], A[3] ; A[0]  A[3]
 MOVE DP[0], #110h ; DP[0]  #0110h (PFX[0] register used)
 ; MOVE PFX[0], #01h (smart-prefixing)
 ; MOVE DP[0], #10h
 MOVE DP[0], #80h ; DP[0]  #0080h (PFX[0] register not needed)

Special Notes: Proper loading of the PFX[n] registers, when for the purpose of supplying 16-bit immediate

data or accessing 2-cycle destinations, is handled automatically by the assembler and is
therefore an optional step for the user when writing assembly source code. Examples of the
automatic PFX[n] code insertion by the assembler are demonstrated below.

 Initial Assembly Code Assembler Output
 MOVE DP[0], #0100h MOVE PFX[0], #01h

MOVE DP[0], #00h

MOVE A[15], A[7] MOVE PFX[2], any src

 MOVE A[7], A[7]

 MOVE A[8], #3040h MOVE PFX[2], #30h
 MOVE A[0], #40h

MOVE Acc., Move Carry Flag to Accumulator Bit

Description: Replaces the specified bit of the active accumulator with the Carry bit.

Status Flags: S, Z

Operation: Acc.  C

Encoding: 15 0

1111 1010 bbbb 1010

Example(s): ; Acc = 8000h, S=1, Z=0, C=0

MOVE Acc.15, C ; Acc = 0000h, S=0, Z=1

DS4830A User’s Guide

 215

MOVE C, Acc. Move Accumulator Bit to Carry Flag

Description: Replaces the Carry (C) status flag with the specified active accumulator bit.

Status Flag: C

Operation: C  Acc.

Encoding: 15 0

1110 1010 bbbb 1010

Example(s): ; Acc = 01C0h, C=0

MOVE C, Acc.8 ; C =1

MOVE C, src. Move Bit to Carry Flag

Description: Replaces the Carry (C) status flag with the specified source bit src..

Status Flag: C

Operation: C  src.

Encoding: 15 0

fbbb 0111 ssss ssss

Example(s): ; M0[0] = FEh; C=1 (assume M0[0] is an 8-bit register)
 MOVE C, M0[0].0 ; C=0

Special Notes: Only system module 8 and peripheral modules (0-5) are supported by MOVE C,src..

MOVE C, #0 Clear Carry Flag

Description: Clears the Carry (C) processor status flag.

Status Flag: C  0

Operation: C  0

Encoding: 15 0

1101 1010 0000 1010

Example(s): ; C = 1

MOVE C, #0 ; C  0

DS4830A User’s Guide

 216

MOVE C, #1 Set Carry Flag

Description: Sets the Carry (C) processor status flag.

Status Flags: C  1

Operation: C  1

Encoding: 15 0

1101 1010 0001 1010

Example(s): ; C = 0

MOVE C, #1 ; C  1

MOVE dst., #0 Clear Bit

Description: Clears the bit specified by dst..

Status Flags: C, E (if dst is PSF)

Operation: dst.  0

Encoding: 15 0

1ddd dddd 0bbb 0111

Example(s): ; M0[0] = FEh

MOVE M0[0].1, #0 ; M0[0] = FCh
MOVE M0[0].7, #0 ; M0[0] = 7Ch

Special Notes: Only system module 8 and peripheral modules (0-5) are supported by MOVE dst., #0.

MOVE dst., #1 Set Bit

Description: Sets the bit specified by dst..

Status Flags: C, E (if dst is PSF)

Operation: dst.  1

Encoding: 15 0

1ddd dddd 1bbb 0111

Example(s): ; M0[0] = 00h

MOVE M0[0].1, #1 ; M0[0] = 02h
MOVE M0[0].7, #1 ; M0[0] = 82h

Special Notes: Only system module 8 and peripheral modules (0-5) are supported by MOVE dst., #1.

DS4830A User’s Guide

 217

NEG Negate Accumulator

Description: Performs a negation (two’s complement) of the active accumulator and returns the result

back to the active accumulator.

Status Flags: S, Z

Operation: Acc  ~Acc + 1

Encoding: 15 0

1000 1010 1001 1010

Example(s): ; Acc = FEEDh, S=1, Z=0

NEG ; Acc = 0113h, S=0, Z=0

OR src Logical OR

Description: Performs a logical-OR between the active accumulator (Acc or A[AP]) and the specified src

data. For the complete list of src specifiers, reference the MOVE instruction. Because the
source is limited to 8 bits, the PFX[n] register is used to supply the high-byte of data for
16 bit sources.

Status Flags: S, Z

Operation: Acc  Acc OR src

Encoding: 15 0

f010 1010 ssss ssss

Example(s): ; Acc = 2345h for each example
 OR A[3] ; A[3]= 0F0Fh  Acc = 2F4Fh

OR #1133h ; MOVE PFX[0], #11h (smart-prefixing)
; OR #33h  Acc = 3377h

Special Notes: The active accumulator (Acc) is not allowed as the src for this operation.

OR Acc. Logical OR Carry Flag with Accumulator Bit

Description: Performs a logical-OR between the Carry (C) status flag and a specified bit of the active

accumulator (Acc.) and returns the result to the Carry.

Status Flags: C

Operation: C  C OR Acc.

Encoding: 15 0

1010 1010 bbbb 1010

Example(s): ; Acc = 2345h, C=0 at start
 OR Acc.1 ; Acc.1=0  C=0

OR Acc.2 ; Acc.2=1  C=1

DS4830A User’s Guide

 218

POP dst Pop Word from the Stack

Description: Pops a single word from the stack (@SP) to the specified dst and decrements the stack

pointer (SP).

Status Flags: S, Z (if dst = Acc or AP or APC)
C, E (if dst = PSF)

Operation: dst  @ SP--

Encoding: 15 0

1ddd dddd 0000 1101

Example(s): POP GR ; GR  1234h

POP @DP[0] ; @DP[0]  76h (WBS0=0)
 ; @DP[0]  0876h (WBS0=1)

Stack Data:

xxxxh
1234h  SP (initial)
0876h  SP (after POP GR)
xxxxh  SP (after POP @DP[0])
xxxxh

POPI dst Pop Word from the Stack Enable Interrupts

Description: Pops a single word from the stack (@SP) to the specified dst and decrements the stack

pointer (SP). Additionally, POPI returns the interrupt logic to a state in which it can
acknowledge additional interrupts.

Status Flags: S, Z (if dst = Acc or AP or APC)
C, E (if dst = PSF)

Operation: dst  @ SP--
INS  0

Encoding: 15 0

1ddd dddd 1000 1101

Example(s): See POP

DS4830A User’s Guide

 219

PUSH src Push Word to the Stack

Description: Increments the stack pointer (SP) and pushes a single word specified by src to the stack
(@SP).

Status Flags: None

Operation: SP  ++SP

Encoding: 15 0

f000 1101 ssss ssss

Example(s): PUSH GR ; GR=0F3Fh

PUSH #40h

Stack Data:

xxxxh
0040h  SP (after PUSH #40h)
0F3Fh  SP (after PUSH GR)
xxxxh  SP (initial)
xxxxh

RET Return from Subroutine

Description: RET pops a single word from the stack (@SP) into the Instruction Pointer (IP) and

decrements the stack pointer (SP). The decremented SP is saved as the new stack pointer
(SP).

