ZSR SERIES 3.0 to 12 volt fixed positive local voltage regulator ### **Description** The ZSR Series three terminal fixed positive voltage regulators feature internal circuit current limit and thermal shutdown making the devices difficult to destroy. The devices are available in a high power surface mount package, ideal for applications where space saving is important. The devices are suited to local voltage regulation applications, where problems could be encountered with distributed single source regulation, as well as more general voltage regulation applications. The ZSR Series show performance characteristics superior to other local voltage regulators. The initial output voltage is maintained to within 2.5% with a quiescent current of typically 350 μ A. Output voltage change, with input voltage and load current, is much lower than competitive devices. The ZSR devices are completely stable with no external components. #### **Features** - · Output current up to 200mA - Tight initial tolerance of 2.5% - Low 600μA quiescent current - -55 to 125°C temperature range - · No external components - · Internal thermal shutdown - · Internal short circuit current limit - High power SOT223 package #### SOT223 Package suffix - G Top view – Connect pin 4 to pin 2 or leave pin 4 electrically isolated ### SOT223 ordering information | Order reference | Voltage | Part
marking | Status | Reel size (inches) | Tape width (mm) | Quantity
per reel | |-----------------|---------|-----------------|--------|--------------------|-----------------|----------------------| | ZSR300GTA | 3.0V | ZSR300 | Active | 7 | 12 | 1000 | | ZSR330GTA | 3.3V | ZSR330 | Active | 7 | 12 | 1000 | | ZSR500GTA | 5.0V | ZSR500 | Active | 7 | 12 | 1000 | | ZSR800GTA | 8.0V | ZSR800 | Active | 7 | 12 | 1000 | | ZSR1000GTA | 10.0V | ZSR100 | Active | 7 | 12 | 1000 | | ZSR1200GTA | 12.0V | ZSR1200 | Active | 7 | 12 | 1000 | ### Absolute maximum rating Input voltage 20V Power Dissipation (T_{amb}=25°C) Output current (I_O) 200mA **SOT223** Operating temperature -55 to 125°C Maximum power dissipation for the SOT223 is calculated assuming that the device is mounted on a PCB measuring Storage temperature -65 to 150°C 2 inches square. ### **Recommended operating conditions** | Parameter | Products | Min | Max | Units | |-------------------------------|----------|-----|-----|-------| | | ZSR300 | 5 | 20 | V | | | ZSR330 | 5.3 | 20 | V | | V _{in} Input Voltage | ZSR500 | 7 | 20 | V | | | ZSR800 | 10 | 20 | V | | | ZSR1000 | 12 | 20 | V | | | ZSR1200 | 14 | 20 | V | #### Notes: - The maximum operating input voltage and output current of the device will be governed by the maximum power dissipation of the selected package. Maximum package power dissipation is specified at 25°C and must be linearly derated to zero at T_{amb}=125°C. - The following data represents pulse test conditions with junction temperatures as indicated at the initiation of the test. Continuous operation of the devices with the stated conditions might exceed the power dissipation limits of the chosen package. - The shut down feature of the device operates if its temperature exceeds its design limit as might occur during external faults, short circuits etc. If the regulator is supplied from an inductive source then a large voltage transient, on the regulator input, can result should the shut down circuit operate. It is advised that a capacitor (1µF or greater) should be applied across