
SCLS456C - FEBRUARY 2001 - REVISED APRIL 2005

- 2-V to 5.5-V V_{CC} Operation
- Max t_{pd} of 10.5 ns at 5 V
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 >2.3 V at V_{CC} = 3.3 V, T_A = 25°C
- I_{off} Supports Partial-Power-Down-Mode Operation
- Synchronous Load

SN54LV166A . . . J OR W PACKAGE SN74LV166A . . . D, DB, DGV, NS, OR PW PACKAGE (TOP VIEW)

- Direct Overriding Clear
- Parallel-to-Serial Conversion
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

NC - No internal connection

description/ordering information

The 'LV166A devices are 8-bit parallel-load shift registers, designed for 2-V to 5.5-V V_{CC} operation.

ORDERING INFORMATION

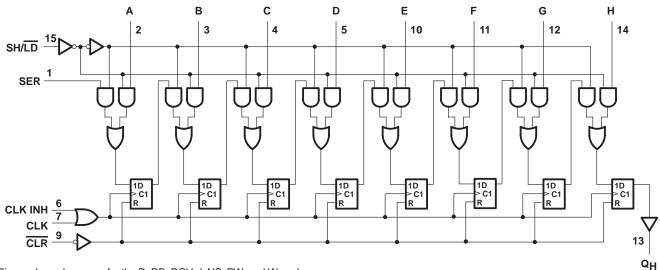
TA	PACK	AGE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	colo D	Tube of 40	SN74LV166AD	11/4004
	SOIC - D	Reel of 2500	SN74LV166ADR	LV166A
	SOP - NS	Reel of 2000	SN74LV166ANSR	74LV166A
4000 1- 0500	SSOP – DB	Reel of 2000	SN74LV166ADBR	LV166A
-40°C to 85°C		Tube of 90	SN74LV166APW	
	TSSOP – PW	Reel of 2000	SN74LV166APWR	LV166A
		Reel of 250	SN74LV166APWT	
	TVSOP - DGV	Reel of 2000	SN74LV166ADGVR	LV166A
	CDIP – J	Tube of 25	SNJ54LV166AJ	SNJ54LV166AJ
−55°C to 125°C	CFP – W	Tube of 150	SNJ54LV166AW	SNJ54LV166AW
	LCCC – FK	Tube of 55	SNJ54LV166AFK	SNJ54LV166AFK

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

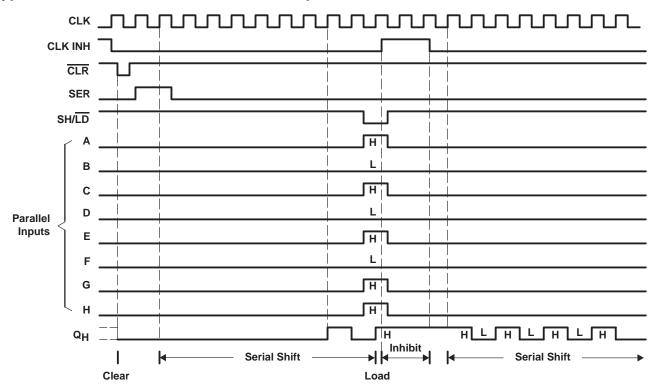
SCLS456C - FEBRUARY 2001 - REVISED APRIL 2005

description/ordering information (continued)


The 'LV166A parallel-in or serial-in, serial-out registers feature gated clock (CLK, CLK INH) inputs and an overriding clear (CLR) input. The parallel-in or serial-in modes are established by the shift/load (SH/LD) input. When high, SH/LD enables the serial (SER) data input and couples the eight flip-flops for serial shifting with each clock (CLK) pulse. When low, the parallel (broadside) data inputs are enabled, and synchronous loading occurs on the next clock pulse. During parallel loading, serial data flow is inhibited. Clocking is accomplished on the low-to-high-level edge of CLK through a 2-input positive-NOR gate, permitting one input to be used as a clock-enable or clock-inhibit function. Holding either CLK or CLK INH high inhibits clocking; holding either low enables the other clock input. This allows the system clock to be free running, and the register can be stopped on command with the other clock input. CLK INH should be changed to the high level only when CLK is high. CLR overrides all other inputs, including CLK, and resets all flip-flops to zero.

These devices are fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.