Status Flags: None

Operation: IP  @ SP--

Encoding: 15 0

1000 1100 0000 1101

Example(s): RET

 Code Execution:

Addr (IP) Opcode
0311h …
0312h RET
0103h …

 Stack Data:

xxxxh
xxxxh
0103h  SP (before RET)
xxxxh  SP (after RET)
xxxxh

DS4830A User’s Guide

 220

RET C / RET NC Conditional Return on Status Flag
RET Z / RET NZ
RET S

Description: Performs conditional return (RET) based upon the state of a specific processor status flag.

RET C returns if the Carry flag is set while RET NC returns if the Carry flag is clear. RET Z
returns if the Zero flag is set while RET NZ returns if the Zero flag is clear. RET S returns if
the Sign flag is set. See RET for additional information on the return operation.

Status Flags: None

RET C
Operation: C=1: IP  @SP--
 C=0: IP  IP + 1

Encoding: 15 0

1010 1100 0000 1101

Example(s): RET C ; C=1, return (RET) is performed.

RET NC
Operation: C=0: IP  @SP--
 C=1: IP  IP +1

Encoding: 15 0

1110 1100 0000 1101

Example(s): RET NC ; C=1, return (RET) does not occur

RET Z
Operation: Z=1: IP  @SP--
 Z=0: IP  IP + 1

Encoding: 15 0

1001 1100 0000 1101

Example(s): RET Z ; Z=0, return (RET) does not occur

RET NZ
Operation: Z=0: IP  @SP--
 Z=1: IP  IP + 1

Encoding: 15 0

1101 1100 0000 1101

Example(s): RET NZ ; Z=0, return (RET) is performed

RET S
Operation: S=1: IP  @SP--
 S=0: IP  IP + 1

Encoding: 15 0

1100 1100 0000 1101

Example(s): RET S ; S=0, return (RET) does not occur

DS4830A User’s Guide

 221

RETI Return from Interrupt

Description: RETI pops a single word from the stack (@SP) into the Instruction Pointer (IP) and

decrements the stack pointer (SP). Additionally, RETI returns the interrupt logic to a state in
which it can acknowledge additional interrupts.

Status Flags: None

Operation: IP  @SP--

INS 0

Encoding: 15 0

1000 1100 1000 1101

Example(s): see RET

RETI C / RETI NC Conditional Return from Interrupt on Status Flag
RETI Z / RETI NZ
RETI S

Description: Performs conditional return from interrupt (RETI) based upon the state of a specific

processor status flag. RETI C returns if the Carry flag is set while RETI NC returns if the
Carry flag is clear. RETI Z returns if the Zero flag is set while RETI NZ returns if the Zero
flag is clear. RETI S returns if the Sign flag is set. See RETI for additional information on
the return from interrupt operation.

Status Flags: None

RETI C
Operation: C=1: IP  @SP--

 INS 0
 C=0: IP  IP + 1

Encoding: 15 0

1010 1100 1000 1101

Example(s): RETI C ; C=1, return from interrupt (RETI) is performed.

RETI NC
Operation: C=0: IP  @SP--

 INS 0
 C=1: IP  IP +1

Encoding: 15 0

1110 1100 1000 1101

Example(s): RETI NC ; C=1, return from interrupt (RETI) does not occur

DS4830A User’s Guide

 222

RETI Z
Operation: Z=1: IP  @SP--
 INS 0
 Z=0: IP  IP + 1

Encoding: 15 0

1001 1100 1000 1101

Example(s): RETI Z ; Z=0, return from interrupt (RETI) does not occur

RETI NZ
Operation: Z=0: IP  @SP--
 INS 0
 Z=1: IP  IP + 1

Encoding: 15 0

1101 1100 1000 1101

Example(s): RETI NZ ; Z=0, return from interrupt (RETI) is performed

RETI S
Operation: S=1: IP  @SP--
 INS 0
 S=0: IP  IP + 1

Encoding: 15 0

1100 1100 1000 1101

Example(s): RETI S ; S=0, return from interrupt (RETI) does not occur

DS4830A User’s Guide

 223

RL / RLC Rotate Left Accumulator Carry Flag (Ex/In)clusive

Description: Rotates the active accumulator left by a single bit position. The RL instruction circulates the

msb of the accumulator (bit 15) back to the lsb (bit 0) while the RLC instruction includes the
Carry (C) flag in the circular left shift.

Status Flags: C (for RLC only), S, Z (for RLC only)

RL Operation: 15 Active Accumulator (Acc) 0

 Acc.[15:1] Acc.[14:0]; Acc.0  Acc.15

Encoding: 15 0

1000 1010 0100 1010

Example(s): ; Acc = A345h, S=1, Z=0

RL ; Acc = 468Bh, S=0, Z=0
RL ; Acc = 8D16h, S=1, Z=0

RLC Operation: 15 Active Accumulator (Acc) 0 Carry Flag

 Acc.[15:1] Acc.[14:0]; Acc.0  C; C  Acc.15

Encoding: 15 0

1000 1010 0101 1010

Example(s): ; Acc = A345h, C=1, S=1, Z=0

RLC ; Acc = 468Bh, C=1, S=0, Z=0
RLC ; Acc = 8D17h, C=0, S=1, Z=0

DS4830A User’s Guide

 224

RR / RRC Rotate Right Accumulator Carry Flag (Ex/In)clusive

Description: Rotates the active accumulator right by a single bit position. The RR instruction circulates

the lsb of the accumulator (bit 0) back to the msb (bit 15) while the RRC instruction includes
the Carry (C) flag in the circular right shift.

Status Flags: C (for RRC only), S, Z (for RRC only)

RR Operation: 15 Active Accumulator (Acc) 0

 Acc.[14:0] Acc.[15:1]; Acc.15  Acc.0

Encoding: 15 0

1000 1010 1100 1010

Example(s): ; Acc = A345h, S=1, Z=0

RR ; Acc = D1A2h, S=1, Z=0
RR ; Acc = 68D1h, S=0, Z=0

RRC Operation: 15 Active Accumulator (Acc) 0 Carry Flag

 Acc.[14:0] Acc.[15:1]; Acc.15  C; C  Acc.0

Encoding: 15 0
1000 1010 1101 1010

Example(s): ; Acc = A345h, C=1, S=1, Z=0

RRC ; Acc = D1A2h, C=1, S=1, Z=0
RRC ; Acc = E8D1h, C=0, S=1, Z=0

DS4830A User’s Guide

 225

SLA / SLA2 / SLA4 Shift Accumulator Left Arithmetically One, Two, or Four Times

Description: Shifts the active accumulator left once, twice, or four times respectively for SLA, SLA2, and

SLA4. For each shift iteration, a ‘0’ is shifted into the lsb and the msb is shifted into the
Carry (C) flag. For signed data, this shifting process effectively retains the sign orientation of
the data to the point at which overflow/underflow would occur.

