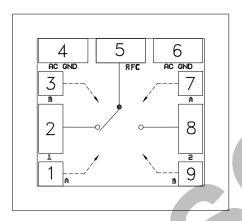


Typical Applications

The HMC240A is ideal for:

- Telecom Infrastructure
- Microwave Radio & VSAT
- Military & Space
- Test Instrumentation


Features

Broadband Performance: DC - 4 GHz Low Insertion Loss: 0.5 dB @ 2 GHz

High IIP3: +48 dBm

Small Size: 0.66 x 0.60 x 0.18 mm

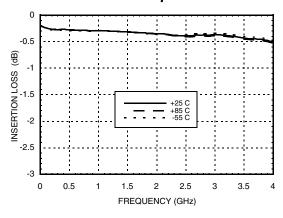
Functional Diagram

Pads 3 & 7 are alternate A & B Control Inputs.

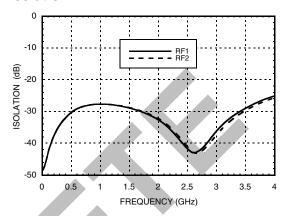
General Description

The HMC240A is a low cost GaAs MESFET SPDT switch chip. Covering DC to 4 GHz, this switch offers high isolation and low insertion loss. RF1 and RF2 are reflective shorts when "off". The switch can operate using either two negative control logic inputs of -5/0V or two positive control voltage logic inputs of 0/+5V. All data is tested with the chip in a 50 Ohm test fixture connected via 0.025 mm (1 mil) diameter wire bonds of 0.31 mm (12 mils) length.

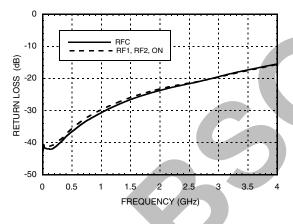
Electrical Specifications, $T_A = +25^{\circ}$ C, With 0/-5V Control or +5/0V Control, 50 Ohm System

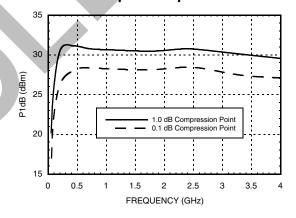

Parameter		Frequency	Min.	Тур.	Max.	Units
Insertion Loss		DC - 1.0 GHz DC - 2.0 GHz DC - 3.0 GHz DC - 4.0 GHz		0.4 0.5 0.6 0.9	0.7 0.8 0.9 1.4	dB dB dB dB
Isolation		DC - 4.0 GHz	24	28		dB
Return Loss	"On State"	DC - 1.0 GHz DC - 2.0 GHz DC - 3.0 GHz DC - 4.0 GHz		22 16 14 11		dB dB dB dB
Input Power for 1 dB Compression		0.5 - 1.0 GHz 0.5 - 4.0 GHz	25 23	30 29		dBm dBm
Input Third Order Intercept (Two-Tone Input Power= +7 dBm Each Tone)		0.5 - 1.0 GHz 0.5 - 4.0 GHz	43 40	48 45		dBm dBm
Switching Characteristics tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)		DC - 4.0 GHz		3 10		ns ns

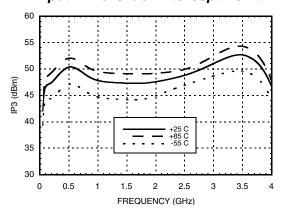
v00.0211



GaAs MMIC SPDT SWITCH DC - 4 GHz


Insertion Loss vs. Temperature


Isolation


Return Loss

0.1 and 1 dB Input Compression Point

Input Third Order Intercept Point

Positive Control Voltage

State	Bias Condition		
Low	0 Vdc @ 5 uA		
High +3 Vdc @ 3 uA to +8 Vdc @ 32 uA			
Control input voltage tolerences are ±0.2 Vdc.			

Truth Table: Positive Control Voltage

Contro	l Input	Control Current Signal Path		ath State	
A (Vdc)	B (Vdc)	la (uA)	lb (uA)	RFC to RF1	RFC to RF2
0	+5	-5	5	ON	OFF
+5	0	5	-5	OFF	ON

Negative Control Voltage

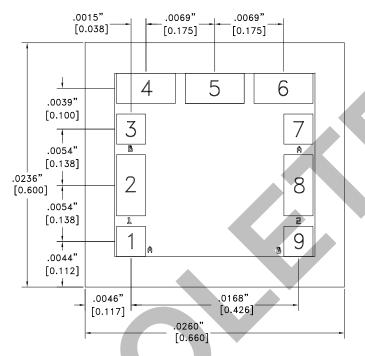
State	Bias Condition		
Low	-3 Vdc @ 3 uA to -8 Vdc @ 32 uA		
High	0 Vdc @ 5 uA		
Control input voltage tolerences are ±0.2 Vdc.			

Truth Table: Negative Control Voltage

Contro	l Input	Control Current Signal Path S		ath State	
A (Vdc)	B (Vdc)	la (uA)	lb (uA)	RFC to RF1	RFC to RF2
-5	0	-5	5	ON	OFF
0	-5	5	-5	OFF	ON

Absolute Maximum Ratings

RF Input Power V _{ctrl} = 0/+5 (-5)V	< 0.5 GHz 0.5 - 4 GHz	+27 dBm +34 dBm	
Control Voltage Range (A & B= 0/+5V)		-0.2 to +10 Vdc	
Control Voltage Range (A & B= -5/0V)		-10 to +0.2 Vdc	
Storage Temperature		-65 to +150 deg C	
Operating Temperature		-55 to +85 deg C	
ESD Sensitivity (HBM)		Class 1A	


Note:

This part can be controlled with either positive or negative voltages per the above table. DC blocks are required at ports RFC, RF1 and RF2 if positive control voltage is used.

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

v00.0211

Die Packaging Information [1]

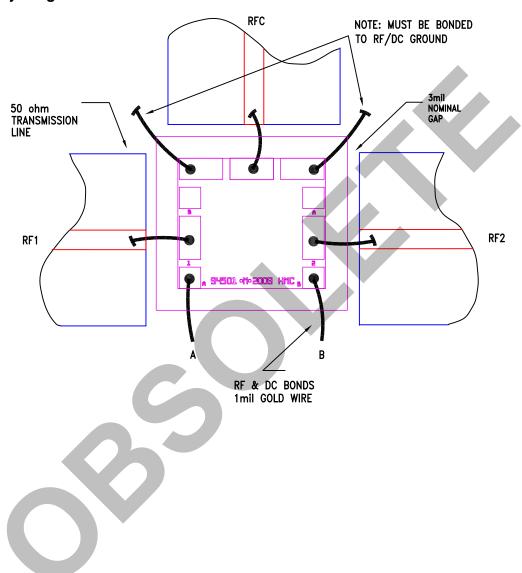
Standard	Alternate	
GP-5 (Gel-Pak®)	[2]	

[1] Refer to the "Packaging Information" section for die packaging dimensions.

[2] For alternate packaging information contact Hittite Microwave Corporation.

- 1. DIMENSIONS IN INCHES [MILLIMETERS].
- 2. DIE THICKNESS IS 0.005".
- 3. TYPICAL BOND PAD IS 0.004" SQUARE.
- 4. TYPICAL BOND PAD SPACING IS 0.006" CENTER TO CENTER.
- 5. BOND PAD METALLIZATION: GOLD.
- 6. PADS 4 AND 6 MUST BE CONNECTED TO RF/DC GROUND.

Pad Descriptions


Pad Number	Function	Description	Interface Schematic
1, 7	A, A (alt.)	See truth table and control voltage table. Connect either pad 1 or pad 7 to control logic input.	R 0 C C
2, 5, 8	RF1, RFC, RF2	These pads are DC coupled and matched to 50 Ohms. Blocking capacitors are required.	
3, 9	B, B (alt.)	See truth table and control voltage table. Connect either pad 3 or pad 9 to control logic input.	B R C ==================================
4, 6	AC GND	Must be connected to RF/DC ground.	— —OACGND

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

Assembly Diagram

Handling Precautions

Follow these precautions to avoid permanent damage.

Storage: All bare die are placed in either Waffle or Gel based ESD protective containers, and then sealed in an ESD protective bag for shipment. Once the sealed ESD protective bag has been opened, all die should be stored in a dry nitrogen environment.

Cleanliness: Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.

Static Sensitivity: Follow ESD precautions to protect against ESD strikes.

Transients: Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pick-up.

General Handling: Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip has fragile air bridges and should not be touched with vacuum collet, tweezers, or fingers.

Mounting

The chip is back-metallized and can be die mounted with electrically conductive epoxy. The mounting surface should be clean and flat.

Epoxy Die Attach: Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position. Cure epoxy per the manufacturer's schedule.

Wire Bonding

Ball or wedge bond with 0.025mm (1 mil) diameter pure gold wire. Thermosonic wirebonding with a nominal stage temperature of 150 deg. C and a ball bonding force of 40 to 50 grams or wedge bonding force of 18 to 22 grams is recommended. Use the minimum level of ultrasonic energy to achieve reliable wirebonds. Wirebonds should be started on the chip and terminated on the package or substrate. All bonds should be as short as possible <0.31mm (12 mils).

