
NTC Type BR Series

Glass Encapsulated Bead Thermistors

Features

Type BR11/14/16/25

Small glass encapsulated bead thermistors on fine diameter alloy lead-wires.

- Suitable for most low cost temperature measurement, control or compensation applications
- · Very fast thermal response times
- Rugged glass encapsulation provides hermetic seal and better strain relief than small glass coated bead thermistors
- Long term stability is better than small glass coated bead thermistors
- Suitable for self-heated applications such as liquid level sensing or gas flow measurement
- Recommended for all applications where the customer will perform further assembly operations
- · Normal operating/storage temperatures range from
- -112°F (-80°C) to: 221°F (105°C) for Material system E0, 392°F (200°C) for Material systems A1 through A4, 572°F (300°C) for Material systems A5 through D17
- Unaffected by severe environmental exposures, including nuclear radiation
- Intermittent operation to 1112°F (600°C) is permissible, however, stability will be degraded

Type B32/42/55

Large glass encapsulated bead thermistors on fine diameter platinum alloy lead-wires.

- Suitable for most low cost temperature measurement, control or compensation applications
- · Fast thermal response times
- Rugged glass encapsulation provides hermetic seal and better strain relief than large glass coated bead thermistors
- Long term stability is better than large glass coated bead thermistors
- Suitable for self-heated applications such as liquid level sensing or gas flow measurement
- Recommended for all applications where the customer will perform further assembly operations
- · Normal operating/storage temperatures range from
- -112°F (-80°C) to: 221°F (105°C) for Material system E0, 392°F (200°C) for Material systems A1 through A4, 572°F (300°C) for Material systems A5 through D17
- Unaffected by severe environmental exposures, including nuclear radiation
- Intermittent operation to 1112°F (600°C) is permissible, however, stability will be degraded

AmphenolAdvanced Sensors

Type BR Series Specifications

Type BR11/14/16/23

Thermal and Electrical Properties

The following lists the thermal and electrical properties for all small ruggedized thermistors. All definitions and test methods per MIL-PRF-23648.

Body Dimensions

BR11

Nominal diameter: 0.011 in (0.28 mm)
Maximum diameter: 0.012 in (0.30 mm)
Maximum length: 0.0242 in (0.610 mm)

BR14

Nominal diameter: 0.014 in (0.36 mm)
Maximum diameter: 0.016 in (0.41 mm)
Maximum length: 0.032 in (0.81 mm)

BR16

Nominal diameter: 0.016 in (0.41 mm)
Maximum diameter: 0.017 in (0.43 mm)
Maximum length: 0.034 in (0.86 mm)

BR23

Nominal diameter: 0.023 in (0.58 mm)
Maximum diameter: 0.025 in (0.63 mm)
Maximum length: 0.056 in (1.46 mm)

Lead-Wires

BR11

Nominal diameter: 0.0007 in (0.02 mm)
Maximum lead length: 0.312 in (7.9 mm)

Lead material: platinum alloy

• Available cuts: "K" adjacent or "P" opposite

BR14

Nominal diameter: 0.0011 in (0.03 mm)

• Maximum lead length: 0.312 in (7.9 mm)

Lead material: platinum alloy

• Available cuts: "K" adjacent or "P" opposite

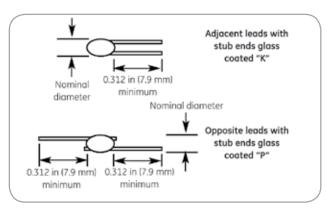
BR16

Nominal diameter: 0.0011 in (0.03 mm)

Maximum lead length: 0.312 in (7.9 mm)

Lead material: platinum alloy

Available cuts: "K" adjacent or "P" opposite


BR23

Nominal diameter: 0.002 in (0.05 mm)

• Maximum lead length: 0.312 in (8 mm)

· Lead material: platinum alloy

· Available cuts: "K" adjacent or "P" opposite

Type BR Series dimensions

Material System (Table A)