Status Flags: C, S, Z

SLA Operation: Carry Flag 15 Active Accumulator (Acc) 0

 0

C  Acc.15; Acc.[15:1] Acc.[14:0]; Acc.0  0

Encoding: 15 0

1000 1010 0010 1010

Example(s): ; Acc = E345h, C=0, S=1, Z=0

SLA ; Acc = C68Ah, C=1, S=1, Z=0
SLA ; Acc = 8D14h, C=1, S=1, Z=0

SLA2 Operation: Carry Flag 15 Active Accumulator (Acc) 0

 0

C  Acc.14; Acc.[15:2] Acc.[13:0]; Acc.[1:0]  0

Encoding: 15 0

1000 1010 0011 1010

Example(s): ; Acc = E345h, C=0, S=1, Z=0

SLA2 ; Acc = 8D14h, C=1, S=1, Z=0

SLA4 Operation: Carry Flag 15 Active Accumulator (Acc) 0

 0

C  Acc.12; Acc.[15:4] Acc.[11:0]; Acc.[3:0]  0

Encoding: 15 0

1000 1010 0110 1010

Example(s): ; Acc = E345h, C=0, S=1, Z=0

SLA4 ; Acc = 3450h, C=0, S=0, Z=0

DS4830A User’s Guide

 226

SR Shift Accumulator Right
SRA / SRA2 / SRA4 Shift Accumulator Right Arithmetically One, Two, or Four Times

Description: Shifts the active accumulator right once for the SR, SRA instructions and 2 or 4 times

respectively for the SRA2, SRA4 instructions. The SR instruction shifts a 0 into the
accumulator msb while the SRA, SRA2, and SRA4 instructions effectively shift a copy of the
current msb into the accumulator, thereby preserving any sign orientation. For each shift
iteration, the accumulator lsb is shifted into the Carry (C) flag.

Status Flags: C, S (changes for SR only), Z

SR Operation: 15 Active Accumulator (Acc) 0 Carry Flag

0

Acc.15  0; Acc.[14:0] Acc.[15:1]; C  Acc.0

Encoding: 15 0

1000 1010 1010 1010

Example(s): ; Acc = A345h, C=1, S=1, Z=0

SR ; Acc = 51A2h, C=1, S=0, Z=0
SR ; Acc = 28D1h, C=0, S=0, Z=0

SRA Operation: 15 Active Accumulator (Acc) 0 Carry Flag

Acc.[14:0] Acc.[15:1]
Acc.15  Acc.15
C  Acc.0

Encoding: 15 0

1000 1010 1111 1010

Example(s): ; Acc = 0003h, C=0, Z=0

SRA ; Acc = 0001h, C=1, Z=0
SRA ; Acc = 0000h, C=1, Z=1

DS4830A User’s Guide

 227

SRA2 Operation: 15 Active Accumulator (Acc) 0 Carry Flag

Acc.[13:0] Acc.[15:2]
Acc.[15:14]  Acc.15
C  Acc.1

Encoding: 15 0

1000 1010 1110 1010

Example(s): ; Acc = 0003h, C=0, Z=0

SRA2 ; Acc = 0000h, C=1, Z=1

SRA4 Operation: 15 Active Accumulator (Acc) 0 Carry Flag

Acc.[11:0] Acc.[15:4]
Acc.[15:12]  Acc.15
C  Acc.3

Encoding: 15 0

1000 1010 1011 1010

Example(s): ; Acc = 9878h, C=0, Z=0

SRA4 ; Acc = F987h, C=1, Z=0
SRA4 ; Acc = FF98h, C=0, Z=0

DS4830A User’s Guide

 228

SUB / SUBB src Subtract / Subtract with Borrow

Description: Subtracts the specified src from the active accumulator (Acc) and returns the result back to

the active accumulator. The SUBB additionally subtracts the borrow (Carry Flag) which may
have resulted from previous subtraction. For the complete list of src specifiers, reference the
MOVE instruction. Because the source is limited to 8 bits, the PFX[n] register is used to
supply the high-byte of data for 16 bit sources.

Status Flags: C, S, Z, OV

SUB Operation: Acc  Acc - src

Encoding: 15 0

f101 1010 ssss ssss

Example(s): ; Acc = 2345h to start, A[1]= 1250h

SUB A[1] ; Acc = 10F5h, C=0, S=0, Z=0, OV=0
SUB A[1] ; Acc = FEA5h, C=1, S=1, Z=0, OV=0
SUB A[2] ; A[2] =7FFFh

;  Acc = 7EA6h; C=0, S=0, Z=0, OV=1

SUBB Operation: Acc  Acc – (src + C)

Encoding: 15 0

f111 1010 ssss ssss

Example(s): ; Acc = 2345h, A[1]= 1250h, C=1

SUBB A[1] ; Acc = 10F4h, C=0, S=0, Z=0
SUBB A[1] ; Acc = FEA4h, C=1, S=1, Z=0

Special Notes: The active accumulator (Acc) is not allowed as the src for these operations.

DS4830A User’s Guide

 229

XCH Exchange Accumulator Bytes

Description: Exchanges the upper and lower bytes of the active accumulator.

Status Flags: S

Operation: Acc.[15:8]  Acc.[7:0]

Acc.[7:0]  Acc.[15:8]

Encoding: 15 0

1000 1010 1000 1010

Example(s): ; Acc = 2345h

XCH ; Acc = 4523h

XCHN Exchange Accumulator Nibbles

Description: Exchanges the upper and lower nibbles in the active accumulator byte(s).
Status Flags: S

Operation: Acc.[7:4]  Acc.[3:0]

Acc.[3:0]  Acc.[7:4]
Acc.[15:12]  Acc.[11:8]
Acc.[11:8]  Acc.[15:12]

Encoding: 15 0

1000 1010 0111 1010

Example(s): ; Acc = 2345h

XCHN ; Acc = 3254h

DS4830A User’s Guide

 230

XOR src Logical XOR

Description: Performs a logical-XOR between the active accumulator (Acc or A[AP]) and the specified src

data. For the complete list of src specifiers, reference the MOVE instruction. Because the
source is limited to 8 bits, the PFX[n] register is used to supply the high-byte of data for
16 bit sources.

Status Flags: S, Z

Operation: Acc  Acc XOR src

Encoding: 15 0

f011 1010 ssss ssss

Example(s): ; Acc = 2345h

XOR A[2] ; A[2]=0F0Fh; Acc  2C4Ah

Special Notes: The active accumulator (Acc) is not allowed as the src for this operation.

XOR Acc. Logical XOR Carry Flag with Accumulator Bit

Description: Performs a logical-XOR between the Carry (C) status flag and a specified bit of the active

accumulator (Acc.) and returns the result to the Carry.
Status Flags: C

Operation: C  C XOR Acc.

Encoding: 15 0

1011 1010 bbbb 1010

Example(s): ; Acc = 2345h, C=1 at start

XOR Acc.1 ; Acc.1=0  C=1
XOR Acc.2 ; Acc.2=1  C=0

DS4830A User’s Guide

 231

SECTION 25 – UTILITY ROM
25.1 – Overview
The DS4830A utility ROM includes routines that provide the following functions to application software:
• In-application programming routines for flash memory (program, erase, mass erase)
• Single word/byte copy and buffer copy routines for lookup tables in flash

To provide backwards compatibility among different versions of the utility ROM, a function address table is
included that contains the entry points for all user-callable functions. With this table, user code can determine
the entry point for a given function as follows:
1. Read the location of the function address table from address 0800Dh in the utility ROM.
2. The entry points for each function listed below are contained in the function address table, one word per

function, in the order given by their function numbers.