FUNCTION TABLE


		INIT	LITC			C	UTPUT	S				
		INF	UTS			INTE	INTERNAL				INTERNAL	
CLR	SH/LD	CLK INH	CLK	SER	PARALLEL AH	Q _A	QB	QH				
L	Х	Χ	Χ	Χ	Χ	L	L	L				
Н	Χ	L	L	Χ	X	Q _{A0}	Q_{B0}	Q _{H0}				
Н	L	L	\uparrow	Χ	ah	а	b	h				
Н	Н	L	\uparrow	Н	Χ	Н	Q_{An}	Q_{Gn}				
Н	Н	L	\uparrow	L	Χ	L	Q_{An}	Q _{Gn}				
Н	X	Н	\uparrow	X	X	Q _{A0}	Q_{B0}	Q _{H0}				

logic diagram (positive logic)

Pin numbers shown are for the D, DB, DGV, J, NS, PW, and W packages.

typical clear, shift, load, inhibit, and shift sequence

SN54LV166A, SN74LV166A 8-BIT PARALLEL-LOAD SHIFT REGISTERS

SCLS456C - FEBRUARY 2001 - REVISED APRIL 2005

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		–0.5 V to 7 V
Input voltage range, V _I (see Note 1)		–0.5 V to 7 V
Output voltage range applied in high or low sta	te, V _O (see Notes 1 and 2)	0.5 V to V _{CC} + 0.5 V
Voltage range applied to any output in the power	er-off state, V _O (see Note 1)	0.5 V to 7 V
Input clamp current, I _{IK} (V _I < 0)		–20 mA
Output clamp current, I _{OK} (V _O < 0)		–50 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})		±25 mA
Continuous current through V _{CC} or GND		±50 mA
Package thermal impedance, θ _{JA} (see Note 3)	: D package	73°C/W
	DB package	82°C/W
	DGV package	120°C/W
	NS package	64°C/W
	PW package	108°C/W
Storage temperature range, T _{stg}		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. This value is limited to 5.5 V maximum.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4)

			SN54L	_V166A	SN74L	V166A	
			MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage		2	5.5	2	5.5	V
		V _{CC} = 2 V	1.5		1.5		
V	High level inner college	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	V _{CC} ×0.7		$V_{CC} \times 0.7$		V
VIH	High-level input voltage	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	$V_{CC} \times 0.7$		$V_{CC} \times 0.7$		V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	$V_{CC} \times 0.7$		$V_{CC} \times 0.7$		
		$V_{CC} = 2 V$		0.5		0.5	
V.	Low lovel input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		$V_{CC} \times 0.3$		$V_{CC} \times 0.3$	V
V_{IL}	Low-level input voltage	$V_{CC} = 3 V \text{ to } 3.6 V$		$V_{CC} \times 0.3$		$V_{CC} \times 0.3$	V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		$V_{CC} \times 0.3$		$V_{CC} \times 0.3$	
VI	Input voltage		0	5.5	0	5.5	V
VO	Output voltage		0	Vcc	0	VCC	V
		V _{CC} = 2 V	3	-50		-50	μΑ
	High level output ourrent	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	90	-2		-2	
ЮН	High-level output current	$V_{CC} = 3 V \text{ to } 3.6 V$	Q.	-6		-6	mA
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		-12		-12	
		$V_{CC} = 2 V$		50		50	μΑ
1	Lavelaval autaut aumant	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2		2	
lol	Low-level output current	$V_{CC} = 3 V \text{ to } 3.6 V$		6		6	mA
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		12		12	
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		200		200	
Δt/Δν	Input transition rise or fall rate	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		100		100	ns/V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		20		20	
T_A	Operating free-air temperature		-55	125	-40	85	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

242445752	TEGT GOVERNO		SN5	4LV166A		SN74	LV166A	1	
PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	I _{OH} = -50 μA	2 V to 5.5 V	V _{CC} -0.1			V _{CC} -0.1			
Vou	$I_{OH} = -2 \text{ mA}$	2.3 V	2			2			.,
Voн	$I_{OH} = -6 \text{ mA}$	3 V	2.48	_		2.48			V
	I _{OH} = −12 mA	4.5 V	3.8	F	,	3.8			
	I _{OL} = 50 μA	2 V to 5.5 V		F	0.1			0.1	
V	I _{OL} = 2 mA	2.3 V		Q	0.4			0.4	V
VOL	I _{OL} = 6 mA	3 V	9	ý)	0.44			0.44	V
	I _{OL} = 12 mA	4.5 V	9		0.55			0.55	
lį	$V_I = 5.5 \text{ V or GND}$	0 to 5.5 V	d'a		±1			±1	μΑ
Icc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			20			20	μΑ
l _{off}	V_I or $V_O = 0$ to 5.5 V	0			5			5	μΑ
C _i	V _I = V _{CC} or GND	3.3 V		1.6			1.6		pF