the regulator input to ensure that the maximum voltage rating of the device is not exceeded under shutdown conditions. ### **Electrical characteristics** **ZSR300 test conditions** (Unless otherwise stated): T_j =25°C, I_O =100mA, V_{in} =7V | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Units | |------------------------------|---|--|------|------|------|--------| | Vo | Output Voltage | | 2.92 | 3.0 | 3.08 | V | | | | I _O =1 to 200mA ^(τ) | 2.88 | | 3.12 | V | | | | V _{in} =5 to 20V | 2.88 | | 3.12 | V | | | | $I_0 = 1 \text{ to } 100 \text{mA}^{(\tau)}$ | | | | | | ΔV_{O} | Line regulation | V _{in} =5 to 20V | | 10 | 40 | mV | | ΔV_{O} | Load regulation | I _O =1 to 200mA | | 5 | 25 | mV | | | | I _O =1 to 100mA | | 2 | | mV | | I _g | Quiescent current | (τ) | | 350 | 600 | μΑ | | ΔI_g | Quiescent current change | I _O =1 to 200mA | | | 100 | μΑ | | | | V _{in} =1 to 20V | | | 100 | μΑ | | V _n | Output noise voltage | f=10Hz to 10Hz | | 75 | | μV rms | | $\Delta V_{in}/\Delta V_{O}$ | Ripple rejection | V _{in} =1 to 20V | 48 | 62 | | dB | | | | f=120Hz | | | | | | V _{in} | Input voltage required to maintain regulation | | | 4.7 | | V | | $\Delta V_{O}/\Delta T$ | Average temperature coefficient of V _O | I _O =5.0mA ^(τ) | | 0.1 | | mV/°C | # **ZSR330 test conditions** (Unless otherwise stated): T_j =25°C, I_O =100mA, V_{in} =7.3V | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Units | |------------------------------|---|--|-------|------|-------|--------| | Vo | Output Voltage | | 3.218 | 3.3 | 3.382 | V | | | | $I_{O}=1 \text{ to } 200\text{mA}^{(\tau)}$ | 3.168 | | 3.432 | V | | | | V _{in} =5.3 to 20V | 3.168 | | 3.432 | V | | | | $I_0 = 1 \text{ to } 100 \text{mA}^{(\tau)}$ | | | | | | ΔV_{O} | Line regulation | V _{in} =5.3 to 20V | | 7.5 | 30 | mV | | ΔV_{O} | Load regulation | I _O =1 to 200mA | | 5 | 25 | mV | | | | I _O =1 to 100mA | | 2 | | mV | | lg | Quiescent current | (τ) | | 350 | 600 | μΑ | | ΔI_g | Quiescent current change | I _O =1 to 200mA | | | 100 | μΑ | | | | V _{in} =5.3 to 20V | | | 100 | μΑ | | V _n | Output noise voltage | f=10Hz to 10Hz | | 50 | | μV rms | | $\Delta V_{in}/\Delta V_{O}$ | Ripple rejection | V _{in} =6.3 to 18V | 50 | 64 | | dB | | | | f=120Hz | | | | | | V _{in} | Input voltage required to maintain regulation | | | 5 | | V | | $\Delta V_{O}/\Delta T$ | Average temperature coefficient of V _O | $I_{O} = 5.0 \text{mA}^{(\tau)}$ | | 0.1 | | mV/°C | #### NOTES: $(\tau)T_{i}$ =-55 to 125°C # **ZSR500 test conditions** (Unless otherwise stated): T_j =25°C, I_O =100mA, V_{in} =9V | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Units | |------------------------------|---|--|-------|------|-------|--------| | Vo | Output Voltage | | 4.875 | 5 | 5.126 | V | | | | $I_{O}=1 \text{ to } 200\text{mA}^{(\tau)}$ | 4.8 | | 5.2 | V | | | | V _{in} =7 to 20V | 4.8 | | 5.2 | V | | | | $I_0 = 1 \text{ to } 100 \text{mA}^{(\tau)}$ | | | | | | ΔV_{O} | Line regulation | V _{in} =7 to 20V | | 10 | 40 | mV | | ΔV_{O} | Load regulation | I _O =1 to 200mA | | 5 | 25 | mV | | | | I _O =1 to 100mA | | 2 | | mV | | Ig | Quiescent current | (τ) | | 350 | 600 | μΑ | | ΔI_g | Quiescent current change | I _O =1 to 200mA | | | 100 | μΑ | | | | V _{in} =7 to 20V | | | 100 | μΑ | | V _n | Output noise voltage | f=10Hz to 10Hz | | 75 | | μV rms | | $\Delta V_{in}/\Delta V_{O}$ | Ripple rejection | V _{in} =8 to 18V | 48 | 62 | | dB | | | | f=120Hz | | | | | | V _{in} | Input voltage required to maintain regulation | | 7 | 6.7 | | V | | $\Delta V_{O}/\Delta T$ | Average temperature coefficient of V _O | I _O =5.0mA ^(τ) | | 0.1 | | mV/°C | # **ZSR800 test conditions** (Unless otherwise stated): T_j =25°C, I_O =100mA, V_{in} =12V | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Units | |------------------------------|---|--|------|------|------|--------| | Vo | Output Voltage | | 7.8 | 8 | 8.25 | V | | | | I _O =1 to 200mA ^(τ) | 7.68 | | 8.32 | V | | | | V _{in} =10 to 20V | 7.68 | | 8.32 | V | | | | $I_{O} = 1 \text{ to } 100 \text{mA}^{(\tau)}$ | | | | | | ΔV_{O} | Line regulation | V _{in} =10 to 20V | | 11 | 40 | mV | | ΔV_{O} | Load regulation | I _O =1 to 200mA | | 8 | 30 | mV | | | | I _O =1 to 100mA | | 3 | | mV | | Ig | Quiescent current | (τ) | | 350 | 600 | μΑ | | Δl_{g} | Quiescent current change | I _O =1 to 200mA | | | 100 | μΑ | | | | V _{in} =10 to 20V | | | 100 | μΑ | | V _n | Output noise voltage | f=10Hz to 10Hz | | 115 | | μV rms | | $\Delta V_{in}/\Delta V_{O}$ | Ripple rejection | V _{in} =11 to 18V | 44 | 60 | | dB | | | | f=120Hz | | | | | | V _{in} | Input voltage required to maintain regulation | | | 9.7 | | V | | $\Delta V_{O}/\Delta T$ | Average temperature coefficient of V _O | I _O =5.0mA ^(τ) | | 0.25 | | mV/°C | NOTES: $(\tau) T_i = -55 \text{ to } 125^{\circ}\text{C}$ # **ZSR1000 test conditions** (Unless otherwise stated): T_j =25°C, I_O =100mA, V_{in} =14V | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Units | |------------------------------|---|---|------|------|-------|--------| | Vo | Output Voltage | | 9.75 | 10 | 10.25 | ٧ | | | | $I_O=1$ to 200mA ^(τ) | 9.6 | | 10.4 | V | | | | V _{in} =12 to 20V | 9.6 | | 10.4 | V | | | | $I_{O} = 1 \text{ to } 100 \text{mA}^{(\tau)}$ | | | | | | ΔV_{O} | Line regulation | V _{in} =12 to 20V | | 12 | 40 | mV | | ΔV_{O} | Load regulation | I _O =1 to 200mA | | 9 | 30 | mV | | | | I _O =1 to 100mA | | 3 | | mV | | Ig | Quiescent current | (τ) | | 350 | 600 | μΑ | | ΔI_g | Quiescent current change | I _O =1 to 200mA | | | 100 | μΑ | | | | V _{in} =12 to 20V | | | 100 | μΑ | | V _n | Output noise voltage | f=10Hz to 10Hz | | 150 | | μV rms | | $\Delta V_{in}/\Delta V_{O}$ | Ripple rejection | V _{in} =13 to 18V | 43 | 57 | | dB | | | | f=120Hz | | | | | | V _{in} | Input voltage required to maintain regulation | | | 11.7 | | V | | $\Delta V_{O}/\Delta T$ | Average temperature coefficient of V _O | I _O =5.0mA ^(τ) | | 0.25 | | mV/°C | # **ZSR1200 test conditions** (Unless otherwise stated):T_j=25°C, I_O=100mA, V_{in}=16V Symbol Parameter Conditions Min Typ May Units | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Units | |------------------------------|---|--|-------|------|-------|--------| | Vo | Output Voltage | | 11.7 | 12 | 12.3 | V | | | | $I_{O}=1 \text{ to } 200\text{mA}^{(\tau)}$ | 11.52 | | 12.48 | ٧ | | | | V _{in} =14 to 20V | 11.52 | | 12.48 | V | | | | $I_0 = 1 \text{ to } 100 \text{mA}^{(\tau)}$ | | | | | | ΔV_{O} | Line regulation | V _{in} =14 to 20V | | 12 | 40 | mV | | ΔV_{O} | Load regulation | I _O =1 to 200mA | | 9 | 30 | mV | | | | I _O =1 to 100mA | | 3 | | mV | | I _g | Quiescent current | (τ) | | 350 | 600 | μΑ | | ΔI_g | Quiescent current change | I _O =1 to 200mA | | | 100 | μΑ | | | | V _{in} =14 to 20V | | | 100 | μΑ | | V _n | Output noise voltage | f=10Hz to 10Hz | | 150 | | μV rms | | $\Delta V_{in}/\Delta V_{O}$ | Ripple rejection | V _{in} =15 to 18V | 43 | 57 | | dB | | | | f=120Hz | | | | | | V _{in} | Input voltage required to maintain regulation | | | 13.7 | | V | | $\Delta V_{O}/\Delta T$ | Average temperature coefficient of V _O | I _O =5.0mA ^(τ) | | 0.25 | | mV/°C | NOTES: $(\tau)T_j$ =-55 to 125°C # Schematic diagram # **Applications** #### **Fixed Output Regulator Adjustable Output Regulator** lo=(Vreg/R1) + 1q ### **Obsolete Variants** # **TO92 Package suffix - C** ### **SOT223 Order information** | Orderable | Voltage | Part