For example, the entry point for the UROM_flashEraseAll function can be determined by the following
procedure.
1. functionTable = romMemory[800Dh]
2. flashEraseAllEntry = romMemory[functionTable + 2]

It is also possible to call utility ROM functions directly, using the entry points given in Table 25-1. Calling a
function directly will provide faster code execution.

Table 25-1: DS4830A Utility ROM Functions

INDEX FUNCTION NAME ENTRY
POINT SUMMARY

0 UROM_flashWrite 843Ch Programs a single word of flash memory.
1 UROM_flashErasePage 845Fh Erases (programs to FFFFh) a 256-word page of flash.
2 UROM_flashEraseAll 8475h Erases (programs to FFFFh) all flash memory.
3 UROM_moveDP0 8484h Reads a byte/word at DP[0].
4 UROM_moveDP0inc 8487h Reads a byte/word at DP[0], then increments DP[0].
5 UROM_moveDP0dec 848Ah Reads a byte/word at DP[0], then decrements DP[0].
6 UROM_moveDP1 848Dh Reads a byte/word at DP[1].
7 UROM_moveDP1inc 8490h Reads a byte/word at DP[1], then increments DP[0].
8 UROM_moveDP1dec 8493h Reads a byte/word at DP[1], then decrements DP[0].
9 UROM_moveBP 8496h Reads a byte/word at BP[OFFS].
10 UROM_moveBPinc 8499h Reads a byte/word at BP[OFFS], then increments OFFS.
11 UROM_moveBPdec 849Ch Reads a byte/word at BP[OFFS], then decrements OFFS.

12 UROM_copyBuffer 849Fh Copies LC[0] bytes/words (up to 255) from DP[0] to
BP[OFFS].

DS4830A User’s Guide

 232

25.2 – In-Application Programming Functions
25.2.1 – UROM_flashWrite
Function UROM_flashWrite

Summary Programs a single word of flash memory

Inputs
A[0]: Word address in program flash memory to write.
A[1]: Value to write to flash memory.

Outputs Carry: Set on error and cleared on success

Destroys PSF, LC[1]
Notes:

• This function uses two stack levels to save and restore values.
• If the watchdog reset function is active, it should be disabled before calling this function.
• Interrupts are disabled while in this function.
• If the flash location has already been programmed to a value other than FFFFh, this function returns with an

error (Carry set). In order to reprogram a flash location, the location must first be erased by calling
UROM_flashErasePage or UROM_flashEraseAll.

25.2.2 – UROM_flashErasePage
Function UROM_flashErasePage

Summary Erases (programs to FFFFh) a 512-byte page of flash memory.

Inputs
A[0]: Word address located in the page to be erased. (The page number is the high 8 bits of
A[0].)

Outputs Carry: Set on error and cleared on success.

Destroys PSF, LC[1], GR, AP, APC, A[0]
Notes:

• If the watchdog reset function is active, it should be disabled before calling this function.
• Interrupts are disabled while in this function.
• When calling this function from flash, care should be taken that the return address is not in the page which is

being erased.

25.2.3 – UROM_flashEraseAll
Function UROM_flashEraseAll

Summary Erases (programs to FFFFh) all locations in flash memory

Inputs None

Outputs Carry: Set on error and cleared on success.

Destroys PSF, GR, LC[1], LC[0], AP, APC, A[0]

Notes:
• If the watchdog reset function is active, it should be disabled before calling this function.
• Interrupts are disabled while in this function..
• This function can only be called by code running from the RAM. Attempting to call this function while running

from the flash results in an error.

DS4830A User’s Guide

 233

25.3 – Data Transfer Functions
The DS4830A cannot access data from the same memory segment that is currently being used for instructions.
For example, when instructions are executing from FLASH, data in FLASH cannot be accessed. The following
utility ROM functions can be used to transfer data from one memory segment to another. For example, if data in
FLASH needs to be copied to SRAM, one of these ROM functions can be called to do this transfer. This is useful
when code is executing from FLASH and access to lookup tables or non-volatile data that is stored in FLASH is
required. These functions can also be used by code running from SRAM to read data that is stored in SRAM.

Since these functions are executed from utility ROM, addresses must be specified correctly to point to the
intended memory segments. When executing from utility ROM, the memory map is illustrated in Figure 2-4. For
example, data located at word address 0100h in the FLASH must be accessed at word address 8100h (or byte
address 8200h) when using any of the functions listed in the following sections.

25.3.1 – UROM_moveDP0
Function UROM_moveDP0

Summary Reads the byte/word value pointed to by DP[0].

Inputs DP[0]: Address to read from data space (include 8000h offset if reading from flash).

Outputs GR: Data byte/word read.

Destroys None

Notes:
• Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.
• The address passed to this function should be based on the data memory mapping for the utility ROM, as

shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access
either the upper or lower half of program flash memory.

• This function automatically selects DP[0] as the data pointer before reading the byte/word value.
• Implemented as: move GR, @DP[0]

25.3.2 – UROM_moveDP0inc
Function UROM_moveDP0inc

Summary Reads the byte/word value pointed to by DP[0], then increments DP[0].

Inputs DP[0]: Address to read from data space (include 8000h offset if reading from flash).
Outputs GR: Data byte/word read.DP[0] is incremented.

Destroys None

Notes:
• Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.
• The address passed to this function should be based on the data memory mapping for the utility ROM, as

shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access
either the upper or lower half of program flash memory.

• This function automatically selects DP[0] as the data pointer before reading the byte/word value.
• Implemented as: move GR, @DP[0]++

DS4830A User’s Guide

 234

25.3.3 – UROM_moveDP0dec
Function UROM_moveDP0dec

Summary Reads the byte/word value pointed to by DP[0], then decrements DP[0].

Inputs DP[0]: Address to read from data space (include 8000h offset if reading from flash).

Outputs GR: Data byte/word read. DP[0] is decremented.

Destroys None

Notes:
• Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.
• The address passed to this function should be based on the data memory mapping for the utility ROM, as

shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access
either the upper or lower half of program flash memory.

• This function automatically selects DP[0] as the data pointer before reading the byte/word value.
• Implemented as: move GR, @DP[0]--

25.3.4 – UROM_moveDP1
Function UROM_moveDP1

Summary Reads the byte/word value pointed to by DP[1].

Inputs DP[1]: Address to read data space (include 8000h offset if reading from flash).

Outputs GR: Data byte/word read.

Destroys None

Notes:
• Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode.
• The address passed to this function should be based on the data memory mapping for the utility ROM, as

shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access
either the upper or lower half of program flash memory.

• This function automatically selects DP[1] as the data pointer before reading the byte/word value.
• Implemented as: move GR, @DP[1]

25.3.5 – UROM_moveDP1inc
Function UROM_moveDP1inc

Summary Reads the byte/word value pointed to by DP[1], then increments DP[1].
Inputs DP[1]: Address to read from data space (include 8000h offset if reading from flash).