Code	R vs T Curve	25/125 Ratio	Nominal Resistance Range at 77°F (25°C)					
Letter			BR11	BR14	BR16	BR23		
Е	0	5.0	-	-	-	-		
Α	1	11.8	1 to 1.5 $k\Omega$	300 to 680 Ω	300 to 680 Ω	300 to 680 Ω		
Α	2	12.5	1.5 to 3.6 k Ω	680 to 1.6 $\text{k}\Omega$	680 to 1.6 $k\Omega$	680 to 1.6 kΩ		
Α	3	14	3.6 to 7.5 $\text{k}\Omega$	1.6 to 3.6 k Ω	1.6 to 3.6 k Ω	1.6 to 3.6 kΩ		
Α	4	16.9	7.5 to 15 kΩ	3.6 to 6.8 kΩ	3.6 to 6.8 kΩ	3.6 to 6.8 kΩ		
Α	5	19.8	15 to 51 kΩ	6.8 to 27 kΩ	6.8 to 27 k Ω	6.8 to 27 kΩ		
Α	6	22.1	-	-	-	-		
Α	7	22.7	51 to 150 kΩ	27 to 75 kΩ	27 to 75 kΩ	27 to 75 kΩ		
В	8	29.4	150 to 270 kΩ	75 to 130 kΩ	75 to 130 kΩ	75 to 130 kΩ		
В	9	30.8	270 to 470 kΩ	130 to 240 kΩ	130 to 240 kΩ	130 to 240 kΩ		
В	10	32.3	470 to 750 $\mbox{k}\Omega$	240 to 360 k Ω	240 to 360 k Ω	240 to 360 kΩ		
В	11	35.7	750 to 1.6 M Ω	360 to 820 kΩ	360 to 820 kΩ	360 to 820 kΩ		
В	12	38.1	1.6 to 2.7 M Ω	820 to 1.3 MΩ	820 to 1.3 MΩ	820 to 1.3 MΩ		
В	13	45	2.7 to 6.8 M Ω	1.3 to 3.36 MΩ	1.3 to 3.36 MΩ	1.3 to 3.36 MΩ		
В	14	48.1	6.8 to 10 M Ω	3.3 to 6.86 M Ω	3.3 to 6.86 M Ω	3.3 to 6.86 MΩ		
В	15	56.5	-	6.8 to 10 MΩ	6.8 to 10 MΩ	6.8 to 10 MΩ		
D	16	75.6	-	-	-	-		
D	17	81	-	-	-	-		

Thermal Time Constant

BR1

• Still air at 77°F (25°C): 0.8 second

• Plunge into water: 12 msec

BR14

Still air at 77°F (25°C): 1 second
Plunge into water: 14 msec

BR16

Still air at 77°F (25°C): 1.2 second
Plunge into water: 16 msec

BR23

Still air at 77°F (25°C): 1.7 second

• Plunge into water: 40 msec

Type BR Series Specifications

Dissipation Constant

BR11

- Still air at 77°F (25°C): 0.065 mW/°C
- Still water at 77°F (25°C): 0.33 mW/°C

RR14

- Still air at 77°F (25°C): 0.10 mW/°C
- Still water at 77°F (25°C): 0.50 mW/°C

BR16

- Still air at 77°F (25°C): 0.12 mW/°C
- Plunge into water: 0.60 mW/°C

BR23

- Still air at 77°F (25°C): 0.18 mW/°C
- Plunge into water: 0.9 mW/°

Power Rating (In Air)

BR11

- Maximum Power Rating: 0.007 W
- 100% Maximum Power To: 257°F (125°C)
- Derated to 0% at: 572°F (300°C)

BR14

- Maximum Power Rating: 0.015 W
- 100% Maximum Power To: 257°F (125°C)
- Derated to 0% at: 572°F (300°C)

BR16

- Maximum Power Rating: 0.015 W
- 100% Maximum Power To: 257°F (125°C)
- Derated to 0% at: 572°F (300°C)