SN54LV166A, SN74LV166A 8-BIT PARALLEL-LOAD SHIFT REGISTERS

SCLS456C - FEBRUARY 2001 - REVISED APRIL 2005

timing requirements over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

			T _A = 1	25°C	SN54LV	/166A	SN74L\	/166A	
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
	Dulas direction	CLR low	8		9		9		
t _W	Pulse duration	CLK high or low	8.5		9	Z	9		ns
		CLK INH before CLK↑	7		7	N.	7		
		Data before CLK↑	6.5		8.5	07	8.5		
t _{su}	Setup time	SH/LD before CLK↑	7		8.5		8.5		ns
		SER before CLK↑	8.5		9.5		9.5		
		CLR↑ inactive before CLK↑	6		27		7		
th	Hold time	Data after CLK↑	-0.5		0		0		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

			T _A = 2	= 25°C SN54LV166A		/166A	SN74LV166A		
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
	Dulas duration	CLR low	6		7		7		
t _W	Pulse duration	CLK high or low	6		7	N.	7		ns
		CLK INH before CLK↑	5		5	, S	5		
		Data before CLK↑	5		6	92	6		
t _{su}	Setup time	SH/LD before CLK↑	5		6		6		ns
		SER before CLK↑	5		6		6		
		CLR↑ inactive before CLK↑	4		Q 4		4		
th	Hold time	Data after CLK↑	0		0		0		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

			T _A = 1	25°C	SN54L	/166A	SN74LV166A		LINUT
			MIN	MAX	MIN	MAX	MIN4	MAX	UNIT
	Dulas duration	CLR low	5		5		5		
t _W	Pulse duration	CLK high or low	4		4	Z.	4		ns
		CLK INH before CLK↑	3.5		3.5	, S	3.5		
		Data before CLK↑	4.5		4.5	Q.	4.5		
t _{su}	Setup time	SH/LD before CLK↑	4		4		4		ns
		SER before CLK↑	4		4		4		
		CLR [↑] inactive before CLK [↑]	3.5		3.5		3.5		
t _h	Hold time	Data after CLK↑	1	·	1	·	1		ns

SCLS456C - FEBRUARY 2001 - REVISED APRIL 2005

switching characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

	FROM	TO LOAD		T _A = 25°C		SN54LV166A		SN74LV166A			
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			C _L = 15 pF	50*	105*		45*	1/5	45		N41.1-
^T max			C _L = 50 pF	40	80		35	PE	35		MHz
t _{PHL}	CLR		0 455		8.8*	16*	1*	18*	1	18	
t _{pd}	CLK	Q _H	C _L = 15 pF		9.2*	19.8*	250	22*	1	22	ns
t _{PHL}	CLR	0	C _I = 50 pF		11.3	19.5	0 0 1	22	1	22	ns
t _{pd}	CLK	Q _H	OL = 50 pr		11.8	23.3	1	26	1	26	115

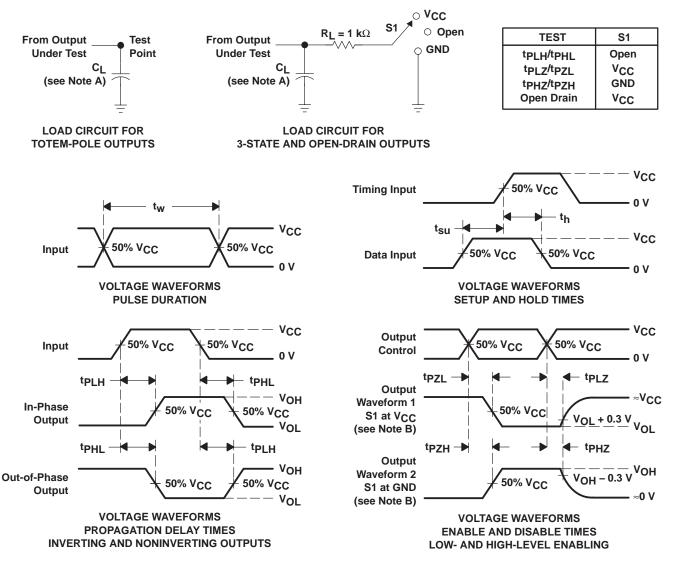
^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