Outputs GR: Data byte/word read. DP[1] is incremented.

Destroys None

Notes:
• Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode.
• The address passed to this function should be based on the data memory mapping for the utility ROM, as

shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access
either the upper or lower half of program flash memory.

• This function automatically selects DP[1] as the data pointer before reading the byte/word value.
• Implemented as: move GR, @DP[1]++

DS4830A User’s Guide

 235

25.3.6 – UROM_moveDP1dec
Function UROM_moveDP1dec

Summary Reads the byte/word value pointed to by DP[1], then decrements DP[1].

Inputs DP[1]: Address to read from data space (include 8000h offset if reading from flash).

Outputs GR: Data byte/word read. DP[1] is decremented.

Destroys None
Notes:

• Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode.
• The address passed to this function should be based on the data memory mapping for the utility ROM, as

shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access
either the upper or lower half of program flash memory.

• This function automatically selects DP[1] as the data pointer before reading the byte/word value.
• Implemented as: move GR, @DP[1]--

25.3.7 – UROM_moveBP
Function UROM_moveBP

Summary Reads the byte/word value pointed to by BP[OFFS].
Inputs BP[OFFS]: Address to read from data space (include 8000h offset if reading from flash).

Outputs GR: Data byte/word read.

Destroys None.
Notes:

• Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode.
• The address passed to this function should be based on the data memory mapping for the utility ROM, as

shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access
either the upper or lower half of program flash memory.

• This function automatically selects BP[OFFS] as the data pointer before reading the byte/word value.
• Implemented as: move GR, @BP[OFFS]

25.3.8 – UROM_moveBPinc
Function UROM_moveBPinc

Summary Reads the byte/word value pointed to by BP[OFFS], then increments OFFS.
Inputs BP[OFFS]: Address to read from data space (include 8000h offset if reading from flash).

Outputs GR: Data byte/word read. OFFS is incremented.

Destroys None

Notes:
• Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode.
• The address passed to this function should be based on the data memory mapping for the utility ROM, as

shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access
either the upper or lower half of program flash memory.

• This function automatically selects BP[OFFS] as the data pointer before reading the byte/word value.
• Implemented as: move GR, @BP[OFFS++]

DS4830A User’s Guide

 236

25.3.9 – UROM_moveBPdec
Function UROM_moveBPdec

Summary Reads the byte/word value pointed to by BP[OFFS], then decrements OFFS.
Inputs BP[OFFS]: Address to read from data space (include 8000h offset if reading from flash).

Outputs GR: Data byte/word read. OFFS is decremented.

Destroys None

Notes:
• Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode.
• The address passed to this function should be based on the data memory mapping for the utility ROM, as

shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access
either the upper or lower half of program flash memory.

• This function automatically selects BP[OFFS] as the data pointer before reading the byte/word value.
• Implemented as: move GR, @BP[OFFS--]

25.3.10 – UROM_copyBuffer
Function UROM_copyBuffer

Summary LC[0] bytes/words (up to 256) from DP[0] to BP[OFFS].

Inputs

DP[0]: Starting address to copy from.
BP[OFFS]: Starting address to copy to.
LC[0]: Number of bytes/words to copy.

Outputs OFFS is incremented by LC[0]. DP[0] is incremented by LC[0].

Destroys LC[0]
Notes:
• This function can be used to copy from program flash to data RAM, or from one part of data RAM to another.

It cannot be used to copy data into flash memory; the UROM_writeFlash function should be used for this
purpose.

• Before calling this function, DPC should be set appropriately to configure DP[0] and BP[OFFS] for byte or
word mode. Both DP[0] and BP[OFFS] should be configured to the same mode (byte or word) for correct
buffer copying.

• The addresses passed to this function should be based on the data memory mapping for the utility ROM, as
shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access either
the upper or lower half of program flash memory.

• This function automatically selects the data pointers before reading the byte/word values.

DS4830A User’s Guide

 237

25.4 Special Functions
The DS4830A provides software reset and read single word functions.

25.4. 1 – UROM_copyWord

Function UROM_copyWord

Summary 1 word DP[0] to A[0].

Inputs DP[0]: Starting address to copy from.

Outputs A[0]

Destroys A[0], DP[0]
UROM
Address 885Bh

Notes:
• This function can be used to copy a word from program flash to data RAM, or from one part of data RAM to

another.
• Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.
• The addresses passed to this function should be based on the data memory mapping for the utility ROM, as

shown in Figure 25-1. When a byte mode address is used, CDA0 must be set appropriately to access either
the upper or lower half of program flash memory.

• This function automatically selects the data pointers before reading the byte/word values.

25.4. 2 – Software Reset
UROM has necessary code at the location 8854h which can generate an internal reset when application
software jumps to this location.

DS4830A User’s Guide

 238

25.5 – Utility ROM Examples

25.5.1 – Reading Constant Word Data from Flash

UROM_moveDP0inc equ 08487h

move DPC, #1Ch ; Set all pointers to word mode
move DP[0], #(table + 8000h) ; Point to address of data as viewed in the Utility ROM memory map
lcall #UROM_moveDP0inc
move A[0], GR
; A[0] = 1111h
lcall #UROM_moveDP0inc
move A[1], GR ; A[1] = 2222h
lcall #UROM_moveDP0inc
move A[2], GR
; A[0] = 3333h
lcall #UROM_moveDP0inc
move A[3], GR ; A[1] = 4444h
sjump $

org 0100h
table:
 dw 1111h, 2222h, 3333h, 4444h

25.5.2 – Reading Constant Byte Data from Flash (Indirect Function Call)

INDX_moveDP0inc equ 4

move DPC, #1Ch ; Set all pointers to word mode
move DP[0], #800Dh ; Fetch location of function table from Utility ROM
move BP, @DP[0] ; Set base pointer to function table location
move Offs, #INDX_moveDP0inc ; Set offset to moveDP0inc entry in table
move A[7], @BP[Offs] ; Get address of moveDP0inc function
move DPC, #00h ; Set all pointers to byte mode
move DP[0], #((table * 2) + 8000h) ; Point to address of data as viewed in the Utility ROM memory map and
convert

; to byte mode pointer
lcall A[7] ; moveDP0inc
move A[0], GR ; A[0] = 34h
lcall A[7] ; moveDP0inc
move A[1], GR ; A[1] = 12h
lcall A[7] ; moveDP0inc
move A[2], GR ; A[2] = 78h
lcall A[7] ; moveDP0inc
move A[3], GR ; A[3] = 56h
sjump $

org 0100h
table:
 dw 1234h, 5678h

DS4830A User’s Guide

 239

SECTION 26 – MISCELLANEOUS
26.1 – Overview
Miscellaneous features of DS4830A are
• CRC8
• Software interrupts
• General-purpose registers.

26.2 – CRC8
DS4830A has an built-in hardware CRC8. The registers used for CRC8 are CRC8IN and CRC8OUT. They are
defined in Module 1. SMBus 2.0 specification is followed for CRC algorithm (CRC polynomial is x8+x2+x+1).