marking | Status | Reel size
(inches) | Tape width (mm) | Quantity per reel | |-----------|---------|-----------------|----------|-----------------------|-----------------|-------------------| | ZSR285GTA | 2.85V | ZSR285 | Obsolete | 7 | 12 | 1000 | | ZSR400GTA | 4.0V | ZSR400 | Obsolete | 7 | 12 | 1000 | | ZSR485GTA | 4.85V | ZSR485 | Obsolete | 7 | 12 | 1000 | | ZSR520GTA | 5.2V | ZSR520 | Obsolete | 7 | 12 | 1000 | | ZSR600GTA | 6.0V | ZSR600 | Obsolete | 7 | 12 | 1000 | | ZSR900GTA | 9.0V | ZSR900 | Obsolete | 7 | 12 | 1000 | ### **TO92 Order information** | Part Number | Voltage | Part marking | Status | Orderable | |-------------|---------|--------------|----------|-----------| | ZSR285 | 2.85V | ZSR285 | Obsolete | ZSR285C* | | ZSR300 | 3.0V | ZSR300 | Obsolete | ZSR300C* | | ZSR330 | 3.3V | ZSR330 | Obsolete | ZSR330C* | | ZSR400 | 4.0V | ZSR400 | Obsolete | ZSR400C* | | ZSR485 | 4.85V | ZSR485 | Obsolete | ZSR485C* | | ZSR500 | 5.0V | ZSR500 | Obsolete | ZSR500C* | | ZSR520 | 5.2V | ZSR520 | Obsolete | ZSR520C* | | ZSR600 | 6.0V | ZSR600 | Obsolete | ZSR600C* | | ZSR800 | 8.0V | ZSR800 | Obsolete | ZSR800C* | | ZSR900 | 9.0V | ZSR900 | Obsolete | ZSR900C* | | ZSR1000 | 10.0V | ZSR100 | Obsolete | ZSR1000C* | | ZSR1200 | 12.0V | ZSR1200 | Obsolete | ZSR1200C* | #### NOTES: loose in boxes of 4000 suffix: L taped and wound on a reel of 1500 suffix: STOB taped and folded in concertina form of 1500 suffix: STZ ^{*} TO92 was supplied in the following reel options: # **ZSR285 test conditions** =6.85V | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Units | |----------------------------------|---|---|-------|------|-------|-------| | Vo | Output Voltage | | 2.78 | 2.85 | 2.92 | ٧ | | | | I _O =1 to 200mA ^() | 2.735 | | 2.964 | V | | | | V _{in} =4.85 to 20V | 2.736 | | 2.964 | V | | | | I _O =1 to 100mA ^() | | | | | | Vo | Line regulation | V _{in} =4.85 to 20V | | 10 | 40 | mV | | V _O | Load regulation | I _O =1 to 200mA | | 5 | 25 | mV | | | | I _O =1 to 100mA | | 2 | | mV | | I _g | Quiescent current | () | | 350 | 600 | Α | | Ig | Quiescent current change | I _O =1 to 200mA | | | 100 | Α | | | | V _{in} =4.85 to 20V | | | 100 | Α | | V _n | Output noise voltage | f=10Hz to 10Hz | | 75 | | V rms | | V _{in} / V _O | Ripple rejection | V _{in} =5.85 to 218V | 48 | 62 | | dB | | | | f=120Hz | | | | | | V _{in} | Input voltage required to maintain regulation | | 4.85 | 4.55 | | V | | V _O / T | Average temperature coefficient of V _O | I _O =5.0mA ^() | | 0.1 | | mV/°C | # **ZSR400 test conditions** (Unless otherwise stated): T_j =25°C, I_O =100mA, V_{in} =8V | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Units | |----------------------------------|---|---|------|------|------|-------| | Vo | Output Voltage | | 3.9 | 4.0 | 4.1 | V | | | | I _O =1 to 200mA ^() | 3.84 | | 4.16 | V | | | | V _{in} =6 to 20V | 3.84 | | 4.16 | V | | | | $I_0 = 1 \text{ to } 100 \text{mA}^{()}$ | | | | | | Vo | Line regulation | V _{in} =6 to 20V | | 10 | 40 | mV | | Vo | Load regulation | I _O =1 to 200mA | | 5 | 25 | mV | | | | I _O =1 to 100mA | | 2 | | mV | | Ig | Quiescent current | () | | 350 | 600 | А | | Ig | Quiescent current change | I _O =1 to 200mA | | | 100 | Α | | | | V _{in} =6 to 20V | | | 100 | Α | | V _n | Output noise voltage | f=10Hz to 10Hz | | 75 | | V rms | | V _{in} / V _O | Ripple rejection | V _{in} =7 to 218V | 48 | 62 | | dB | | | | f=120Hz | | | | | | V _{in} | Input voltage required to maintain regulation | | 6 | 5.3 | | V | #### NOTES: () T_j =-55 to 125°C # **ZSR485 test conditions** (Unless otherwise stated): T_j =25°C, I_O =100mA, V_{in} =8.85V | | + | | | | | | |----------------------------------|---|---|-------|------|-------|-------| | | | | | | | | | Vo | Output Voltage | | 4.792 | 4.85 | 4.971 | V | | | | I _O =1 to 200mA ^() | 4.656 | | 5.044 | V | | | | V _{in} =6.8 to 20V | 4.656 | | 5.044 | V | | | | I _O =1 to 100mA ^() | | | | | | V _O | Line regulation | V _{in} =6.85 to 20V | | 10 | 40 | mV | | V _O | Load regulation | I _O =1 to 200mA | | 5 | 25 | mV | | | | I _O =1 to 100mA | | 2 | | mV | | Ig | Quiescent current | () | | 350 | 600 | Α | | l _g | Quiescent current change | I _O =1 to 200mA | | | 100 | Α | | | | V _{in} =6.85 to 20V | | | 100 | Α | | V _n | Output noise voltage | f=10Hz to 10Hz | | 50 | | V rms | | V _{in} / V _O | Ripple rejection | V _{in} =7.85 to 18V | 50 | 64 | | dB | | | | f=120Hz | | | | | | V _{in} | Input voltage required to maintain regulation | | 6.85 | 6.55 | | V | | V _O / T | Average temperature coefficient of V _O | I _O =5.0mA ^() | | 0.1 | | mV/°C | # $\textbf{ZSR520 test conditions} \text{ (Unless otherwise stated):} \\ T_{j} = 25 \, ^{\circ}\text{C, I}_{O} = 100 \text{mA, V}_{in} = 100 \text{mV}$ | Vo | Output Voltage | | 5.070 | 5.2 | 5.330 | ٧ | |----------------------------------|---|---|-------|-------------|-------|-------| | | | I _O =1 to 200mA ^() | 4.99 | | 5.41 | V | | | | V _{in} =7.2 to 20V | 4.99 | > | 5.41 | V | | | | I _O =1 to 100mA ^() | | | | | | V _O | Line regulation | V _{in} =7.2 to 20V | | 10 | 40 | mV | | Vo | Load regulation | I _O =1 to 200mA | | 5 | 25 | mV | | | | I _O =1 to 100mA | | 2 | | mV | | I _g | Quiescent current | () | | 350 | 600 | Α | | l _g | Quiescent current change | I _O =1 to 200mA | | | 100 | Α | | | (C | V _{in} =7.2 to 20V | | | 100 | Α | | V _n | Output noise voltage | f=10Hz to 10Hz | | 75 | | V rms | | V _{in} / V _O | Ripple rejection | V _{in} =8.2 to 18V | 48 | 62 | | dB | | | | f=120Hz | | | | | | V _{in} | Input voltage required to maintain regulation | | 7.2 | 6.9 | | V | | V _O / T | Average temperature coefficient of V _O | I _O =5.0mA ^() | | 0.1 | | mV/°C | () T_j =-55 to 125°C # **ZSR600 test conditions** (Unless otherwise stated): T_j =25°C, I_O =100mA, V_{in} =10V | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Units | |------------------------------|---|--|------|------|------|--------| | Vo | Output Voltage | | 5.85 | 6 | 6.15 | V | | | | I _O =1 to 200mA ^(τ) | 5.76 | | 6.24 | V | | | | V _{in} =8 to 20V | 5.76 | | 6.24 | V | | | | $I_0 = 1 \text{ to } 100 \text{mA}^{(\tau)}$ | | | | | | ΔV_{O} | Line regulation | V _{in} =8 to 20V | | 10 | 40 | mV | | ΔV_{O} | Load regulation | I _O =1 to 200mA | | 7 | 30 | mV | | | | I _O =1 to 100mA | | 2.5 | | mV | | I _g | Quiescent current | (τ) | | 350 | 600 | μΑ | | ΔI_g | Quiescent current