maxim
integrated..

MAX32660 Bootloader
User Guide

UG6471; Rev O; 10/18

Abstract

The MAX32660 bootloader user guide provides flow charts, timing diagrams, GPIOs/pin usage, 12C
interface protocol, and an annotated 12C trace between the host microcontroller and the MAX32660 for
in-application programming (IAP). Typical application uses the MAX32660 bootloader as a low-power
microcontroller in a sensor hub configuration to process and collect data while the SoC is in sleep mode.

Table of Contents

OVEBIVIBW ottt 8 8188 4
Detailed DESCHIPTION ..cuvieiieete ettt st st st bbbt s bbb s bbb bbbt s et bbb st st s st st en s 5
Default 12C SIAVE AQUIESS w.uueveeceeevveveeeeosssses e eeeessssssssssssss s eessssssssssssss s neesesees 7
GPIO PINS @NA RSTIN PNttt bbbt 7
SWVVD PiNS ittt E R 7
Entering Bootloader Mode from Application MOAE.........ccciciiceccieeee e ases 7
Host Serial Command using Power-On or Hard RESEL.......cociicecceeccecee e 7
Without Using the RSTN Pin of GPIO PiNS ...ttt 7
Using the Enter Bootloader GPIO Pin and the RSTN Pin ... 7
Entering Application Mode from Bootloader MOdE...........ciicciccseeeee et 8
Programming a Valid Application Through the In-Application Programming.........c.ccccoevcvinieirnirrinnen. 8
Using the EBL GPIO Pin and the RSTN PiN....cc ettt 8

Bt TrANSTEI PrOCESS ... 9
[2C WIEEB...vvvvoooovssseesss s 10

12C REA w..vvvvvriveereessiseess e 11

SCL ANd SDA BUS DIIVEIS ..ttt sttt sttt sttt a8ttt sttt nsnen n
MAX32660 Bootloader 12C Message Protocol DEfiNitiONSverveeereereereesesseeeeseeessesseeeessseesessseessseees 12
MAX32660 In-Application Programming, Annotated Tracecceeeeeeceececeeeeeeeee e 16
Example Python Code and Sample HOSt COAE.....iiiicecsie sttt 17
AADPDENAIX 1ottt ettt ettt bbbttt s s bbb b e b bt et b bbb bbb b bbb bbb bbbt b et bbbt bbb 18
REVISION HISTOIY .ttt ettt ettt ae ettt ete b et et et et et et ebe st et ebete st et etess et et ebensesetene 19

List of Figures

Figure 1. MAX32660 bootloader top level flow Chart. ... 5
Figure 2. MAX32660 bootloader application loader flow chart. ... 6
Figure 3. Entering bootloader mode through the EBL GPIO and RSTN pins.ccccvievieceecieceeceeeeeenens 8
Figure 4. Entering application mode through the EBL GPIO pin and RSTN Pin....cccocvvvieceivecceeeeeeee e 8
Figure 5. I2C write/read data transfer from host MICrOCONTIOIET ... eseenn 9
Figure 6. Entering bootloader MOdE.. ...t 16
Figure 7. Location OX44 in the imMSDI filE. ...ttt 16
Figure 8. Location 0x28 in the .MSDI filE. .ttt 16
Figure 9. Location 0x34 in the iMSDI filE. .ttt 17
FIGUIE TO. SEBNA PAZE....ovieieeeiee ettt ettt ettt b et b st b bbb bbb bbb st s st st 17
Figure 11. Entering application MOGE.......c.ciiiciieicc ettt sttt sttt 17

Maxim Integrated Page 2 of 19

List of Tables

Table 1. GPIO and RSTN Pin DeSCHPLIONScuiiiieeieeeceeeeteie ettt sttt 7
Table 2. SWD Pin DESCIIPIIONS ..ottt bbbttt b et et s s tans 7
Table 3. STAtUS BYtE VAIUBS ...ttt bbbttt bbb bns 10
Table 4. MAX32660 Bootloader 12C Message Protocol DEfiNitioNnS........owereeeneereeeieeesseeiessesseesssseseens 12
Table 5. 12C COMMANA EXBMPIE.......iiieeieieeeeeeeeeeeeeeeeeeeeeeeeee e ses s sesesee e 16

Maxim Integrated Page 3 of 19

Overview

The MAX32660 bootloader is an embedded firmware that provides the MAX32660 with the ability to
have its application code updated by a host microcontroller. The bootloader is accessed through the 12C
interface. The 12C interface provides the data channel and the control channel for communicating
between the host microcontroller and the MAX32660. The bootloader is enabled and disabled by either
a serial command or hardware connectivity. The serial command is interpreted by the application, which
configures the device to enter the bootloader mode. When using the hardware connectivity option, a
single GPIO pin and the RSTN pin on the MAX32660 can be configured to allow the MAX32660 to
enter the bootloader mode.