26.2.1 – CRC Data In (CRC8IN)

Bit 7 6 5 4 3 2 1 0
Name CRC8IN_7 CRC8IN_6 CRC8IN_5 CRC8IN_4 CRC8IN_3 CRC8IN_2 CRC8IN_1 CRC8IN_0
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
7:0 CRC8IN[7:0] CRC Data in. The user program writes data to this register for which CRC8 should be

applied to.

26.2.2 – CRC Data Out (CRC8OUT)

Bit 7 6 5 4 3 2 1 0
Name CRC8OUT_7 CRC8OUT_6 CRC8OUT_5 CRC8OUT_4 CRC8OUT_3 CRC8OUT_2 CRC8OUT_1 CRC8OUT_0
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
7:0 CRC8OUT[7:0] CRC Data out. The user program reads CRC8 result from this register for all the

data that was written to CRC8IN.
Note: This register has to be cleared to 0x00 by software before starting a CRC8
calculation.

26.2.3 – Example

unsigned char Calculate_CRC8(unsigned char* data, int length)
{
 unsigned int i = 0;
 unsigned char CRC_result;
 CRC8OUT = 0x00;
 for(; i<length ; i++)

{
 CRC8IN = data[i];

 //Incrementing i in the loop takes a cycle atleast. So CRC should have been completed in this time.
}
CRC_result = CRC8OUT;

 return CRC_result;
}

26.3 – Software Interrupts
The DS4830A has four software interrupts that the application program can use to generate interrupts for general-
purpose application requirements. The user can generate an interrupt by setting a bit in the USER_INT[3:0]. The
USER_INT[7:4] are single cycle read/write bits which can be used in the time critical interrupts.

DS4830A User’s Guide

 240

26.3.1 – User Interrupt Register (USER_INT)

Bit 7 6 5 4 3 2 1 0
Name SW_F3 SW_F2 SW_F1 SW_F0 SW_INT4 SW_INT 3 SW_INT 2 SW_INT 1
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
7:4 SW_F3[3:0] Software flags: Single cycle read/write bits for general-purpose flags for

application usage.
3:0 SW_INT[3:0] Software Interrupt:

Setting this bit to ‘1’ generates an interrupt.

26.4 – General-Purpose Registers
DS4830A has 16 general-purpose registers defined in Module 3. Reading from GP_REG1 and GP_REG2 take a
single clock cycle and writing to these registers takes two clock cycles. For GP_REG3 to GP_REG16, reading from
and writing to take two clock cycles. These registers can be used by time critical software in place of program
variables to save clock cycles during memory access.

26.4.1 – General-Purpose Register
(GP_REG1, GP_REG2, GP_REG3, GP_REG4, GP_REG5, GP_REG6, GP_REG7, GP_REG8, GP_REG9,
GP_REG10, GP_REG11, GP_REG12, GP_REG13, GP_REG14, GP_REG15, GP_REG16)

Bit 15 14 13 12 11 10 9 8
Name GP_REGx_15 GP_REGx_14 GP_REGx_13 GP_REGx_12 GP_REGx_11 GP_REGx_10 GP_REGx_9 GP_REGx_8
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw Rw rw rw rw

Bit 7 6 5 4 3 2 1 0
Name GP_REGx_7 GP_REGx_6 GP_REGx_5 GP_REGx_4 GP_REGx_3 GP_REGx_2 GP_REGx_1 GP_REGx_0
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw Rw rw rw rw

BIT NAME DESCRIPTION
15:0 GP_REGx_n General-Purpose Register x Bit n. The software can use these bits in place of

variables.

26.5 – Device Number and I2C Bootloader Address Disable
The DS4830A has DEV_NUM register which is used to disable the bootloader slave address (34h). On POR, this
register is initialized to default value.

26.5.1 – Device Number Register (DEV_NUM)

Bit 7 6 5 4 3 2 1 0
Name BOOT_DIS DEV_NUM[6:0]
Reset 0 x x x x x x x
Access rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION
7 BOOT_DIS BOOT DIS flags: Setting this bit to ‘1’ will disable the bootloader slave address

(34h). On POR, this bit is set to ‘0’.
6:0 DEV_NUM DEV_NUM:

The DEV_NUM[6:0] is configured in the production for indication and tracibility
purpose.

	SECTION 1 – OVERVIEW
	SECTION 2 – ARCHITECTURE
	2.1 – Instruction Decoding
	2.2 – Register Space
	2.3 – Memory Types
	2.3.1 – Flash Memory
	2.3.2 – SRAM Memory
	2.3.3 – Utility ROM
	2.3.4 – Stack Memory

	2.4 – Program and Data Memory Mapping and Access
	2.4.1 – Program Memory Access
	2.4.2 – Program Memory Mapping
	2.4.3 – Data Memory Access
	2.4.4 – Data Memory Mapping

	2.5 – Data Alignment
	2.6 – Reset Conditions
	2.6.1 – Power-On/Brownout Reset
	2.6.2 – Watchdog Timer Reset
	2.6.3 – External Reset
	2.6.4 – Internal System Resets
	2.6.5 – Software Reset

	2.7 – Clock Generation

	SECTION 3 – SYSTEM REGISTER DESCRIPTIONS
	3.1 – Accumulator Pointer Register (AP, 08h[00h])
	3.2 – Accumulator Pointer Control Register (APC, 08h[01h])
	3.3 – Processor Status Flags Register (PSF, 08h[04h])
	3.4 – Interrupt and Control Register (IC, 08h[05h])
	3.5 – Interrupt Mask Register (IMR, 08h[06h])
	3.6 – System Control Register (SC, 08h[08h])
	3.7 – Interrupt Identification Register (IIR, 08h[0Bh])
	3.8 – Watchdog Control Register (WDCN, 08h[0Fh])
	3.9 – Accumulator n Register (A[n], 09h[nh])
	3.11 – Instruction Pointer Register (IP, 0Ch[00h])
	3.12 – Stack Pointer Register (SP, 0Dh[01h])
	3.13 – Interrupt Vector Register (IV, 0Dh[02h])
	3.14 – Loop Counter 0 Register (LC[0], 0Dh[06h])
	3.15 – Loop Counter 1 Register (LC[1], 0Dh[07h])
	3.16 – Frame Pointer Offset Register (OFFS, 0Eh[03h])
	3.17 – Data Pointer Control Register (DPC, 0Eh[04h])
	3.18 – General Register (GR, 0Eh[05h])
	3.19 – General Register Low Byte (GRL, 0Eh[06h])
	3.20 – Frame Pointer Base Register (BP, 0Eh[07h])
	3.21 – General Register Byte-Swapped (GRS, 0Eh[08h])
	3.22 – General Register High Byte (GRH, 0Eh[09h])
	3.23 – General Register Sign Extended Low Byte (GRXL, 0Eh[0Ah])
	3.24 – Frame Pointer Register (FP, 0Eh[0Bh])
	3.25 – Data Pointer 0 Register (DP[0], 0Fh[03h])
	3.26 – Data Pointer 1 Register (DP[1], 0Fh[07h])