change | I _O =1 to 200mA | | | 100 | μΑ | | | | V _{in} =8 to 20V | | | 100 | μΑ | | V _n | Output noise voltage | f=10Hz to 10Hz | | 90 | | μV rms | | $\Delta V_{in}/\Delta V_{O}$ | Ripple rejection | V _{in} =9 to 18V | 48 | 62 | | dB | | | | f=120Hz | | | | | | V _{in} | Input voltage required to maintain regulation | | 8 | 7.7 | | V | | $\Delta V_{O}/\Delta T$ | Average temperature coefficient of V _O | I _O =5.0mA ^(τ) | | 0.15 | | mV/°C | # **ZSR900 test conditions** (Unless otherwise stated): T_j =25°C, I_O =100mA, V_{in} =13V | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Units | |------------------------------|---|--|-------|------|-------|--------| | Vo | Output Voltage | | 8.775 | 9.0 | 9.225 | V | | | | I _O =1 to 200mA ^(τ) | 8.64 | | 9.36 | V | | | | V _{in} =11 to 20V | 8.64 | • | 9.36 | V | | | | $I_0 = 1 \text{ to } 100 \text{mA}^{(\tau)}$ | | | | | | ΔV_{O} | Line regulation | V _{in} =11 to 20V | | 12 | 40 | mV | | ΔV_{O} | Load regulation | I _O =1 to 200mA | | 9 | 30 | mV | | | | I _O =1 to 100mA | | 3 | | mV | | Ig | Quiescent current | (τ) | | 350 | 600 | μΑ | | ΔI_g | Quiescent current change | I _O =1 to 200mA | | | 100 | μΑ | | | | V _{in} =11 to 20V | | | 100 | μΑ | | V _n | Output noise voltage | f=10Hz to 10Hz | | 150 | | μV rms | | $\Delta V_{in}/\Delta V_{O}$ | Ripple rejection | V _{in} =12 to 18V | 43 | 57 | | dB | | | | f=120Hz | | | | | | V _{in} | Input voltage required to maintain regulation | | 11 | 10.7 | | V | | $\Delta V_{O}/\Delta T$ | Average temperature coefficient of V _O | I _O =5.0mA ^(τ) | | 0.25 | | mV/°C | NOTES: $(\tau) T_j = -55 \text{ to } 125^{\circ}\text{C}$ #### **Definitions** #### Product change Zetex Semiconductors reserves the right to alter, without notice, specifications, design, price or conditions of supply of any product or service. Customers are solely responsible for obtaining the latest relevant information before placing orders. #### Applications disclaimer The circuits in this design/application note are offered as design ideas. It is the responsibility of the user to ensure that the circuit is fit for the user's application and meets with the user's requirements. No representation or warranty is given and no liability whatsoever is assumed by Zetex with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Zetex does not assume any legal responsibility or will not be held legally liable (whether in contract, tort (including negligence), breach of statutory duty, restriction or otherwise) for any damages, loss of profit, business, contract, opportunity or consequential loss in the use of these circuit applications, under any circumstances. #### Life support Zetex products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Zetex Semiconductors plc. As used herein: - A. Life support devices or systems are devices or systems which: - 1. are intended to implant into the body 0 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labelling can be reasonably expected to result in significant injury to the user. - B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness. #### Reproduction The product specifications contained in this publication are issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. #### Terms and Conditions All products are sold subjects to Zetex' terms and conditions of sale, and this disclaimer (save in the event of a conflict between the two when the terms of the contract shall prevail) according to region, supplied at the time of order acknowledgement. For the latest information on technology, delivery terms and conditions and prices, please contact your nearest Zetex sales office. #### **Quality of product** Zetex is an ISO 9001 and TS16949 certified semiconductor manufacturer. To ensure quality of service and products we strongly advise the purchase of parts directly from Zetex Semiconductors or one of our regionally authorized distributors. For a complete listing of authorized distributors please visit: www.zetex.com/salesnetwork Zetex Semiconductors does not warrant or accept any liability whatsoever in respect of any parts purchased through unauthorized sales channels. #### ESD (Electrostatic discharge) Semiconductor devices are susceptible to damage by ESD. Suitable precautions should be taken when handling and transporting devices. The possible damage to devices depends on the circumstances of the handling and transporting, and the nature of the device. The extent of damage can vary from immediate functional or parametric malfunction to degradation of function or performance in use over time. Devices suspected of being affected should be replaced. #### Green compliance Zetex Semiconductors is committed to environmental excellence in all aspects of its operations which includes meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions. All Zetex components are compliant with the RoHS directive, and through this it is supporting its customers in their compliance with WEEE and ELV directives. | Product status key: | | |-----------------------------------|---| | "Preview" | Future device intended for production at some point. Samples may be available | | "Active" | Product status recommended for new designs | | "Last time buy (LTB)" | Device will be discontinued and last time buy period and delivery is in effect | | "Not recommended for new designs" | Device is still in production to support existing designs and production | | "Obsolete" | Production has been discontinued | | Datasheet status key: | | | "Draft version" | This term denotes a very early datasheet version and contains highly provisional information, which may change in any manner without notice. | | "Provisional version" | This term denotes a pre-release datasheet. It provides a clear indication of anticipated performance. However, changes to the test conditions and specifications may occur, at any time and without notice. | | "Issue" | This term denotes an issued datasheet containing finalized specifications. However, changes to specifications may occur, at any time and without notice. | #### Zetex sales offices | Europe | Americas | Asia Pacific | Corporate Headquarters | |--|-------------------------------|--|-----------------------------------| | Zetex GmbH | Zetex Inc | Zetex (Asia Ltd) | Zetex Semiconductors plc | | Kustermann-park | 700 Veterans Memorial Highway | 3701-04 Metroplaza Tower 1 | Zetex Technology Park, Chadderton | | Balanstraße 59
D-81541 München
Germanv | Hauppauge, NY 11788
USA | Hing Fong Road, Kwai Fong
Hong Kong | Oldham, OL9 9LL
United Kingdom | | Telefon: (49) 89 45 49 49 0 | Telephone: (1) 631 360 2222 | Telephone: (852) 26100 611 | Telephone: (44) 161 622 4444 | | Fax: (49) 89 45 49 49 49 | Fax: (1) 631 360 8222 | Fax: (852) 24250 494 | Fax: (44) 161 622 4446 | | europe.sales@zetex.com | usa.sales@zetex.com | asia.sales@zetex.com | hq@zetex.com | © 2007 Published by Zetex Semiconductors plc