Maxim Integrated Page 4 of 19

Detailed Description
Figure 1and Figure 2 show the program flow for the bootloader.

Device is now
in Bootloader
Mode

Has a valid
application been
previously flashed into
the device?

See “Entering Bootloader Mode From
Application”

Either a Power
On cycle or
RSTN device
pin assertion
will begin the
Power Up
Sequence of
the device

Assert RSTN device pin
WAIT 10ms
Deassert RSTN device pin

YES

Hasthe device received the following command
since RSTN deassertion Device Power On?

YES

—_*_— FamilyByte :FAM_BYTE_MODE_WRITE(0x01)
Device is now Command IndexByte:0x00
in Bootloader Write Data :0x08
Mode
Write: Indicates
YES a host write to
theMAX32660
Does the EBL pin YES Is the * Enable By default, the EBL pin Read: Indicates
status match it's Boot Loader Pin" check check is disabled a host read from
enabled? theMAX32660

i ing?
polarity setting? e ag—
in Bootloader

Mode

NO

Exit BL Mode
Configuration

Is Application present
and valid?

YES Device is now
in Bootloader

—>| Decrement timeout by 10ms Mode

Hasthe device received the following command?
FamiyByte :FAM_BYTE_MODE_WRITE(0x01)
Command IndexByte: 0x00
Write Data:0x08

Figure 1. MAX32660 bootloader top level flow chart.

Maxim Integrated Page 5 0of 19

Device is now
in Bootloader
Mode

Bootloader Mode Entered

Read the Platform Type (Optional)

Write: Indicates
a host write to
the MAX32660
Read: Indicates
a host read from

the MAX32660

Write: Family Byte:DEVICE_INFO(OXFF), Command Index Byte: cmd_id(0x00) TYPE is: 0x01 (MAX32660/
. MAX32664)
Wait 2ms
Read: STATUS, TYPE

v

Read the bootloader version (Optional)
Write: Family Byte: BOOTLOADER _INFO(0x81), Command Index Byte: cmd_id(0x00)

Wait 2ms The host determines the device parameters before sending
Read: STATUS, BOOTLOADER_VERSION_MAJOR, BOOTLOADER_VERSION_MINOR, application data to the device. After reading PAGE SIZE MSB
BOOTLOADER_VERSION_REVISION and PAGE SIZE LSB the two bytes are concatenated to form
¥ the PAGE SIZE is hexadecimal format

Read the page size (Optional)
Write: Family Byte: BOOTLOADER_INFO(0x81), Command Index Byte: cmd_id(0x01)

Wait 2ms w
Read: STATUS, PAGE SIZE MSB, PAGE SIZE LSB

v
) Set the number of pages to be flashed NUM_PAGES MSB and NUM_PAGES LSB are two bytes
Write: Family Byte: FAM_BYTE_BOOTLOADER(0x80), Command Index Byte: when concatenated represent the number of PAGES to be
SS_CMD_SEND_NUM_PAGES(0x02), NUM_PAGES MSB, NUM_PAGES LSB flashed in hexadecimal format
Wait 2ms

Read: STATUS

I -

Erase the current application
Write: Family Byte: FAM_BYTE_BOOTLOADER(0x80), Command Index Byte:
SS_CMD_ERASE_APP_MEMORY/(0x03)
Wait 700ms
Read: STATUS

Send a page of application data. Each page is 8KBytes plus

Send flash page data 16 bytes of CRC data. If successful, the device’s internal
Write: Family Byte: FAM_BYTE_BOOTLOADER(0x80) Command Index Byte: page counter will increment and expect the next page. If
SS_CMD_RECEIVE_PAGE(0x04), PAGE DATA unsuccessful, the device will expect the same page to be re-
Wait 170ms (see attached note) transmitted.