DADAMETER	FROM TO		LOAD	LOAD T _A = 25°C		SN54LV166A		SN74L\	/166A	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII
			C _L = 15 pF	65*	150*		55*	76	55		MI I-
^T max			C _L = 50 pF	60	120		50	3/4	50		MHz
^t PHL	CLR		0 45 -5		6.3*	12.5*	1*	15*	1	15	
^t pd	CLK	Q _H	$C_L = 15 pF$		6.6*	15.4*	25	18*	1	18	ns
^t PHL	CLR	0	C _I = 50 pF		7.9	16.3	01	18.5	1	18.5	ns
^t pd	CLK	QH	OL = 50 pr		8.3	18.9	1	21.5	1	21.5	115

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

switching characteristics over recommended operating free-air temperature range V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)


DADAMETER	FROM TO		LOAD	T _A = 25°C		SN54LV166A		SN74L\	UNIT		
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII
			C _L = 15 pF	110*	205*		90*	76	90		NAL I—
^T max			C _L = 50 pF	95	160		85	3/4	85		MHz
^t PHL	CLR		0 45 -5		4.6*	8.6*	1*,	10*	1	10	
^t pd	CLK	QH	$C_L = 15 pF$		4.8*	9.9*	257	11.5*	1	11.5	ns
t _{PHL}	CLR	0	C: _ 50 pF		5.7	10.6	Q 1	12	1	12	20
^t pd	CLK	Q _H	C _L = 50 pF		6.1	11.9	1	13.5	1	13.5	ns

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

operating characteristics, T_A = 25°C

PARAMETER		TEST CO	VCC	TYP	UNIT	
<u> </u>	Dower discination conscitones	C. F0 pF	f 40 MH-	3.3 V	39.1	~F
Cpd	Power dissipation capacitance	$C_L = 50 pF$,	f = 10 MHz	5 V	44.5	pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- All input pulses are supplied by generators having the following characteristics: $PRR \le 1 \text{ MHz}$, $Z_O = 50 \Omega$, $t_f \le 3 \text{ ns}$, $t_f \le 3 \text{ ns}$.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzi and tpzH are the same as ten.
- G. tpHL and tpLH are the same as tpd.
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

www.ti.com

13-Aug-2021

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty		Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74LV166AD	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV166A	Samples
SN74LV166ADBR	ACTIVE	SSOP	DB	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV166A	Samples
SN74LV166ADG4	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV166A	Samples
SN74LV166ADGVR	ACTIVE	TVSOP	DGV	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV166A	Samples
SN74LV166ADR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV166A	Samples
SN74LV166ANSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	74LV166A	Samples
SN74LV166APW	ACTIVE	TSSOP	PW	16	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV166A	Samples
SN74LV166APWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV166A	Samples
SN74LV166APWRG4	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV166A	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

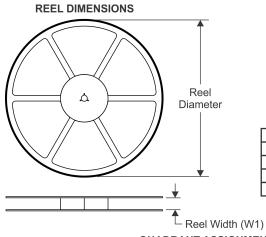
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

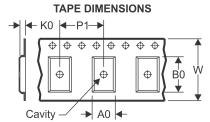
PACKAGE OPTION ADDENDUM

www.ti.com 13-Aug-2021

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

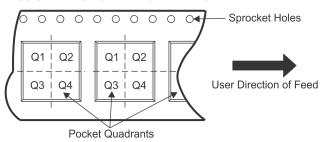
(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