BR23

- Maximum Power Rating: 0.020 W
- 100% Maximum Power To: 257°F (125°C)
- Derated to 0% at: 572°F (300°C)

Options

- Non-standard resistance tolerances
- Non-standard resistance values
- Specify reference temperature(s) if it is not 77°F (25°C)
- · Mounting in special housings or enclosures
- · Longer continuous leads
- Welded or soldered extension leads_specify lead material, diameter, length, and insulation, if any.
- Solderable or weldable/solderable leads
- Leads can be pre-tinned or treated for improved soldering
- Calibration specify temperature(s)
- Interchangeable pairs or sets, R-vs-T curve matching; specify temperature range(s) and tolerance(s)
- Special aging and conditioning for high reliability applications

Type BR32/42/55

Thermal and Electrical Properties

The following lists the thermal and electrical properties for all large ruggedized thermistors. All definitions and test methods per MIL-PRF-23648.

Body Dimensions

BR32

- Nominal diameter: 0.032 in (0.81 mm)Maximum diameter: 0.033 in (0.84 mm)
- Maximum length: 0.084 in (2.1 mm)

BR42

- Nominal diameter: 0.042 in (1.16 mm)
 Maximum diameter: 0.046 in (1.2 mm)
- Maximum length: 0.095 in (2.4 mm)

BR55

- Nominal diameter: 0.055 in (1.41 mm)
 Maximum diameter: 0.060 in (1.5 max)
- Maximum diameter: 0.060 in (1.5 mm)Maximum length: 0.120 in (3 mm)

Lead-Wires

BR32

- Nominal diameter: 0.003 in (0.08 mm)
- Maximum lead length: 0.312 in (7.9 mm)
- · Lead material: platinum alloy
- Available cuts: "K" adjacent or "P" opposite

BR42

- Nominal diameter: 0.004 in (0.10 mm)
- Maximum lead length: 0.312 in (7.9 mm)
- · Lead material: platinum alloy
- Available cuts: "K" adjacent or "P" opposite

BR55

- Nominal diameter: 0.004 in (0.10 mm)
- Maximum lead length: 0.312 in (7.9 mm)
- · Lead material: platinum alloy
- Available cuts: "K" adjacent or "P" opposite

Thermal Time Constant

BR32

- Still air at 77°F (25°C): 4.5 second
- Plunge into water: 90 msec

BR42

- Still air at 77°F (25°C): 5 second
- Plunge into water: 140 msec

BR55

- Still air at 77°F (25°C): 7 second
- Plunge into water: 200 msec

Material System (Table B)

Code	R vs T	25/125 Ratio	Nominal Resistance Range at 77°F (25°C)			
Letter	Curve		BR32	BR42	BR55	
Е	0	5.0	-	30 to 51 Ω	30 to 51 Ω	
А	1	11.8	100 to 300 Ω	51 to 150 Ω	51 to 150 Ω	
Α	2	12.5	300 to 750 Ω	150 to 360 Ω	150 to 360 Ω	
Α	3	14	750 to 1.5 k Ω	360 to 750 Ω	360 to 750 Ω	
Α	4	16.9	1.5 to 3.0 k Ω	750 to 1.5 k Ω	750 to 1.5 k Ω	
Α	5	19.8	3.0 to 6.8 k Ω	1.5 to 3.6 kΩ	1.5 to 3.6 kΩ	
Α	6	22.1	6.8 to 13 k Ω	3.6 to 6.2 k Ω	3.6 to 6.2 k Ω	
Α	7	22.7	13 to 18 k Ω	6.2 to 9.1 k Ω	6.2 to 9.1 k Ω	
В	8	29.4	18 to 51 kΩ	9.1 to 27 kΩ	9.1 to 27 kΩ	
В	9	30.8	51 to 82 kΩ	27 to 43 kΩ	27 to 43 kΩ	
В	10	32.3	82 to 150 k Ω	43 to 75 kΩ	43 to 75 k Ω	
В	11	35.7	150 to 330 kΩ	75 to 160 kΩ	75 to 160 kΩ	
В	12	38.1	330 to 680 k Ω	160 to 360 kΩ	160 to 360 kΩ	
В	13	45	680 to 1.5 M Ω	360 to 750 k Ω	360 to 750 k Ω	
В	14	48.1	1.5 to 3.0 M Ω	750 to 1.5 M Ω	750 to 1.5 M Ω	
В	15	56.5	3.0 to 6.2 M Ω	1.5 to 3.0 M Ω	1.5 to 3.0 M Ω	
D	16	75.6	6.2 to 10 MΩ	3.0 to 8.2 M Ω	3.0 to 8.2 M Ω	
D	17	81	-	8.2 to 20 M Ω	8.2 to 20 MΩ	

Dissipation Constant

BR32

Still air at 77°F (25°C): 0.285 mW/°C

• Still water at 77°F (25°C): 1.4 mW/°C

BR42

Still air at 77°F (25°C): 0.33 mW/°C

Still water at 77°F (25°C): 1.65 mW/°C

BR55

Still air at 77°F (25°C): 0.5 mW/°C

Still water at 77°F (25°C): 2.50 mW/°C

Power Rating (In Air)

BR32

Maximum Power Rating: 0.035 W

100% Maximum Power To: 302°F (150°C)

Derated to 0% at: 572°F (300°C)

BR42

Maximum Power Rating: 0.042 W

• 100% Maximum Power To: 302°F (150°C)

Derated to 0% at: 572°F (300°C)

BR55

Maximum Power Rating: 0.050 W

• 100% Maximum Power To: 302°F (150°C)

Derated to 0% at: 572°F (300°C)

Options

- Non-standard resistance tolerances
- Non-standard resistance values
- Specify reference temperature(s) if it is not 77°F (25°C)
- Mounting in special housings or enclosures
- Longer continuous leads
- Welded or soldered extension leads; specify lead material, diameter, length, and insulation, if any.
- Solderable or weldable/solderable leads
- · Leads can be pre-tinned or treated for improved soldering
- Calibration specify temperature(s)
- Interchangeable pairs or sets, R-vs-T curve matching; specify temperature range(s) and tolerance(s)
- · Special aging and conditioning for high reliability applications

Ordering Information

The code number to be ordered may be specified as follows:

Code	Туре								
BR	Ruggeo	dized bead structure							
	Code 11 14 16 23 32 42 55	Diameter 11 mils 14 mils 16 mils 23 mils 32 mils 42 mils 55 mils	•						
		Code K P			ads with stub ends glass coated				
			Code X		rial System Code able A or table B for code number				
				Code X 	Power Zero-power resistance as 77°F (25°C) (see note 2 for code number)				
					Code F G J K L M N P Q R S ♥	Tolerance* 1 2 5 10 15 20 25 30 40 50 Non-standard (consult factory)			
BR -	<u> </u>	<u> </u>	<u> </u>	<u> </u>		Typical model number			

Special tolerances are available upon request. Consult factory for special resistance tolerances, non-standard resistances and/or non-standard temperatures.

*The zero-power resistance at 77°F (25°C), expressed in Ω , is identified by a three digit code number. The first two digits represent significant figures, and the last digit specifies the number of zeros to follow. Example: 10k Ω = "103". The standard resistance values are from the 24-Value series decade as specified in Military Standard MS90178.

 $\begin{array}{l} 1.0 / 1.1 / 1.2 / 1.3 / 1.5 / 1.6 / 1.8 / 2.0 / 2.2 / 2.4 / 2.7 / 3.0 \\ 3.3 / 3.6 / 3.9 / 4.3 / 4.7 / 5.1 / 5.6 / 6.2 / 6.8 / 7.5 / 8.2 / 9.1 \end{array}$

www.amphenol-sensors.com