Onsemi

MOSFET – N-Channel, POWERTRENCH[®]

30 V, 12 A, 11.5 mΩ

FDMC7696

General Description

This N-Channel MOSFET is produced using onsemi's advanced POWERTRENCH process that has been especially tailored to minimize the on-state resistance. This device is well suited for Power Management and load switching applications common in Notebook Computers and Portable Battery Packs.

Features

- Max $r_{DS(on)} = 11.5 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 12 \text{ A}$
- Max $r_{DS(on)} = 14.5 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 10 \text{ A}$
- High Performance Technology for Extremely Low r_{DS(on)}
- This Device is Pb-Free, Halide Free and RoHS Compliant

Applications

- DC/DC Buck Converters
- Notebook Battery Power Management
- Load Switch in Notebook

WDFN8 3.3x3.3, 0.65P CASE 511DR

MARKING DIAGRAM

PIN ASSIGNMENT G D 4 5 D 3 S 6 2 S D 7 D 8 1 S

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

MOSFET MAXIMUM RATINGS (T_A = 25° C unless otherwise noted)

Symbol	Parameter			Ratings	Unit
V _{DS}	Drain to Source Voltage			30	V
V _{DSt}	Drain to Source Transient Voltage (t _{Transient} < 100 ns)			33	V
V _{GS}	Gate to Source Voltage (Note 3	ate to Source Voltage (Note 3)			V
I _D	Drain Current	Continuous (Package limited)	$T_{C} = 25^{\circ}C$	20	Α
		Continuous (Silicon limited)	$T_{C} = 25^{\circ}C$	38	
		Continuous (Note 1a)	T _A = 25°C	12	
		Pulsed	•	50	
E _{AS}	Single Pulse Avalanche Energy (Note 2)		21	mJ	
P _D	Power Dissipation $T_{C} = 25^{\circ}C$		25	W	
	Power Dissipation (Note 1a) $T_A = 25^{\circ}C$		2.4	1	
TJ, T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
Rejc	Thermal Resistance, Junction to Case		°C/W
RθJA	Thermal Resistance, Junction to Ambient (Note 1a)	53	

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

2. E_{AS} of 21 mJ is based on starting T_J = 25°C; L = 0.3 mH, I_{AS} = 12 A, V_{DD} = 27 V, V_{GS} = 10 V. 3. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.

a. 53°C/W when mounted on a 1 in² pad of 2 oz copper

b. 125°C/W when mounted on a minimum pad of 2 oz copper

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARA	ACTERISTICS			•		
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	30	-	-	V
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25°C		14	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V	-	-	1	μA
I _{GSS}	Gate to Source Leakage Current, Forward	V_{GS} = 20 V, V_{DS} = 0 V	_	-	100	nA
ON CHARAC	CTERISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	1.2	2.0	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25°C		-6	_	mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 12 A	_	8.5	11.5	mΩ
		V_{GS} = 4.5 V, I _D = 10 A	_	11.5	14.5	
		V_{GS} = 10 V, I _D = 12 A, T _J = 125°C	_	11.6	15.7	
9 _{FS}	Forward Transconductance	V _{DS} = 5 V, I _D = 12 A	_	45	-	S
OYNAMIC C	HARACTERISTICS					
C _{iss}	Input Capacitance	V_{DS} = 15 V, V_{GS} = 0 V, f = 1 MHz	-	1075	1430	pF
C _{oss}	Output Capacitance		_	380	505	pF
C _{rss}	Reverse Transfer Capacitance		-	40	55	pF
Rg	Gate Resistance		0.2	1.0	2.0	Ω
WITCHING	CHARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	V_{DD} = 15 V, I_{D} = 12 A, V_{GS} = 10 V, R_{GEN} = 6 Ω		9	18	ns
t _r	Rise Time			2	10	ns
t _{d(off)}	Turn-Off Delay Time		_	19	33	ns
t _f	Fall Time		-	2	10	ns
Qg	Total Gate Charge	V_{GS} = 0 V to 10 V, V_{DD} = 15 V, I_{D} = 12 A	-	16	22	nC
		V_{GS} = 0 V to 5 V, V_{DD} = 15 V, I_{D} = 12 A	-	8	11	
Q _{gs}	Gate to Source Charge	V _{DD} = 15 V, I _D = 12 A	-	3.2	-	nC
Q _{gd}	Gate to Drain "Miller" Charge	<u>] </u>		1.8	-	nC
DRAIN-SOU	JRCE DIODE CHARACTERISTICS					
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 1.9 A (Note 4)	_	0.75	1.2	V
		V _{GS} = 0 V, I _S = 12 A (Note 4)	-	0.84	1.2	
	Reverse Recovery Time	I _F = 12 A, di/dt = 100 A/μs		25	40	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

nC

18

9

4. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.

Reverse Recovery Charge

Q_{rr}

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

Figure 8. Capacitance vs. Drain to Source Voltage

Figure 10. Maximum Continuous Drain Current vs. Case Temperature

V_{DS}, DRAIN TO SOURCE VOLTAGE (V) Figure 11. Forward Bias Safe

Operating Area

100 200

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

Figure 13. Junction-to-Ambient Transient Thermal Response Curve

PACKAGE MARKING AND ORDERING INFORMATION

Device	Device Marking	Package Type	Reel Size	Tape Width	Shipping [†]
FDMC7696	FDMC7696	WDFN8 3.3x3.3, 0.65P (Pb-Free)	13"	12 mm	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

DUSEU

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>