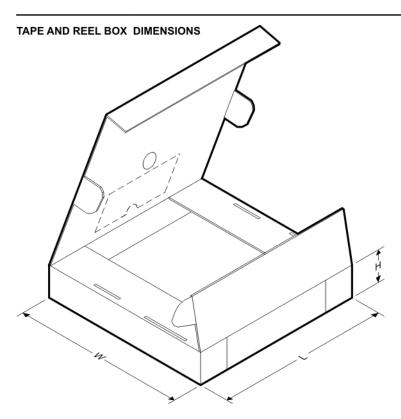

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2021


TAPE AND REEL INFORMATION

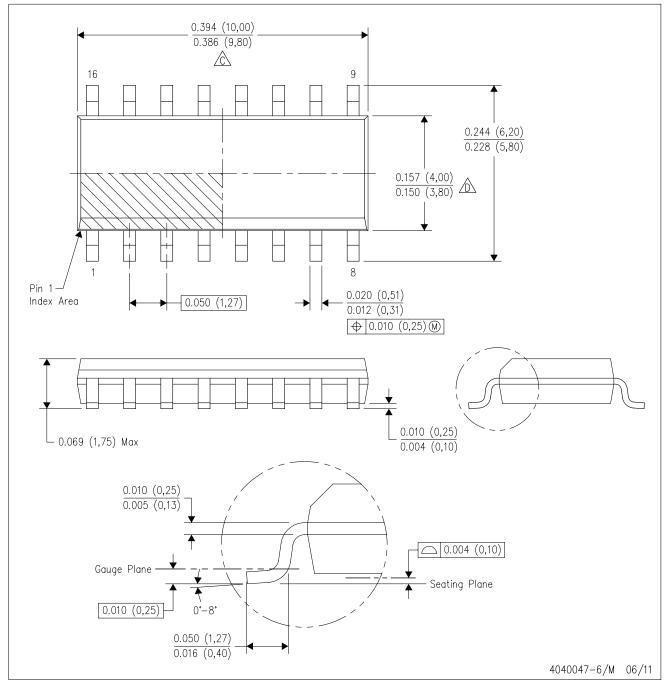
A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	_	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LV166ADBR	SSOP	DB	16	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74LV166ADGVR	TVSOP	DGV	16	2000	330.0	12.4	6.8	4.0	1.6	8.0	12.0	Q1
SN74LV166ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LV166ANSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74LV166APWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 3-Aug-2021

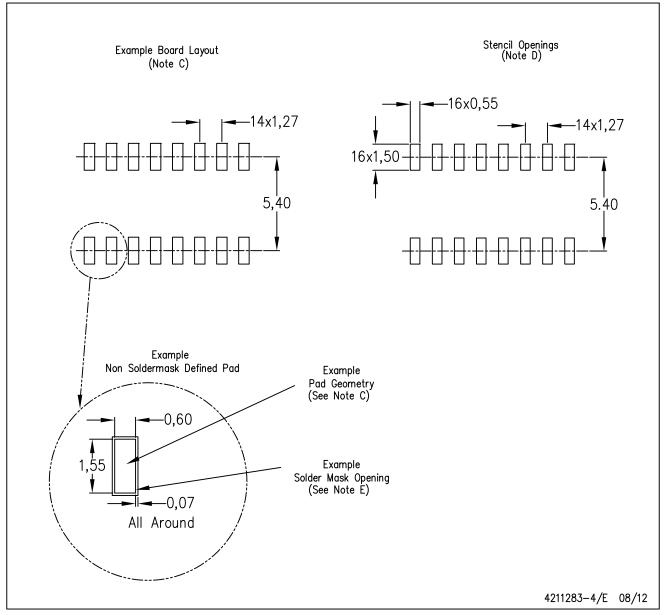


*All dimensions are nominal

7 til diritorisions are nominal							
Device	Device Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LV166ADBR	SSOP	DB	16	2000	853.0	449.0	35.0
SN74LV166ADGVR	TVSOP	DGV	16	2000	853.0	449.0	35.0
SN74LV166ADR	SOIC	D	16	2500	340.5	336.1	32.0
SN74LV166ANSR	SO	NS	16	2000	853.0	449.0	35.0
SN74LV166APWR	TSSOP	PW	16	2000	853.0	449.0	35.0

D (R-PDS0-G16)