	SECTION 4 – PERIPHERAL REGISTER DESCRIPTIONS
	4.1 – Module 0 Peripheral Registers
	4.2 – Module 1 Peripheral Registers
	4.3 – Module 2 Peripheral Registers
	4.4 – Module 3 Peripheral Registers
	4.5 – Module 4 Peripheral Registers
	4.6 – Module 5 Peripheral Registers

	SECTION 5 – INTERRUPTS
	5.1 – Servicing Interrupts
	5.2 – Module Interrupt Identification Registers
	5.3 – Interrupt System Operation
	5.3.1 – Synchronous vs. Asynchronous Interrupt Sources
	5.3.2 – Interrupt Prioritization by Software
	5.3.3 – Interrupt Exception Window

	SECTION 6 – DIGITAL-TO-ANALOG CONVERTER (DAC)
	6.1 – Detailed Description
	6.1.1 – Reference Selection

	6.2 – DAC Register Descriptions
	6.2.1 – DAC Configuration Register (DACCFG)
	6.2.2 – DAC Data Registers (DACD0-DACD7)
	6.2.3 – Reference Pin Configuration Register (RPCFG)

	6.3 – DAC Code Examples

	SECTION 7 – ANALOG-TO-DIGITAL CONVERTER (ADC)
	7.1 – Detailed Description
	7.1.1 – ADC Controller
	7.1.2 – ADC Conversion Sequencing
	7.1.3 – Internal Die Temperature Conversion
	7.1.4 – Sample and Hold Conversion
	7.1.5 – ADC Frame Sequence
	7.1.6 – ADC Reference
	7.1.7 – ADC Conversion Time
	7.1.8 – Location Override
	7.1. 9 – Averaging
	7.1.10 – ADC Data Reading
	7.1.11 – ADC Interrupts
	7.1.12 – ADC Internal Offset
	7.1.13 – DAC External Reference Pins (REFINA and REFINB) as ADC Channels
	7.1.14 – Fast Conversion Mode (ADST.ENABLE_2X)

	7.2 – ADC Register Descriptions
	7.2.1 – ADC Control Register (ADCN)
	7.2.2 – ADC Status Register (ADST)
	7.2.3 – PIN Select Register (PINSEL)
	7.2.4 – ADC Status Register (ADST1)
	7.2.5 – ADC Address Register (ADADDR)
	7.2.6 – ADC Data and Configuration Register (ADDATA)
	7.2.7 – Reference Pin Configuration Register (RPCFG)
	7.2.8 – Temperature Control Register (TEMPCN)
	7.2.9 – Average and Reference Control Register (REFAVG)
	7.2.10 – ADC Voltage Offset Register (ADVOFF)
	7.2.11 – ADC Voltage Scale Trim Registers (ADCG1, ADCG2, ADCG3 and ADCG4)

	7.3 – ADC Code Examples

	SECTION 8 – SAMPLE AND HOLD
	8.1 – Detailed Description
	8.1.1 – Operation
	8.1.2 – Fast Mode Operation
	8.1.3 – Sampling Control
	8.1.4 – Pin Capacitance Discharge
	8.1.5 – Sample and Hold Data Reading
	8.1.6 – Sample and Hold Interrupts

	8.2 – Sample and Hold Register Descriptions

	SECTION 9 – QUICK TRIP (FAST COMPARATOR)
	9.1 – Detailed Description
	9.1.1 – Quick Trip List Sequencing
	9.1.2 – Operation
	9.1.3 – Setting Quick Trip Thresholds
	9.1.4 – Quick Trip Interrupts

	9.2 – Quick Trip Register Descriptions

	SECTION 10 – I2C-COMPATIBLE MASTER INTERFACE
	10.1 – Detailed Description
	10.1.1 – Description of Master I2C Interface
	10.1.2 – Default Operation
	10.1.3 – I2C Clock Generation
	10.1.4 – Timeout
	10.1.5 – Generating a START
	10.1.6 – Generating a STOP
	10.1.7 – Transmitting a Slave Address
	10.1.8 – Transmitting Data
	10.1.9 – Receiving Data
	10.1.10 – I2C Master Clock Stretching
	10.1.11 – Resetting the I2C Master Controller
	10.1.12 – Alternate Location
	10.1.13 – Operation as a Slave
	10.1.14 – GPIO

	10.2 – I2C Master Controller Register Description

	SECTION 11 – I2C-COMPATIBLE SLAVE INTERFACE
	11.1 – Detailed Description
	11.1.1 – Default Operation
	11.1.2 – Slave Addresses
	11.1.3 – I2C START Detection
	11.1.4 – I2C STOP Detection
	11.1.5 – Slave Address Matching
	11.1.6 – Advanced Mode Operation RX FIFO and TX Pages
	11.1.7 – Transmitting Data
	11.1.8 – Receiving Data
	11.1.9 – Clock Stretching
	11.1.10 – SMBus Timeout
	11.1.11 – Resetting the I2C Slave Controller

	11.2 – I2C Slave Controller Register Description

	SECTION 12 – SERIAL PERIPHERAL INTERFACE (SPI)
	12.1 – Serial Peripheral Interface (SPI) Detailed Description
	12.1.1 – SPI Transfer Formats
	12.1.2 – SPI Character Lengths
	12.2 – SPI System Errors
	12.2.1 – Mode Fault
	12.2.2 – Receive Overrun
	12.2.3 – Write Collision While Busy
	12.3 – SPI Interrupts
	12.4 – SPI Master
	12.4.1 – SPI Transfer Baud Rates
	12.4.2 – SPI Master Operation
	12.4.3 – SPI Master Register Descriptions
	12.5 – SPI Slave
	12.5.1 – SPI Slave Select
	12.5.2 – SPI Transfer Baud Rates
	12.5.3 – SPI Slave Operation

	12.5.4 – SPI Slave Register Descriptions

	SECTION 13 – 3-WIRE
	13.1 – Detailed Description
	13.1.1 – Operation

	13.2 – 3-Wire Register Descriptions

	SECTION 14 – PWM
	14.1 – Detailed Description
	14.1.1 – PWMCN and PWMDATA SFRs
	14.1.2 – PWMSYNC SFR

	14.2 – Individual PWM Channel Operation
	14.2.1 – Duty Cycle Register (DCYCn)
	14.2.2 – PWM Configuration Register (PWMCFGn)
	14.2.3 – PWM DELAY Register (PWMDLYn)

	14.3 – PWM Output Register Descriptions
	14.4 – PWM Output Code Examples

	SECTION 15 – GENERAL-PURPOSE INPUT/OUTPUT (GPIO) PINS
	15.1 – Overview
	15.2 – GPIO Port Register Descriptions
	15.2.1 – GPIO Direction Register Port (PD0, PD1, PD2, and PD6)
	15.2.2 – GPIO Output Register Port (PO0, PO1, PO2, and PO6)
	15.2.3 – GPIO Input Register for Port (PI0, PI1, PI2, and PI6)
	15.2.4 – GPIO Port External Interrupt Edge Select Register (EIES0, EIES1, EIES2, and EIES6)
	15.2.5 – GPIO Port External Interrupt Flag Register (EIF0, EIF1, EIF2, and EIF6)
	15.2.6 – GPIO Port External Interrupt Enable Register (EIE0, EIE1, EIE2, and EIE6)