Read: STATUS

Exit

Bootloader
Mode via
l hardware or l
— software? Exit Bootloader
A RSTN
| ssert RSTN device pin | Write: Family Byte: FAM_BYTE_MODE_WRITE(0x01),
_ ‘ v — Command Index Byte: 0x00
Drive EBL pin to Logic High (If EBL pin is Write Data: 0x00
enabled) Wait CMD_DELAY
v Read: STATUS
| WAIT 10ms |
v

| Deassert RSTN device pin

Figure 2. MAX32660 bootloader application loader flow chart.

Maxim Integrated Page 6 of 19

Default 12C Slave Address
The default 8-bit 12C slave address for the bootloader is OxAA.

GPIO Pins and RSTN Pin
Table 1 lists the descriptions for the GPIO and RSTN pins.

Table 1. GPIO and RSTN Pin Descriptions

MAX32660 DESCRIPTION DIRECTION FROM MAX32660 SIDE
Pin RSTN Reset_N Input
GPIO PO.2 12CO_SCL Input
GPIO P0O.3 12CO_SDA Input/Output
SWD Pins

Soft lock and disable the SWD pins (i.e., software debug pins, programming pins) by defining the
SWD_LOCK definition in the configuration file of the source code. Soft-locking prevents the bootloader
from accidental flashing through the SWD pins.

Table 2. SWD Pin Descriptions

MAX32660 DESCRIPTION DIRECTION FROM MAX32660 SIDE
GPIO PO.0 SWDIO Input/Qutput
GPIO PO.1 SDWDCLK Input

Entering Bootloader Mode from Application Mode

This section discusses several methods for entering the bootloader mode from the application mode.

Host Serial Command using Power-On or Hard Reset
The MAX32660 can enter bootloader mode by performing the following steps:
1. Power cycle the MAX32660 or perform a hard reset with the RSTN pin.

2. The host microcontroller sends the command 0x01, 0x00, Ox08 to the MAX32660 to enter
bootloader mode.

Without Using the RSTN Pin or GPIO Pins

Command the MAX32660 to enter the bootloader mode by using host serial commands. Change the
"boot_mode" flag in the flash memory. The number of write cycles to flash the memory is limited to
10,000 cycles. Consequently, this method should be not be used frequently. In addition, the bootloader
firmware can become inoperable if power is lost during this operation or if the code is not implemented
correctly.

The example code to implement this method is in the "“main.c” file in the folder
“example\Enter_Bootloader.” If this method is used, the application code needs to implement code like
the provided example.

Using the Enter Bootloader GPIO Pin and the RSTN Pin

Another method for entering the bootloader mode is to use the enter bootloader (EBL) GPIO pin and the
RSTN pin. The EBL pin is disabled in the bootloader by default and can be either enabled through the
build configuration file, “config\EvKit_V1,” or through the 12C message protocol command. The
MAX32660 enters bootloader mode based on the sequencing of the RSTN pin and the EBL pin.

Maxim Integrated Page 7 of 19

The sequence to enter bootloader mode using the EBL GPIO pin and the RSTN pin is as follows:
1. Setthe RSTN pin low for 10ms.

2. During that time, set the EBL GPIO pin to low. This polarity is configurable and active-low for
bootloader mode by default.

After 10ms, set the RSTN pin high.
4. After an additional 50ms, the MAX32660 is in bootloader mode.

RSTN /4// A //
L 727777 i

0 10 20 30 40 50 60ms
T

Device is now in Bootloader mode

Figure 3. Entering bootloader mode through the EBL GPIO and RSTN pins.

Entering Application Mode from Bootloader Mode

This section discusses various methods of entering application mode from the bootloader mode.

A Valid Application is Programmed

If the EBL GPIO pin is disabled and a valid application is programmed into the MAX32660 using In-
application Programming (IAP), the firmware automatically runs the application code.

Using the EBL GPIO Pin and the RSTN Pin

The MAX32660 enters application mode based on the sequencing of the EBL GPIO pin and the RSTN
pin. The EBL GPIO pin is disabled in the bootloader by default and can be enabled either through the
build configuration file (“config\EvKit_V1") or the serial commands.

The sequence to enter application mode using the EBL GPIO pin and the RSTN pin is as follows:
1. Set the RSTN pin low for 10ms.

2. During that time, set the EBL GPIO pin to high. This polarity is configurable and active-low for
bootloader mode by default.

After 10ms, set the RSTN pin high.
4. After an additional 50ms, the MAX32660 is in application mode.

RSTN 07/

EBL

VA i
0 10 20 30 40 50 60ms
1

Device is now in Application mode.

Figure 4. Entering application mode through the EBL GPIO pin and RSTN pin.

Maxim Integrated Page 8 of 19

Bit Transfer Process

The SDA and SCL signals are open-drain circuits. Each has an external pullup resistor that ensures each
circuit is high when idle. The 12C specification states that during data transfer, the SDA line can change
state only when the SCL is low, and the SDA is stable and able to be read when the SCL is high. Typical
I2C write/read transactions are shown in Figure 5.

Typical I*C Wrie Transaction
33 _ Asa 2 Ms3 58 Ms3 53
le[10K l [2]=]:]o I[“"“H 2| k74 =, | i | B
Slava 3’“ Family By‘te Commaznd Writa Byt 0 Writz Data
Addrass Indicates Index Byts Byt= N
Writa (if necessary)
¢ 5 e
ronsmnmgnon] 7] (2] o[2 [of 2] o] x| ’:Z‘fl [z (]
Slave "1" Read
Address Indcates Status Byte
Read
Typical I°C Read Transaction
Ms3 33 33 3 i3 i3 g
25 1 e s s
——
o i Bl =i U
Writs (if nacessary)
agca <2 wea
(iorocimion) (] (2 | of 1] of 1] o] ;I;JII“‘“II = ll”m " II».ZE‘IIWI
ST;:; 1” Rezd Read Byt20 Read Byta N
Address Indicates Status Byte
Rezd

Figure 5. I2C write/read data transfer from host microcontroller

The read status byte is an indicator of the success or failure of the write transaction. The read status
byte must be accessed after each write transaction to the device. This ensures that the write transaction
process is understood and any errors in the device command handling can be corrected. The read
status byte value is summarized in Table 3.

Maxim Integrated Page 9 of 19

Table 3. Read Status Byte Values

READ STATUS BYTE DESCRIPTION
VALUE
0x00 SUCCESS. The write transaction was successful.
0x01 ERR_UNAVAIL_CMD. lllegal Family Byte and/or Command Byte was used.
0x02 ERR_UNAVAIL_FUNC. This function is not implemented.
0x03 ERR_DATA_FORMAT. Incorrect number of bytes sent for the requested Family Byte.
0x04 ERR_INPUT_VALUE. lllegal configuration value was attempted to be set.
0x05 ERR_TRY_AGAIN. Device is busy. Try again.
0x80 ERR_BTLDR_GENERAL. General error while receiving/flashing a page during the bootloader
sequence.

0x81 ERR_BTLDR_CHECKSUM. Checksum error while decrypting/checking page data.
0x82 ERR_BTLDR_AUTH. Authorization error.
0x83 ERR_BTLDR_INVALID_APP. Application not valid.
OxFF ERR_UNKNOWN. Unknown Error.

12C Write

The process for an 12C write data transfer is as follows:

1. The bus master indicates a data transfer to the device with a START condition.

2. The master transmits one byte with the 7-bit slave address and a single write bit set to zero. The
eight bits transferred as a slave address for the MAX32660 are OxAA for a write transaction.

3. During the next SCL clock that follows the write bit, the master releases SDA. During this clock
period, the device responds with an ACK by pulling SDA low.

4. The master senses the ACK condition and begins to transfer the Family Byte. The master drives
data on the SDA circuit for each of the eight bits of the Family Byte, and then floats SDA during
the ninth bit to allow the device to reply with the ACK indication.

5. The master senses the ACK condition and begins to transfer the Command Index Byte. The
master drives data on the SDA circuit for each of the eight bits of the Command Index Byte, and
then floats SDA during the ninth bit to allow the device to reply with the ACK indication.

6. The master senses the ACK condition and begins to transfer the Write Data Byte O. The master
drives data on the SDA circuit for each of the eight bits of the Write Data Byte O, and then floats
SDA during the ninth bit to allow the device to reply with the ACK indication.

7. The master senses the ACK condition and can begin to transfer another Write Data Byte if
required. The master drives data on the SDA circuit for each of the eight bits of the Write Data
Byte, and then floats SDA during the ninth bit to allow the device to reply with the ACK
indication. If another Write Data Byte is not required, the master indicates the transfer is
complete by generating a STOP condition. A STOP condition is generated when the master pulls
SDA from a low to high while SCL is high.

8. The master waits for a period of CMD_DELAY (60us) for the device to have its data ready.

9. The master indicates a data transfer to the slave with a START condition.

10. The master transmits one byte with the 7-bit slave address and a single write bit set to one. This

is an indication from the master its intent to read the device from the previously written location
defined by the Family Byte and the Command Index. The master then floats SDA and allows the
device to drive SDA to send the Status Byte. The Status Byte reveals the success of the previous
write sequence. After the Status Byte is read, the master drives SDA low to signal the end of
data to the device.

Maxim Integrated Page 10 of 19

1. The master indicates the transfer is complete by generating a STOP condition.

12. After the completion of the write data transfer, the Status Byte must be analyzed to determine
if the write sequence was successful and the device has received the command intended.

I12C Read
The process for an |12C read data transfer is as follows:

1. The bus master indicates a data transfer to the device with a START condition.

2. The master transmits one byte with the 7-bit slave address and a single write bit set to zero. The
eight bits transferred as a slave address for the MAX32660 are OxAA for a write transaction.
This write transaction precedes the actual read transaction to indicate to the device what section
is to be read.

3. During the next SCL clock that follows the write bit, the master releases SDA. During this clock
period, the device responds with an ACK by pulling SDA low.

4. The master senses the ACK condition and begins to transfer the Family Byte. The master drives
data on the SDA circuit for each of the eight bits of the Family Byte, and then floats SDA during
the ninth bit to allow the device to reply with the ACK indication.

5. The master senses the ACK condition and begins to transfer the Command Index Byte. The
master drives data on the SDA circuit for each of the eight bits of the Command Index Byte, and
then floats SDA during the ninth bit to allow the device to reply with the ACK indication.

6. The master senses the ACK condition and begins to transfer the Write Data Byte if necessary
for the read instruction. The master drives data on the SDA circuit for each of the eight bits of
the Write Data Byte, and then floats SDA during the ninth bit to allow the device to reply with
the ACK indication.

7. The master indicates the transfer is complete by generating a STOP condition.

8. The master waits for a period of CMD_DELAY (60usec) for the device to have its data ready.

9. The master indicates a data transfer to the slave with a START condition.

10. The master transmits one byte with the 7-bit slave address and a single write bit set to one. This
is an indication from the master its intent to read the device from the previously written location
defined by the Family Byte and the Command Index. The master then floats SDA and allows the
device to drive SDA to send the Status Byte. The Status Byte reveals the success of the previous
write sequence. After the Status Byte is read, the master drives SDA low to acknowledge the
byte.

1. The master floats SDA and allows the device to drive SDA to send Read Data Byte O. After Read
Data Byte O is read, the master drives SDA low to acknowledge the byte.

12. The master floats SDA and allows the device to drive SDA to send the Read Data Byte N. After
Read Data Byte N is read, the master drives SDA low to acknowledge the byte. This process
continues until the device has provided all the data that the master expects based upon the
Family Byte and Command Index Byte definition.

13. The master indicates the transfer is complete by generating a STOP condition.

SCL and SDA Bus Drivers

The 12C bus expects SCL and SDA to be open-drain signals and the SDA and SCL pad circuits are
automatically configured as open-drain outputs for the MAX32660 bootloader.

Maxim Integrated Page 11 of 19

MAX32660 Bootloader 12C Message Protocol Definitions
Table 4 lists the MAX32660 bootloader I2C message protocol definitions.

Table 4. MAX32660 Bootloader 12C Message Protocol Definitions

HOST COMMAND MAX32660 BOOTLOADER
FAMILY DESCRIPTION FAMILY INDEX WRITE BYTES RESPONSE BYTES
NAME BYTE BYTE
Device Mode Select the device 0x01 0x00 | 0x00: Exit bootloader mode. -

operating mode.
The application must
implement this.

0x02: Reset.
0x08: Enter bootloader
mode.

Device Mode Read the device 0x02 0x00 - 0x00: Application operating

operating mode. mode.

0x08: Bootloader operating
mode.

Bootloader Set the initialization 0x80 0x00 | Use the 11 bytes 0x28 to 0x32 -
Flash vector bytes. from the .msbl file.

This is not required

for a non-secure

bootloader.
Bootloader Set the 0x80 0x01 Use bytes the 16 bytes 0x34 to -
Flash authentication bytes. 0x43 from the .msbl file.

This is not required

for a non-secure

bootloader.
Bootloader Set the number of 0x80 0x02 | 0x00, Number of pages
Flash pages. specified by byte 0x44 from

the .msbl file.

Bootloader Erase the application 0x80 0x03 - -
Flash flash memory.
Bootloader Send the page 0x80 0x04 | The first page is specified by -
Flash values. byte 0x4C from the .msbl file.

Each page includes The total bytes for each

16 bytes of CRC. message protocol is the page

size + 16 bytes.

Bootloader Get bootloader 0x81 0x00 - Major version byte, Minor
Information version. version byte, Revision byte
Bootloader Get the page size in 0x81 0x01 - Upper byte of page size, Lower
Information bytes. byte of page size
Bootloader Save bootloader 0x82 0x00 - -

Configuration

configurations.
Write this command
after changes are
made to any of the
Bootloader
Configuration
settings.

Maxim Integrated

Page 12 of 19

HOST COMMAND

MAX32660 BOOTLOADER

FAMILY
NAME

DESCRIPTION

FAMILY
BYTE

INDEX
BYTE

WRITE BYTES

RESPONSE BYTES

Bootloader
Configuration

Select bootloader
check.

Configure the device
to check the state of
the EBL GPIO pin to
decide whether to
enter bootloader
mode.

0x82

0x01

0x00: The device does not
check the state of the EBL
GPIO pin. (Default)

0x01: The device checks the
state of the EBL GPIO pin
before entering bootloader
mode.

Bootloader
Configuration

Read bootloader
check configuration.
Read the device
configuration to
check the state of
the EBL GPIO pin to
decide whether to
enter bootloader
mode.

0x83

0x01

0x00

0x00: The device does not
check the state of the EBL GPIO
pin.

0x01: The device checks the
state of the EBL GPIO pin before
entering bootloader mode.

Bootloader
Configuration

Select the EBL GPIO
pin.

Select which pin to
use as the enter
bootloader (EBL)
GPIO pin. This
command is only
used if the
Bootloader
Configuration enter
bootloader check is
set to 1 (OxAA 0x82
0x010x00 0x01).

0x82

0x01

0x00-0x09: Acceptable
range for the 16-bump WLP
package.

0x00-0x0B: Acceptable
range for the 20-pin TQFN-EP
and the 24-pin TQFN-EP.

Bootloader
Configuration

Read the EBL GPIO
pin.

Read which piniis
used as the enter
bootloader (EBL)
GPIO pin. This
command is only
used if the
Bootloader
Configuration enter
bootloader check is
setto1(AA 8201
00 0.

0x83

0x01

0x01

0x00-0x09: Expected range for
the 16-bump WLP package.

0x00-0x0B: Expected range for
the 20-pin TQFN-EP and the 24-
pin TQFN-EP

Maxim Integrated

Page 13 of 19

HOST COMMAND

MAX32660 BOOTLOADER

FAMILY
NAME

DESCRIPTION

FAMILY
BYTE

INDEX
BYTE

WRITE BYTES

RESPONSE BYTES

Bootloader
Configuration

Select the active
state for the EBL
GPIO pin.

0Ox82

0x01

0x02, 0x00: Active-low. The
device enters bootloader
mode if the EBL GPIO pin is
held low during power on or
during a RSTN device pin
cycle. (Default)

0x02, 0x01: Active-high. The
device enters bootloader
mode if the EBL GPIO pin is
held high during power on or
during a RSTN device pin
cycle.

Bootloader
Configuration

Read the active state
for the EBL GPIO pin.

0x83

0x01

0x02

0x00: Active-low. The device
enters bootloader mode if the
EBL GPIO pin is held low during
power on or during a RSTN
device pin cycle. (Default)

0x01: Active-high. The device
enters bootloader mode if the
EBL GPIO pin is held high during
power on or during a RSTN
device pin cycle.

Bootloader
Configuration

Exit bootloader
mode.

Determine how the
bootloader enters
application mode.

0x82

0x02

0x00, 0x00: Enter
application mode if an
application is present and
valid. If EBL GPIO pin was
used to enter bootloader
mode, the jump does not
occur until the EBL GPIO pin
is in a non-active state.
(Default)

0x00, 0x01: Wait for a
programmable delay. If no
commands are received and a
valid application is present,
enter application mode.
0x00, 0x02: Stay in
bootloader mode.

Bootloader
Configuration

Read exit bootloader
mode configuration.
Read how the
bootloader enters
application mode.

0x83

0x02

0x00

0x00: If an application is
present and valid, enter
application mode. If the EBL
GPIO pin was used to enter
bootloader mode, the jump does
not occur until the EBL GPIO pin
is in a non-active state.
(Default)

0x01: Wait for a programmable
delay. If no commands are

received and a valid application
is present, enter application
mode.

0x02: Stay in bootloader mode.

Maxim Integrated

Page 14 of 19

HOST COMMAND

MAX32660 BOOTLOADER

FAMILY
NAME

DESCRIPTION

FAMILY
BYTE

INDEX
BYTE

WRITE BYTES

RESPONSE BYTES

Bootloader
Configuration

Configure timeout
exit.

Set the length of the
additional
programmable
timeout to use when
Bootloader
Configuration exit
bootloader mode is
setto1(AA 8202
on.

The system requires
a 50ms non-
programmable delay
to switch to
application mode.

0x82

0x02

0x01, 0x00-OxFF: Timeout is
inincrements of 10ms. Default
timeout is Oms at 0x00.

Note: Timeout is cancelled if
any commands are received
during this period.

Bootloader
Configuration

Read exit timeout
configuration.

Read the timeout to
use when Bootloader
Configuration exit
bootloader mode is
setto 1(AA 8202
on.

Timeout is cancelled
if any commands are
received during this
period.

0x83

0x02

0x01

0x00-0OxFF: Timeout is in
increments of 10ms. Default
timeout is Oms at 0x00.

Identity

Read the MCU type.

OxFF

0x00

0x00: MAX32625
0x01: MAX32660/MAX32664

Maxim Integrated

Page 15 of 19

MAX32660 In-Application Programming, Annotated Trace

The MAX32660 bootloader firmware supports In-Application Programming (IAP). The application
must be converted to the .msbl format. See Appendix A for the procedure to create the .msbl file from
the application binary.

Table 5 shows an example of the necessary 12C commands to flash the application to the MAX32660
using the .msbl file. The MAX32630FTHR acts as the host microcontroller. The MAX32660 uses the 8-
bit slave address of OxAA. Each 8192-byte page sent includes 16 CRC bytes for that page with 8208
bytes per page sent in the payload of the message. The number of pages is located at 0x44 in the .msbl
file.

Table 5. 12C Command Example

HOST COMMAND COMMAND DESCRIPTION MAX32660 RESPONSE
BOOTLOADER DESCRIPTION
RESPONSE
Sequence the MAX32660 to enter bootloader mode.
RSTN 0777 J/i
= N /
0 10 20 30 40 50 60ms
Device is now in Bootloader mode
Figure 6. Entering bootloader mode.
OxAA 0x010x00 0x08* Set mode to 0x08 for bootloader | OxAB 0x00 No error.
mode.
OxAA 0x02 0x00 Read mode. OxAB 0x00 | No error. Mode is
0x08 bootloader.
OxAA OxFF 0x00+ Get ID and MCU type. OxAB 0x00 0xO1 | No error. MCU is
MAX32660/MAX32664.
OxAA 0x810x00 Read bootloader firmware version. OxAB 0x00 | No error. Versionis 3.1.7.
0x03 0x010x07
OxAA 0x810x01 Read bootloader page size. OxAB 0x00 | Noerror. Page size is 8192.
0x20 0x00
OxAA 0x80 0x02 Ox00 0x05* Bootloader flash. Set the number of | OxAB 0x00 No error.
pages to 5 based on byte 0x44 from
the application .msbl file, which is
created from the user application .bin
file.
00000044 | 00 00 00 00 |05(00 00 20 04 00 00 00 OO0 80 Ol 20
Figure 7. Page number byte 0x44 from the .msbl file.
OxAA 0x80 0x03* Bootloader flash. Erase application. OxAB 0x00 No error.
OxAA 0x80 0x00 0xO00 0x00 0x00 | Bootloader flash. Set the initialization | OxAB 0x00 No error.
0x00 0x00 0x00 0x00 0x00 0x00 | vector bytes 0x28 to 0x32 from
0x00 0x00 the .msbl file.
00000028 | 00 00 00 00 00 00 00 00 |86 00 00 00 00 00 00 o0df
oo 00 oojoo 00 00 0O 0O OO 0O OO 00 00 00 0O OO
Figure 8. Initialization vector bytes 0x28 to Ox32 from the .msbl file.

Maxim Integrated

Page 16 of 19

HOST COMMAND COMMAND DESCRIPTION MAX32660 RESPONSE
BOOTLOADER DESCRIPTION
RESPONSE

OxAA 0x80 0x01 0x0O0 0x00 0xOO0 | Bootloader flash. Set the | OxAB 0x00 No error.
0x00 0x00 0x00 0x00 0x00 0x00 | authentication bytes 0x34 to 0x43
0x00 0x00 0x00 0x00 0x00 0x00 | from the .msbl file.
0x00
00000034 | 00 00 00 00 JO@@Jo0 00 00 00 00 00 00 00 oo 0o odf
00000040 | |00 00 00 oof 05 00 00 20 04 00 00 00 00 80 01 20
Figure 9. Authentication bytes 0x34 to 0x43 from the .msbl file.
OxAA 0x80 0x04 0x00 0x80 0x01 ... | Bootloader flash. Send page bytes | OxAB 0x00 No error.
0x00 0x00 0x00* 0x4C to 0x205B from the .msbl file.
0000004c | 00 00 00 00 05 00 00 20 04 00 00 00 [B@fso 01 20
00000050 |::11 23 00 00 41 22 00 00 OFf 24 00 00 11 24 00 0O
00002040 | |08 Bf 0f 32 03 £1 £f 33 06 bf d2 b2 45 5d le ag]
0000205b | |00 00 00 00 00 00 00 00 00 00 00/@8 01 21 00 21
Figure 10. Send page bytes 0x4C to Ox2058B from the .msbl file.
OxAA 0x80 0x04 0x01 0x21 0x00 ... | Bootloader flash. Send page bytes | OxAB 0x00 No error.
0x00 0x00 0x00* 0x205C to 0x406B from the .msbl

file.
OxAA 0x80 0x04 0x02 0x02 O0xC1 ... | Bootloader flash. Send page bytes | OxAB 0x00 No error.
0x00 0x00 0x00* 0x406C to 0607B from the .msbl file.
OxAA 0x80 0x04 0xEO 0x6C OxI1C ... | Bootloader flash. Send page bytes | OxAB 0x00 No error.
0x00 0x00 0x00* 0x607C to Ox808B from the .msbl

file.
OxAA 0x80 0x04 OxFF 0xC3 0xOD ... | Bootloader flash. Send page bytes | OxAB 0x00 No error.
0x00 0x00 0x00* 0x808C to OXAO9B from the .msbl

file.
Sequence MAX32660 to enter application mode.

20 30 40 50 60ms .
T
Device is now in Application mode.

Figure 11. Entering application mode.

*Mandatory
+Recommended

Example Python Code and Sample Host Code

Sample Python code to perform In-Application Programming using the MAX32630FTHR as the host
can be found in the folder “max32660_bootloader_src\scripts\py.”

Maxim Integrated

Page 17 of 19

Appendix

Download the MAX32660 bootloader software, sample host code, and sample .msbl code from the
MAX32660 Evaluation Kit Design Resources tab.

Maxim Integrated Page 18 of 19

https://www.maximintegrated.com/en/products/microcontrollers/MAX32660-EVKIT.html/tb_tab2

Revision History

REVISION REVISION

NUMBER DATE DESCRIPTION PAGES CHANGED

0 10/18 Initial release —

©2018 by Maxim Integrated Products, Inc. All rights reserved. Information in this publication concerning the devices, applications, or
technology described is intended to suggest possible uses and may be superseded. MAXIM INTEGRATED PRODUCTS, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED IN THIS DOCUMENT. MAXIM ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR
OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and
mechanical engineering or registered trademarks of Maxim Integrated Product

Maxim Integrated Page 19 of 19