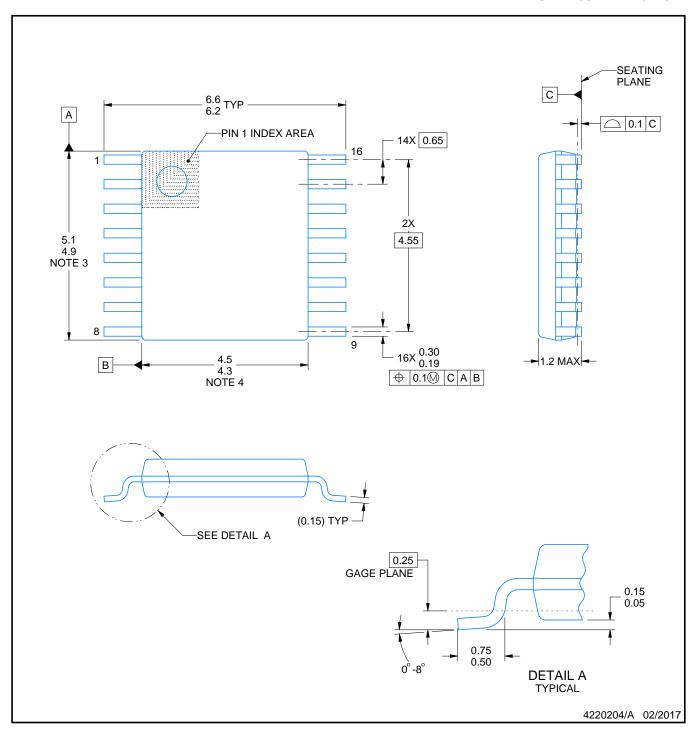
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

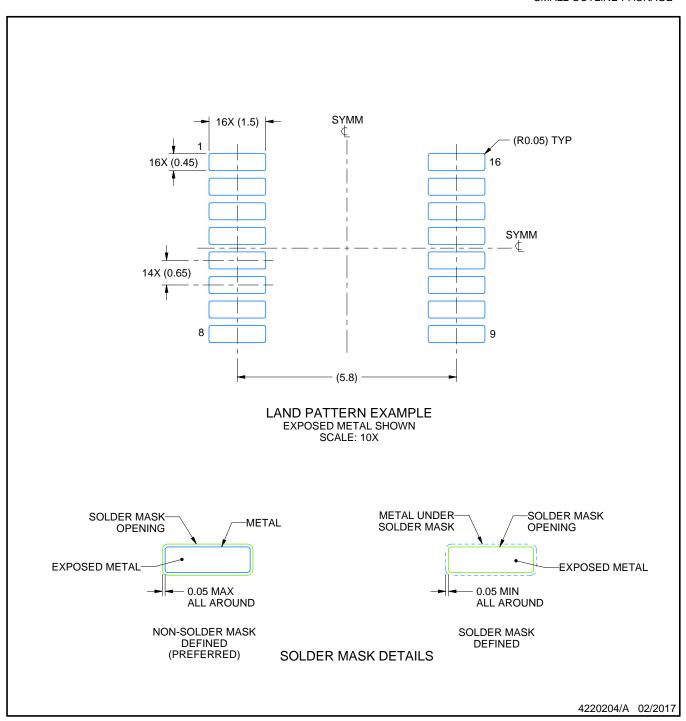
D (R-PDSO-G16)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

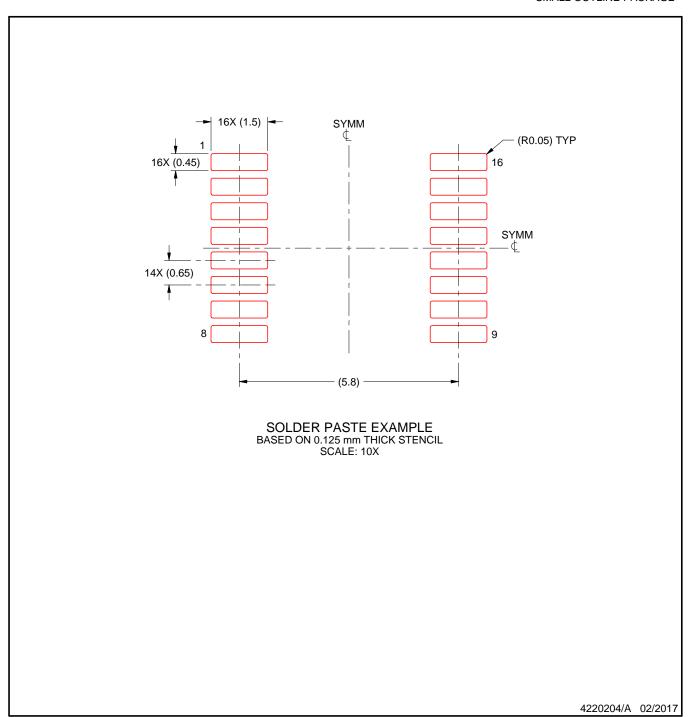
SMALL OUTLINE PACKAGE


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE


NOTES: (continued)