	15.3 – GPIO Code Example
	15.3.1 – GPIO Pin as Output
	15.3.2 – GPIO High-Impedance Input
	15.3.3 – GPIO Weak Pullup Input
	15.3.4 – GPIO Open-Drain Output

	SECTION 16 – GENERAL-PURPOSE TIMERS
	16.1 – Detailed Description
	16.1.1 – Timer Modes
	16.1.2 – Clock Selection
	16.1.3 – Timer Clock Prescaler

	16.2 – Timer Register Descriptions

	SECTION 17 – SUPPLY VOLTAGE MONITOR (SVM)
	SECTION 18 – HARDWARE MULTIPLIER MODULE
	18.1 – Hardware Multiplier Organization
	18.2 – Hardware Multiplier Controls
	18.3 – Register Output Selection
	18.3.1 – Signed-Unsigned Operand Selection
	18.3.2 – Operand Count Selection

	18.4 – Hardware Multiplier Operations
	18.4.1 – Accessing the Multiplier

	18.5 – Hardware Multiplier Peripheral Registers
	18.6 – Hardware Multiplier Examples

	SECTION 19 – WATCHDOG TIMER
	19.1 - Overview
	19.2 – Watchdog Timer Description
	19.2.1 – Watchdog Timer Interrupt Operation
	19.2.2 – Watchdog Timer Reset Operation
	19.2.3 – Watchdog Timer Applications

	SECTION 20 – TEST ACCESS PORT (TAP)
	20.1 – TAP Controller
	20.2 – TAP State Control
	20.2.1 – Test-Logic-Reset
	20.2.2 – Run-Test-Idle
	20.2.3 – IR-Scan Sequence
	20.2.4 – DR-Scan Sequence

	20.3 – Communication via TAP
	20.3.1 – TAP Communication Examples – IR-Scan and DR-Scan

	SECTION 21 – IN-CIRCUIT DEBUG MODE
	21.1 – Background Mode Operation
	21.1.1 – Breakpoint Registers
	21.1.2 – Using Breakpoints

	21.2 – Debug Mode
	21.2.1 – Debug Mode Commands
	21.2.2 – Read Register Map Command Host-ROM Interaction
	21.2.3 – Single Step Operation (Trace)
	21.2.4 – Return
	21.2.5 – Debug Mode Special Considerations

	21.3 – In-Circuit Debug Peripheral Registers

	SECTION 22 – IN-SYSTEM PROGRAMMING
	22.1 – Detailed Description
	22.1.1 – Password Protection
	22.1.2 – Entering JTAG Bootloader
	22.1.3 – Entering I2C Bootloader
	22.1.4 – I2C Bootloader Disable

	22.2 – Bootloader Operation
	22.2.1 – JTAG Bootloader Protocol
	22.2.2 – I2C Bootloader Protocol

	22.3 – Bootloader Commands
	22.3.1 – Command 00h – No Operation
	22.3.2 – Command 01h – Exit Loader
	22.3.3 – Command 02h – Master Erase
	22.3.4 – Command 03h – Password Match
	22.3.5 – Command 04h – Get Status
	22.3.6 – Command 05h – Get Supported Commands
	22.3.7 – Command 06h – Get Code Size
	22.3.8 – Command 07h – Get Data Size
	22.3.9 – Command 08h – Get Loader Version
	22.3.10 – Command 09h – Get Utility ROM Version
	22.3.11 – Command 10h – Load Code
	22.3.12 – Command 11h – Load Data
	22.3.13 – Command 20h – Dump Code
	22.3.14 – Command 21h – Dump Data
	22.3.15 – Command 30h – CRC Code
	22.3.16 – Command 31h – CRC Data
	22.3.17 – Command 40h – Verify Code
	22.3.18 – Command 41h – Verify Data
	22.3.19 – Command 50h – Load and Verify Code
	22.3.20 – Command 51h – Load and Verify Data
	22.3.21 – Command E0h – Code Page Erase

	SECTION 23 – PROGRAMMING
	23.1 – Addressing Modes
	23.2 – Prefixing Operations
	23.3 – Reading and Writing Registers
	23.3.1 – Loading an 8-Bit Register with an Immediate Value
	23.3.2 – Loading a 16-Bit Register with a 16-Bit Immediate Value
	23.3.3 – Moving Values Between Registers of the Same Size
	23.3.4 – Moving Values Between Registers of Different Sizes

	23.4 – Reading and Writing Register Bits
	23.5 – Using the Arithmetic and Logic Unit
	23.5.1 – Selecting the Active Accumulator
	23.5.2 – Enabling Auto-Increment and Auto-Decrement
	23.5.3 – ALU Operations Using the Active Accumulator and a Source
	23.5.4 – ALU Operations Using Only the Active Accumulator
	23.5.5 – ALU Bit Operations Using Only the Active Accumulator
	23.5.6 – Example: Adding Two 4-Byte Numbers Using Auto-Increment

	23.6 – Processor Status Flag Operations
	23.6.1 – Sign Flag
	23.6.2 – Zero Flag
	23.6.3 – Equals Flag
	23.6.4 – Carry Flag
	23.6.5 – Overflow Flag

	23.7 – Controlling Program Flow
	23.7.1 – Obtaining the Next Execution Address
	23.7.2 – Unconditional Jumps
	23.7.3 – Conditional Jumps
	23.7.4 – Calling Subroutines
	23.7.5 – Looping Operations
	23.7.6 – Conditional Returns

	23.8 – Handling Interrupts
	23.8.1 – Conditional Return from Interrupt

	23.9 – Accessing the Stack
	23.10 – Accessing Data Memory

	SECTION 24 – INSTRUCTION SET
	SECTION 25 – UTILITY ROM
	25.1 – Overview
	25.2 – In-Application Programming Functions
	25.2.1 – UROM_flashWrite
	25.2.2 – UROM_flashErasePage

	25.3 – Data Transfer Functions
	25.3.1 – UROM_moveDP0
	25.3.2 – UROM_moveDP0inc
	25.3.3 – UROM_moveDP0dec
	25.3.4 – UROM_moveDP1
	25.3.5 – UROM_moveDP1inc
	25.3.6 – UROM_moveDP1dec
	25.3.7 – UROM_moveBP
	25.3.8 – UROM_moveBPinc
	25.3.9 – UROM_moveBPdec
	25.3.10 – UROM_copyBuffer

	25.4 Special Functions
	25.4. 1 – UROM_copyWord
	25.4. 2 – Software Reset

	25.5 – Utility ROM Examples
	25.5.1 – Reading Constant Word Data from Flash
	25.5.2 – Reading Constant Byte Data from Flash (Indirect Function Call)

	SECTION 26 – MISCELLANEOUS
	26.1 – Overview
	26.2 – CRC8
	26.2.1 – CRC Data In (CRC8IN)
	26.2.2 – CRC Data Out (CRC8OUT)
	26.2.3 – Example

	26.3 – Software Interrupts
	26.3.1 – User Interrupt Register (USER_INT)

	26.4 – General-Purpose Registers
	26.4.1 – General-Purpose Register

	26.5 – Device Number and I2C Bootloader Address Disable
	26.5.1 – Device Number Register (DEV_NUM)