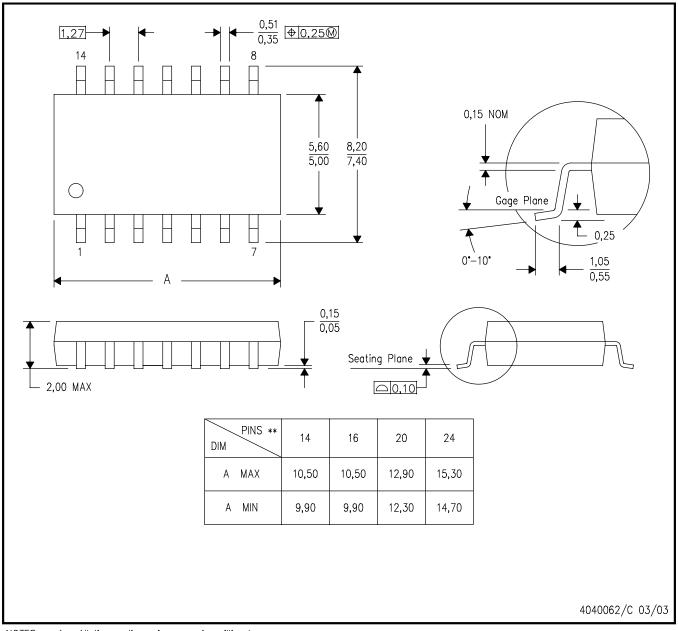
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

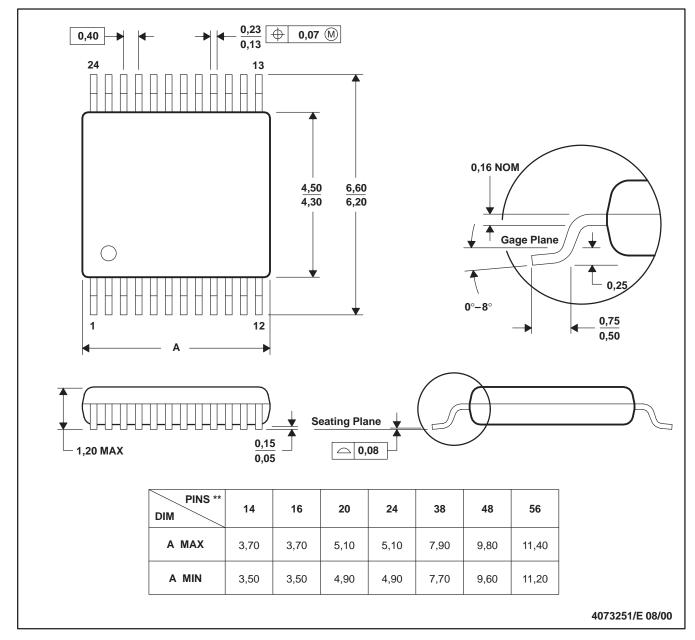


MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

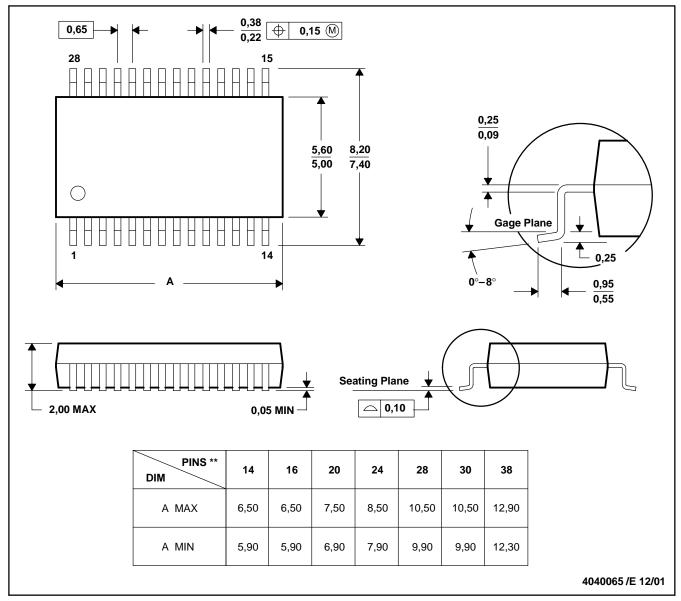
DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated