IMD111T-6F040, IMD112T-6F040

iMOTION[™] IMD111T/IMD112T - Smart driver for motor control

Motor controller with integrated high-voltage gate driver

IMD111T/IMD112T

Features

- Motion Control Engine (MCE) as a ready-to-use control solution for variable speed drives
- Integrated script engine for application control customization
- Integrated drive and system protection features
- Field oriented control (FOC) for permanent magnet synchronous motor (PMSM)
- Flexible space vector PWM for sinusoidal voltage control
- Current sensing via single or leg shunt
- Sensorless or Hall sensor operation(analog/digital Hall)
- Integrated analog comparators for over-current protection
- Built-in temperature sensor
- Power factor correction (PFC) control
- Flexible control input options: UART, Frequency, duty cycle or analog signal
- Certified drive safety functions according to IEC/UL 60730-1 'Class B'
- High voltage three phase gate driver with 600 V blocking voltage
- 15V supply voltage for gate driver
- Thin-film-SOI-technology with negative transient robustness
- Ultra fast integrated boot strap diodes
- Integrated 5 V voltage regulator for controller supply
- External 5 V output available
- Small LQFP-40 package with improved clearance & creepage
- Footprint derived from LQFP-48

Potential applications

- Small and major home appliances
- Fans, Pumps, Compressors
- General purpose variable speed drives

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Description

Description

iMOTION[™]IMD110-6 is a family of highly integrated ICs for the control of variable speed drives. It integrates a motor controller with a high voltage three phase gate driver and a voltage regulator.

The motor controller uses the Motion Control Engine (MCE) to create a ready-to-use solution to perform control of a permanent magnet synchronous motor (PMSM) providing the shortest time to market for any motor system at the lowest system and development cost. The integrated script engine allows to add application flexibility without interfering with the motor and PFC control algorithm.

Figure 1

Ordering information

Product type	Control function integrated	Package		
IMD111T-6F040	iMOTION [™] Motor control	PG-LQFP-40-1		
IMD112T-6F040	iMOTION [™] Motor + PFC control	PG-LQFP-40-1		

Table of contents

Table of contents

2 Pin configuration 6 2.1 Pin definitions and functions 6 2.2 Pin configuration drawing IMD111T 9 2.3 Pin configuration drawing IMD112T 10 3 Functional description 11 3.1 Overview 11 3.2 Motion Control Engine 11 3.3 Gate Driver 12 3.4 Low Side Supply (VCC, VSS and COM) 12 3.5 High Side Supplies (VB1,2,3 and VS1,2,3) 12 3.6 Low and High Side Outputs (LO1,2,3 and HO1,2,3) 13 3.7 Internal Voltage Regulator 13 3.8 Application diagrams 14 4 Electrical characteristics and parameters 15 4.1 General parameters 15 4.1.3 Pin Reliability in Overload 16 4.1.4 Operating Conditions 18 4.2 DC characteristics 19 4.1.1 Parameter Interpretation 12 4.2 D coharacteristics <t< th=""><th></th><th>Features</th><th>1</th></t<>		Features	1
Description 2 Table of contents 3 1 Block diagram reference 5 2 Pin configuration 6 2.1 Pin definitions and functions 6 2.2 Pin configuration drawing IMD111T 9 2.3 Pin configuration drawing IMD112T 10 3 Functional description 11 3.1 Overview 11 3.2 Motion Control Engine 11 3.3 Gate Driver 12 3.4 Low Side Supply (VCC, VSS and COM) 12 3.5 High Side Outputs (L01,2,3 and H01,2,3) 13 3.6 Low and High Side Outputs (L01,2,3 and H01,2,3) 13 3.7 Internal Voltage Regulator 13 3.8 Application diagrams 14 4 Electrical characteristics and parameters 15 4.1 General parameters 15 4.1 General parameters 15 4.1.1 Parameter Interpretation 15 4.1.2 Ab		Potential applications	1
Table of contents 3 1 Block diagram reference 5 2 Pin configuration 6 2.1 Pin definitions and functions 6 2.2 Pin configuration drawing IMD111T 9 2.3 Pin configuration drawing IMD112T 10 3 Functional description 11 3.1 Overview 11 3.2 Motion Control Engine 11 3.3 Gate Driver 12 3.4 Low Side Supply (VCC, VSS and COM) 12 3.5 High Side Outputs (L01,2,3 and H01,2,3) 13 3.7 Internal Voltage Regulator 13 3.8 Application diagrams 14 4 Electrical characteristics and parameters 15 4.1 General parameters 15 4.1 Parameter Interpretation 16 4.1 Parameters 15 4.1.4 Operating Conditions 19 4.2 DC characteristics 19 4.2.1 Input/Ou		Product validation	1
1 Block diagram reference 5 2 Pin configuration 6 2.1 Pin definitions and functions 6 2.2 Pin configuration drawing IMD111T 9 2.3 Pin configuration drawing IMD112T 10 3 Functional description 11 3.1 Overview 11 3.2 Motion Control Engine 11 3.3 Gate Driver 12 3.4 Low Side Supply (VCC, VSS and COM) 12 3.5 High Side Outputs (L01,2,3 and H01,2,3) 12 3.6 Low and High Side Outputs (L01,2,3 and H01,2,3) 13 3.7 Internal Voltage Regulator 13 3.8 Application diagrams 14 4 Electrical characteristics and parameters 15 4.1 General parameters 15 4.1.1 Parameter Interpretation 15 4.1.2 Absolute maximum ratings 15 4.1.3 Pin Reliability in Overload 16 4.1.4 Operating Conditions		Description	2
2 Pin configuration 6 2.1 Pin definitions and functions 6 2.2 Pin configuration drawing IMD111T 9 2.3 Pin configuration drawing IMD112T 10 3 Functional description 11 3.1 Overview 11 3.2 Motion Control Engine 11 3.3 Gate Driver 12 3.4 Low Side Supply (VCC, VSS and COM) 12 3.5 High Side Supplies (VB1,2,3 and VS1,2,3) 12 3.6 Low and High Side Outputs (L01,2,3 and H01,2,3) 13 3.7 Internal Voltage Regulator 13 3.8 Application diagrams 14 4 Electrical characteristics and parameters 15 4.1 General parameters 15 4.1.1 Parameter Interpretation 15 4.1.2 Absolute maximum ratings 15 4.1.3 Pin Reliability in Overload 16 4.1.4 Operating Conditions 18 4.2 Dc characteristics		Table of contents	3
2.1 Pin definitions and functions 6 2.2 Pin configuration drawing IMD111T 9 2.3 Pin configuration drawing IMD112T 10 3 Functional description 11 3.1 Overview 11 3.2 Motion Control Engine 11 3.3 Gate Driver 12 3.4 Low Side Supply (VCC, VSS and COM) 12 3.5 High Side Outputs (IC0,2,3 and VS1,2,3) 12 3.6 Low and High Side Outputs (IC0,1,2,3 and HO1,2,3) 13 3.7 Internal Voltage Regulator 13 3.8 Application diagrams 14 4 Electrical characteristics and parameters 15 4.1 General parameters 15 4.1 General parameters 15 4.1.1 Parameter Interpretation 15 4.1.2 Absolute maximum ratings 15 4.1.3 Pin Reliability in Overload 16 4.1.4 Operating Conditions 18 4.2 DC characteristics 19 4.2.1 Input/Output Characteristics	1	Block diagram reference	5
2.2 Pin configuration drawing IMD111T. 9 2.3 Pin configuration drawing IMD112T. 10 3 Functional description 11 3.1 Overview 11 3.2 Motion Control Engine 11 3.3 Gate Driver 12 3.4 Low Side Supply (VCC, VSS and COM) 12 3.5 High Side Supplis (VB1,2,3 and VS1,2,3) 12 3.6 Low and High Side Outputs (L01,2,3 and H01,2,3) 13 3.7 Internal Voltage Regulator 13 3.8 Application diagrams 14 4 Electrical characteristics and parameters 15 4.1 General parameters 15 4.1.1 Parameter Interpretation 15 4.1.2 Absolute maximum ratings 15 4.1.3 Pin Reliability in Overload 16 4.1.4 Operating Conditions 18 4.2 Dc characteristics 19 4.2.1 Input/Output Characteristics 21 4.2.2 Analog comparator characteristics 21 4.2.4 Power Supply Curre	2	Pin configuration	6
2.3 Pin configuration drawing IMD112T. 10 3 Functional description 11 3.1 Overview 11 3.2 Motion Control Engine 11 3.3 Gate Driver 12 3.4 Low Side Supply (VCC, VSS and COM) 12 3.5 High Side Supplies (VB1,2,3 and VS1,2,3) 12 3.6 Low and High Side Outputs (LO1,2,3 and HO1,2,3) 13 3.7 Internal Voltage Regulator 13 3.8 Application diagrams 14 4 Electrical characteristics and parameters 15 4.1 General parameters 15 4.1.1 Parameter Interpretation 15 4.1.2 Absolute maximum ratings 15 4.1.3 Pin Reliability in Overload 16 4.1.4 Operating Conditions 18 4.2 DC characteristics 19 4.2.1 Input/Output Characteristics 21 4.2.2 Analog comparator characteristics 21 4.2.4 Power Supply Current 22 4.2.5 Flash Memory Parameters	2.1	Pin definitions and functions	6
3 Functional description 11 3.1 Overview 11 3.2 Motion Control Engine 11 3.3 Gate Driver 12 3.4 Low Side Supply (VCC, VSS and COM) 12 3.5 High Side Supplies (VB1,2,3 and VS1,2,3) 12 3.6 Low and High Side Outputs (LO1,2,3 and HO1,2,3) 13 3.7 Internal Voltage Regulator 13 3.8 Application diagrams 14 4 Electrical characteristics and parameters 15 4.1 General parameters 15 4.1.1 Parameter Interpretation 15 4.1.2 Absolute maximum ratings 15 4.1.3 Pin Reliability in Overload 16 4.1.4 Operating Conditions 18 4.2 DC characteristics 19 4.2.1 Input/Output Characteristics 21 4.2.2 Analog to Digital Converter (ADC) 22 4.2.3 Analog comparator characteristics 22 4.2.4 Power Supply	2.2	Pin configuration drawing IMD111T	9
3.1 Overview 11 3.2 Motion Control Engine 11 3.3 Gate Driver 12 3.4 Low Side Supply (VCC, VSS and COM) 12 3.5 High Side Supplies (VB1,2,3 and VS1,2,3) 12 3.6 Low and High Side Outputs (LO1,2,3 and HO1,2,3) 13 3.7 Internal Voltage Regulator 13 3.8 Application diagrams 14 4 Electrical characteristics and parameters 15 4.1 General parameters 15 4.1 Parameter Interpretation 15 4.1.1 Parameter Interpretation 16 4.1.2 Absolute maximum ratings 15 4.1.3 Pin Reliability in Overload 16 4.1.4 Operating Conditions 18 4.2 DC characteristics 19 4.2.1 Input/Output Characteristics 21 4.2.2 Analog comparator characteristics 21 4.2.4 Power Supply Current 22 4.2.5 Flash Memory Parameters 22 4.2.6 Static parameters gate driver <td>2.3</td> <td>Pin configuration drawing IMD112T</td> <td>0</td>	2.3	Pin configuration drawing IMD112T	0
3.2 Motion Control Engine	3	Functional description	1
3.3Gate Driver .123.4Low Side Supply (VCC, VSS and COM)123.5High Side Supplies (VB1,2,3 and VS1,2,3)123.6Low and High Side Outputs (LO1,2,3 and HO1,2,3)133.7Internal Voltage Regulator .133.8Application diagrams .144Electrical characteristics and parameters .154.1General parameters .154.1.1Parameter Interpretation .154.1.2Absolute maximum ratings .154.1.3Pin Reliability in Overload .164.1.4Operating Conditions .184.2DC characteristics .194.2.1Input/Output Characteristics .194.2.2Analog comparator characteristics .214.2.3Analog comparator characteristics .214.2.4Power Supply Current .224.2.5Flash Memory Parameters .224.2.6Static parameters gate driver .234.2.7Static parameters outgage regulator .254.3AC characteristics .264.3.1Testing Waveforms .264.3.2On-Chip Oscillator Characteristics .26	3.1	Overview	1
3.4 Low Side Supply (VCC, VSS and COM) 12 3.5 High Side Supplies (VB1,2,3 and VS1,2,3) 12 3.6 Low and High Side Outputs (LO1,2,3 and HO1,2,3) 13 3.7 Internal Voltage Regulator 13 3.8 Application diagrams 14 4 Electrical characteristics and parameters 15 4.1 General parameters 15 4.1.1 Parameter Interpretation 15 4.1.2 Absolute maximum ratings 15 4.1.3 Pin Reliability in Overload 16 4.1.4 Operating Conditions 18 4.2 DC characteristics 19 4.2.1 Input/Output Characteristics 19 4.2.2 Analog to Digital Converter (ADC) 21 4.2.4 Power Supply Current 22 4.2.5 Flash Memory Parameters 22 4.2.6 Static parameters gate driver 23 4.2.7 Static parameters gate driver 23 4.2.7 Static parameters woltage regulator 25 4.3 AC characteristics 26 4	3.2	Motion Control Engine	1
3.5High Side Supplies (VB1,2,3 and VS1,2,3)123.6Low and High Side Outputs (LO1,2,3 and HO1,2,3)133.7Internal Voltage Regulator133.8Application diagrams144Electrical characteristics and parameters154.1General parameters154.1.1Parameter Interpretation154.1.2Absolute maximum ratings154.1.3Pin Reliability in Overload164.1.4Operating Conditions184.2DC characteristics194.2.1Input/Output Characteristics194.2.2Analog comparator characteristics214.2.4Power Supply Current224.2.5Flash Memory Parameters224.2.6Static parameters spate driver234.2.7Static parameters voltage regulator254.3AC characteristics264.3.1Testing Waveforms264.3.2On-Chip Oscillator Characteristics26	3.3	Gate Driver	2
3.6Low and High Side Outputs (LO1,2,3 and HO1,2,3)133.7Internal Voltage Regulator133.8Application diagrams144Electrical characteristics and parameters154.1General parameters154.1.1Parameter Interpretation154.1.2Absolute maximum ratings154.1.3Pin Reliability in Overload164.1.4Operating Conditions184.2DC characteristics194.2.1Input/Output Characteristics194.2.2Analog to Digital Converter (ADC)214.2.4Power Supply Current224.2.5Flash Memory Parameters224.2.6Static parameters gate driver234.2.7Static parameters voltage regulator254.3AC characteristics264.3.1Testing Waveforms264.3.2On-Chip Oscillator Characteristics26	3.4	Low Side Supply (VCC, VSS and COM)1	2
3.7Internal Voltage Regulator133.8Application diagrams144Electrical characteristics and parameters154.1General parameters154.1.1Parameter Interpretation154.1.2Absolute maximum ratings154.1.3Pin Reliability in Overload164.1.4Operating Conditions184.2DC characteristics194.2.1Input/Output Characteristics194.2.2Analog to Digital Converter (ADC)214.2.4Power Supply Current224.2.5Flash Memory Parameters224.2.6Static parameters gate driver234.2.7Static parameters woltage regulator254.3AC characteristics264.3.1Testing Waveforms264.3.2On-Chip Oscillator Characteristics26	3.5	High Side Supplies (VB1,2,3 and VS1,2,3)	2
3.8Application diagrams144Electrical characteristics and parameters154.1General parameters154.1.1Parameter Interpretation154.1.2Absolute maximum ratings154.1.3Pin Reliability in Overload164.1.4Operating Conditions184.2DC characteristics194.2.1Input/Output Characteristics194.2.2Analog to Digital Converter (ADC)214.2.3Analog comparator characteristics214.2.4Power Supply Current224.2.5Flash Memory Parameters224.2.6Static parameters gate driver234.2.7Static parameters voltage regulator254.3AC characteristics264.3.1Testing Waveforms264.3.2On-Chip Oscillator Characteristics26	3.6	Low and High Side Outputs (LO1,2,3 and HO1,2,3)	3
4Electrical characteristics and parameters154.1General parameters154.1.1Parameter Interpretation154.1.2Absolute maximum ratings154.1.3Pin Reliability in Overload164.1.4Operating Conditions184.2DC characteristics194.2.1Input/Output Characteristics194.2.2Analog to Digital Converter (ADC)214.2.3Analog comparator characteristics214.2.4Power Supply Current224.2.5Flash Memory Parameters224.2.6Static parameters gate driver234.2.7Static parameters voltage regulator254.3AC characteristics264.3.1Testing Waveforms264.3.2On-Chip Oscillator Characteristics26	3.7	Internal Voltage Regulator	3
4.1General parameters154.1.1Parameter Interpretation154.1.2Absolute maximum ratings154.1.3Pin Reliability in Overload164.1.4Operating Conditions184.2DC characteristics194.2.1Input/Output Characteristics194.2.2Analog to Digital Converter (ADC)214.2.3Analog comparator characteristics214.2.4Power Supply Current224.2.5Flash Memory Parameters224.2.6Static parameters gate driver234.2.7Static parameters voltage regulator254.3AC characteristics264.3.1Testing Waveforms264.3.2On-Chip Oscillator Characteristics26	3.8	Application diagrams	.4
4.1.1Parameter Interpretation154.1.2Absolute maximum ratings154.1.3Pin Reliability in Overload164.1.4Operating Conditions184.2DC characteristics194.2.1Input/Output Characteristics194.2.2Analog to Digital Converter (ADC)214.2.3Analog comparator characteristics214.2.4Power Supply Current224.2.5Flash Memory Parameters224.2.6Static parameters gate driver234.2.7Static parameters voltage regulator254.3AC characteristics264.3.1Testing Waveforms264.3.2On-Chip Oscillator Characteristics26	4	Electrical characteristics and parameters1	15
4.1.2Absolute maximum ratings154.1.3Pin Reliability in Overload164.1.4Operating Conditions184.2DC characteristics194.2.1Input/Output Characteristics194.2.2Analog to Digital Converter (ADC)214.2.3Analog comparator characteristics214.2.4Power Supply Current224.2.5Flash Memory Parameters224.2.6Static parameters gate driver234.2.7Static parameters voltage regulator254.3AC characteristics264.3.1Testing Waveforms264.3.2On-Chip Oscillator Characteristics26	4.1	General parameters	.5
4.1.3Pin Reliability in Overload164.1.4Operating Conditions184.2DC characteristics194.2.1Input/Output Characteristics194.2.2Analog to Digital Converter (ADC)214.2.3Analog comparator characteristics214.2.4Power Supply Current224.2.5Flash Memory Parameters224.2.6Static parameters gate driver234.2.7Static parameters voltage regulator254.3AC characteristics264.3.1Testing Waveforms264.3.2On-Chip Oscillator Characteristics26	4.1.1	Parameter Interpretation	.5
4.1.4Operating Conditions184.2DC characteristics194.2.1Input/Output Characteristics194.2.2Analog to Digital Converter (ADC)214.2.3Analog comparator characteristics214.2.4Power Supply Current224.2.5Flash Memory Parameters224.2.6Static parameters gate driver234.2.7Static parameters voltage regulator254.3AC characteristics264.3.1Testing Waveforms264.3.2On-Chip Oscillator Characteristics26	4.1.2	Absolute maximum ratings 1	15
4.2DC characteristics194.2.1Input/Output Characteristics194.2.2Analog to Digital Converter (ADC)214.2.3Analog comparator characteristics214.2.4Power Supply Current224.2.5Flash Memory Parameters224.2.6Static parameters gate driver234.2.7Static parameters voltage regulator254.3AC characteristics264.3.1Testing Waveforms264.3.2On-Chip Oscillator Characteristics26	4.1.3	Pin Reliability in Overload	6
4.2.1Input/Output Characteristics194.2.2Analog to Digital Converter (ADC)214.2.3Analog comparator characteristics214.2.4Power Supply Current224.2.5Flash Memory Parameters224.2.6Static parameters gate driver234.2.7Static parameters voltage regulator254.3AC characteristics264.3.1Testing Waveforms264.3.2On-Chip Oscillator Characteristics26	4.1.4	Operating Conditions	.8
4.2.2Analog to Digital Converter (ADC)214.2.3Analog comparator characteristics214.2.4Power Supply Current224.2.5Flash Memory Parameters224.2.6Static parameters gate driver234.2.7Static parameters voltage regulator254.3AC characteristics264.3.1Testing Waveforms264.3.2On-Chip Oscillator Characteristics26	4.2	DC characteristics	9
4.2.3Analog comparator characteristics214.2.4Power Supply Current224.2.5Flash Memory Parameters224.2.6Static parameters gate driver234.2.7Static parameters voltage regulator254.3AC characteristics264.3.1Testing Waveforms264.3.2On-Chip Oscillator Characteristics26	4.2.1	Input/Output Characteristics 1	9
4.2.4Power Supply Current	4.2.2	Analog to Digital Converter (ADC)	21
4.2.5Flash Memory Parameters224.2.6Static parameters gate driver234.2.7Static parameters voltage regulator254.3AC characteristics264.3.1Testing Waveforms264.3.2On-Chip Oscillator Characteristics26	4.2.3	Analog comparator characteristics 2	21
4.2.6Static parameters gate driver234.2.7Static parameters voltage regulator254.3AC characteristics264.3.1Testing Waveforms264.3.2On-Chip Oscillator Characteristics26	4.2.4	Power Supply Current	22
4.2.7Static parameters voltage regulator254.3AC characteristics264.3.1Testing Waveforms264.3.2On-Chip Oscillator Characteristics26	4.2.5	Flash Memory Parameters	22
4.3AC characteristics264.3.1Testing Waveforms264.3.2On-Chip Oscillator Characteristics26	4.2.6	Static parameters gate driver	23
4.3.1Testing Waveforms.264.3.2On-Chip Oscillator Characteristics.26	4.2.7	Static parameters voltage regulator 2	25
4.3.2 On-Chip Oscillator Characteristics	4.3		
	4.3.1	Testing Waveforms	26
	4.3.2	On-Chip Oscillator Characteristics	26
	4.3.3	Dynamic parameters gate driver 2	28

Table of contents

4.3.4	Timing diagrams
4.4	Motor Control Parameters
4.4.1	PWM Characteristics
4.4.2	Current Sensing
4.4.3	Fault Timing
4.5	Power Factor Correction (PFC) parameters32
4.5.1	Boost PFC characteristics
4.5.2	Totem Pole PFC characteristics 32
4.5.3	PFC Current Sensing
4.6	Control Interface Parameters
4.6.1	Control Input Interfaces
4.6.2	Serial Interface Parameters
4.6.2.1	UART Interface
4.6.3	Over Temperature Input
4.6.4	Pulse Output
5	Device and package specifications
5.1	Quality declaration
5.2	SBSL and Chip-IDs
5.3	Thermal considerations 35
5.4	Package Outline PG-LQFP-40-1
5.5	Part marking information
	Revision history
	Disclaimer

1 Block diagram reference

1 Block diagram reference

Figure 2

Block diagram reference

2 Pin configuration

The pin type is specified as follows:

- I digital input
- O digital output
- AIN analog input
- P power

Figure 3 shows the pad structure and pin function control configuration for the input and output pins. The pin function, type and pull up/pull down circuit configuration are all controlled by the Motion Control Engine. Digital input, output or analog input signals that are not assigned to MCE functions can be assigned to the script engine. The gate driver outputs are controlled by MCE PWM signals internally connected to the gate driver inputs.

Figure 3 Pin Pad and Function Configuration

The pin function table given below refers to the standard configuration. The pin control or interface functions are defined by the version of software downloaded to the device and may change. Some of the input pins can be configured to have pull up or pull down resistor and some output pins can be configured to push-pull or open drain. This is described in the respective software reference manual.

Pins can serve multiple functions and have to be configured accordingly. Please also refer to the respective pin configuration drawings in this data sheet and the description in the MCE software reference manual.

Pins that do not have any signal assigned are reserved for future use. These pins should be left unconnected and neither be connected to ground nor to the positive supply.

Note: All required reference voltages are generated by an internal DAC, therefore the pins like REFU, REFV, and REFW only require a blocking capacitor.

2.1 Pin definitions and functions

	1 111 40		Tunctions	
Signal	Туре	IMD111T	IMD112T	Description
Supply	·	·		
VCC1	Power	8	8	Control supply voltage input to the voltage regulator
VCC	Power	22	22	Gate drive supply voltage
VDD	Power	5	5	Digital controller voltage (this 5V LDO output must be blocked with a ceramic capacitor)
VSS	Power	6, 7, 23	6, 7, 23	Ground

Table 1 Pin definitions and functions

Table 1 Pin definitions and functions (continued)								
Signal	Туре	Type IMD111T IMD112T Description						
Motor contro	ol							
СОМ	Р	9	9	Low side gate driver return				
LO1	0	12	12	Low side gate driver output - phase 1				
LO2	0	11	11	Low side gate driver output - phase 2				
LO3	0	10	10	Low side gate driver output - phase 3				
VS1	Р	19	19	High side gate driver return - phase 1				
H01	0	20	20	High side gate driver output - phase 1				
VB1	Р	21	21	High side gate driver positive power supply - phase 1				
VS2	Р	16	16	High side gate driver return - phase 2				
H02	0	17	17	High side gate driver output - phase 2				
VB2	Р	18	18	High side gate driver positive power supply - phase 2				
VS3	Р	13	13	High side gate driver return - phase 3				
НОЗ	0	14	14	High side gate driver output - phase 3				
VB3	Р	15	15	High side gate driver positive power supply - phase 3				
VDC	AIN	36	36	DC bus sensing input				
ISS/IU	AIN	40	40	Current sense input single shunt / phase U				
IV	AIN	37	37	Current sense input phase V / analog input				
IW	AIN	33	33	Current sense input phase W / analog input				
REFU ¹⁾	0	39	39	Itrip single shunt/phase U reference DAC output				
REFV	AIN	38	38	Itrip phase V reference / analog input				
REFW	AIN	32	32	Itrip phase W reference / analog input				
Hall sensor i	nputs							
AHALL1+	AIN	32	32	Analog Hall Element input 1 (+)				
AHALL1-	AIN	33	33	Analog Hall Element input 1 (-)				
AHALL2+	AIN	38	38	Analog Hall Element input 2 (+)				
AHALL2-	AIN	37	37	Analog Hall Element input 2 (-)				
HALL1	I	28	28	Digital Hall sensor input 1				
HALL2	I	29	29	Digital Hall sensor input 2				
HALL3	I	30	30	Digital Hall sensor input 3				
Power facto	correction							
PFCG0	0	-	24	PFC gate drive 0				
PFCG1	0	-	25	PFC gate drive 1 (totem-pole PFC only)				
IPFC	AIN	-	34	PFC current sensing				
PFCREF	AIN	-	3	PFC Itrip comparator reference input				
PFCITRIP	AIN	-	4	PFC Itrip comparator input				

¹ This pin must have a filter capacitor connected to ground

Signal	Type IMD111T IMD112T			Description			
VAC1	AIN	-	2	VAC sense input line 1			
VAC2	AIN	-	1	VAC sense input line 2			
Interface							
DUTYFREQ	1	29	29	Duty/Frequency input			
VSP	AIN	31	31	Analog speed reference input			
PGOUT	0	25	25	Pulse output			
PARAM	AIN	34	-	Parameter table selection, analog			
NTC	AIN	35	35	External thermistor input			
DIR	I	24	30	CW/CCW rotation direction input			
RXD0	I	26	26	Serial port 0, device programming, receive input			
TXD0	0	27	27	Serial port 0, device programming, transmit output			
RXD1	I	1	-	Serial port 1, user communication, receive input			
TXD1	0	2	-	Serial port 1, user communication, transmit output			
Scripting ²⁾	I	1					
GPIO1	I/O	25	25	Digital I/O			
GPIO2	I/O	28	28	Digital I/O			
GPIO3	I/O	29	29	Digital I/O			
GPIO4	I/O	30	-	Digital I/O			
GPIO6	I/O	24	30	Digital I/O			
GPIO7	I/O	1	-	Digital I/O			
GPIO8	I/O	2	-	Digital I/O			
GPIO9	I/O	3	-	Digital I/O			
GPIO10	I/O	4	-	Digital I/O			
AINO	AIN	31	31	Analog input			
AIN1	AIN	32	32	Analog input			
AIN2	AIN	33	33	Analog input			
AIN3	AIN	34	-	Analog input			
AIN4	AIN	35	35	Analog input			
AIN7	AIN	38	38	Analog input			
AIN10	AIN	1	-	Analog input			
AIN11	AIN	2	-	Analog input			

² GPIO29 is an internal MCE output connected to the gate driver enable input

2.2 Pin configuration drawing IMD111T

Figure 4 IMD111T-6F040

Pins that do not have any signal assigned are reserved for future use. Unused pins should be left unconnected and neither be connected to ground nor to the positive supply.

Pins that do not have any signal assigned are reserved for future use. Unused pins should be left unconnected and neither be connected to ground nor to the positive supply.

3 Functional description

3.1 Overview

The IMD111T/IMD112T integrates a controller, a high-voltage three-phase gate driver and a voltage regulator in a single package. The controller PWM outputs are internally connected to the gate driver inputs. Two controller digital pins are also connected to the gate driver enable input and fault output of the gate driver.

The integrated voltage regulator generates the controller 5V supply and can share the same 15V supply rail as the gate driver.

The package PG-LQFP-40-1 is footprint compatible to an industry standard LQFP-48 with pins removed for improved clearance and creepage.

3.2 Motion Control Engine

iMOTION[™] IMD111T/IMD112T use the latest generation of the Motion Control Engine (MCE). The MCE is a ready-to-use solution for variable speed drives and contains all control functions to perform closed loop control of a three phase motor. Optionally, control of a power factor correction (PFC) is provided running in parallel to the motor.

Multiple configurable protections like over- and under-voltage, over current or rotor lock are integrated protecting the power stage as well as the motor itself.

iMOTION[™] IMD111T/IMD112T supports the use in applications requiring functional safety according to IEC/UL 60730-1 ('Class B')

Using the MCE does not require any software development. Instead the MCE is configured for the concrete power stage configuration and motor type using PC based tools. Following parameter creation the behavior of the motor control loop can be monitored and fine tuned in real time. The respective tools are available for download from the iMOTION[™] web pages.

For improved application flexibility the MCE contains a scripting engine running user scripts in the background task. Writing, downloading and monitoring scripts is supported by the above mentioned tools.

The MCE is driven by an internal temperature compensated oscillator that supports peripheral operation at 96 MHz and data processing at 48 MHz.

This data sheet provides all electrical, mechanical, thermal and quality parameters of the IMD111T/IMD112T. A more detailed description of the features and functionality of the MCE can be found in the respective reference manual. The MCE software images are made available for download from the Infineon web site. A special secure boot algorithm assures that these MCE software images can only be installed onto the matching hardware derivative, i.e. the product variant for which the software has been tested for.

3.3 Gate Driver

The integrated gate driver provides three high side and three low side drivers to control power devices like MOS-transistors or IGBTs in 3-phase systems such as variable speed drives. The gate drivers are based on SOI-technology which provides excellent ruggedness to transient voltages. The devices do not have parasitic thyristor structures so parasitic latch-up does not occur for any temperature or voltage condition.

The six independent drivers are controlled by the MCE PWM generator though internal connections. The device includes an under-voltage detection unit that monitors the driver voltage supplies. An under-voltage condition causes the driver to shut off all six switches. The error signal provided by the driver is internally connected to the MCE controller GK input pin to trip the MCE PWM generator. The gate driver enable input EN is internally connected to the MCE controller which allows the SW to manage the device power up sequencing.

The typical output currents can be up to 165 mA for pull-up and 375 mA for pull down. The MCE PWM generator introduces a deadtime between the high and low side signals but the gate driver introduces a fail safe 310 ns minimum dead time. The monolithic integrated bootstrap diode structures between pins VCC and VBx can be used to create the power supply for the high side circuits.

3.4 Low Side Supply (VCC, VSS and COM)

In the figure below, VCC is the low side supply for the gate driver which powers both the input logic and the low side output power stage. The under-voltage detection circuit Input logic is referenced to VSS ground. Output power stage is referenced to COM ground. COM ground is floating respect to VSS ground with a maximum range of operation of +/-5.7 V. A back-to-back zener structure protects grounds from noise spikes.

The under-voltage circuit enables the device to operate when the VCC supply voltage is higher than V_{CCUV+} . The IC shuts down all the gate drivers power outputs, when the VCC supply voltage is below V_{CCUV-} . This prevents the external power switches from critically low gate voltage levels during on-state and therefore from excessive power dissipation.

Figure 6

Low Side Driver circuit

3.5 High Side Supplies (VB1,2,3 and VS1,2,3)

Figure 7 shows the high side gate driver output circuit. VB to VS is the supply voltage supply for the high side gate driver. Each of the three high side circuits can float with respect to VSS following the external high side power device emitter/source voltage. The floating driver stage can be supplied by bootstrap topology using the internal diode connected between VB and VCC.

The device operating area as a function of the supply voltage is given in the *Timing diagrams* section under AC characteristics.

Figure 7 High Side Driver circuit

3.6 Low and High Side Outputs (LO1,2,3 and HO1,2,3)

Low side and high side power outputs are specifically designed for pulse operation such as gate drive of IGBT and MOSFET devices. Low side outputs (i.e. LO1,2,3) are state triggered by the respective inputs, while high side outputs (i.e. HO1,2,3) are edge triggered by the respective inputs. In particular, after an under voltage condition of the VBS supply, a new turn-on signal (edge) is necessary to activate the respective high side output, while after a under voltage condition of the VCC supply, the low side outputs switch to the state of their respective inputs.

3.7 Internal Voltage Regulator

The IMD111T/IMD112T contains a linear voltage regulator that can be used to generate the controller supply voltage from the gate driver supply. The regulator can also supply external components like sensors. The maximum current capability must be respected.

In order to maintain the stability of the control loop the regulator output requires an output capacitor CQ of at least 3.3 μ F with a maximum permissible ESR of 2 Ω . It is recommended to use a multi layer ceramic capacitor for CQ with a nominal capacitance of 4.7 μ F. Aluminum electrolytic as well as tantalum capacitors do not cover the required ESR range over the full operating temperature range. At the input of the regulator an input capacitor is necessary for compensating line influences (100 nF ceramic capacitor recommended). A resistor of approx. 1 Ω in series with CI can dampen oscillations that could occur due to the input inductivity and the input capacitor. If the regulator is sourced via long input lines of several meters it is recommended to place an additional electrolytic capacitor \geq 47 μ F at the input.

In case the integrated controller is supplied from an external source, the internal regulator can be disabled by connecting the respective input to ground.

3.8 Application diagrams

Figure 8 Application diagram single shunt

4 Electrical characteristics and parameters

4.1 General parameters

4.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the IMD111T/IMD112T and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• CC

Such parameters indicate **C**ontroller **C**haracteristics, which are distinctive feature of the IMD111T/IMD112T and must be regarded for a system design.

• SR

Such parameters indicate **S**ystem **R**equirements, which must be provided by the application system in which the IMD111T/IMD112T is designed in.

4.1.2 Absolute maximum ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symbol	Va	alues	Unit	Note or Test Condition
		Min.	Max.		
Ambient temperature	T _A SR	-40	105	°C	
Junction temperature	T _J SR	-40	115	°C	
Storage temperature	T _{ST} SR	-55	125	°C	
Lead temperature (soldering, 30 seconds)	TL		260	°C	
Control supply voltage	V _{CC1}	-42	45	V	
Digital Controller voltage	V _{DD}	-0.3	6	V	
Controller digital and analog pin voltage	V _{ID}	-0.3	V _{DD} +0.3	V	
Input current on any controller pin during overload condition	I _{IN}	-10	10	mA	
Absolute sum of all controller input currents during overload condition	$\Sigma I_{\rm IN}$	-50	50	mA	

Table 2Absolute maximum ratings

Table 2 Absolute maximum ratings (continued)

Parameter	Symbol	Va	lues	Unit	Note or Test Condition
		Min.	Max.		
High side return offset voltage ³⁾	V _S	V _{CC} -V _{BS} -6	600	V	Voltage on high side gate driver return pins relative to the COM pin
High side return offset voltage (t _p < 500 ns, ³⁾)	V _S	V _{CC} -V _{BS} – 50		V	
High side supply offset voltage ³⁾	V _B	V _{CC} – 6	620	V	Voltage on high side gate driver supply pins relative to the COM pin
High side supply offset voltage (t _p < 500 ns, ³⁾)	V _B	V _{CC} – 50		V	
High side floating supply voltage (V _B vs. V _S) (internally clamped)	V _{BS}	-1	20	V	
High side output voltage (V _{HO} vs. V _S)	V _{HO}	-0.5	V _B + 0.5	V	
Gate drive low side supply voltage (internally clamped)	V _{CC}	-1	20	V	
Low side supply voltage (_{VCC} vs. V _{COM})	V _{CCCOM}	-0.5	25	V	
Gate driver ground	V _{COM}	-5.7	5.7	V	relative to V _{SS}
Low side output voltage (V _{LO} vs. V _{COM})	V _{LO}	-0.5	V _{COM} + 0.5	V	
Offset voltage slew rate 4)	dV _S /dt	-	50	V/ns	

Note: Characterized, not tested at manufacturing.

Note: Voltages referenced to V_{SS} if not stated otherwise

4.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.

The table below defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

³ In case $V_{CC} > V_B$ there is an additional power dissipation in the internal bootstrap diode between pins VCC and VBx. Insensitivity of bridge output to negative transient voltage up to -50V is not subject to production test – verified by design / characterization.

⁴ Not subject of production test, verified by characterization

- full operation life-time is not exceeded
- **Operating Conditions** are met for
 - pad supply levels (V_{DD})
 - temperature

If a pin current is outside of the *Operating Conditions* but within the overload conditions, then the parameters of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.

Note: An overload condition on one or more pins does not require a reset.

Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

Table 3Overload Parameters

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Тур.	Max.		
Input current on analog port pins during overload condition	I _{OVA} SR	-3	-	3	mA	
Input current on any port pin during overload condition	I _{OV} SR	-5	-	5	mA	
Absolute sum of all input currents during overload condition	I _{OVS} SR	-	-	25	mA	

Figure 9 shows the path of the input currents during overload via the ESD protection structures. The diodes against *V*_{DD} and ground are a simplified representation of these ESD protection structures.

Figure 9

Input Overload Current via ESD structures

Table 4 and *Table 5* list input voltages that can be reached under overload conditions. Note that the absolute maximum input voltages as defined in the *Absolute maximum ratings* must not be exceeded during overload.

Table 4 PN-Junction Characterisitics for positive Overload					
Pad Type	/ _{OV} = 5 mA				
Standard, High-current,	$V_{\rm IN} = V_{\rm DD} + (0.3 \dots 0.5) \rm V$				
AN/DIG_IN	$V_{AIN} = V_{DD} + 0.5 V$				
	$V_{AREF} = V_{DD} + 0.5 V$				

Table 5PN-Junction Characterisitics for negative Overload						
Pad Type	/ _{OV} = 5 mA					
Standard, High-current	$V_{\rm IN} = V_{\rm SS} - (0.3 \dots 0.5) \rm V$					
AN/DIG_IN	$V_{\rm IN} = V_{\rm SS} - (0.3 \dots 0.5) V$ $V_{\rm AIN} = V_{\rm SS} - 0.5 V$ $V_{\rm AREF} = V_{\rm SS} - 0.5 V$					
	$V_{\text{AREF}} = V_{\text{SS}} - 0.5 \text{ V}$					

4.1.4 Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the IMD111T/IMD112T. All parameters specified in the following tables refer to these operating conditions, unless noted otherwise.

Table 6Recommended Operating Conditions

Parameter	Symbol	bol Values			Unit	Note or Test Condition
		Min.	Тур.	Max.		
Ambient Temperature	T _A SR	-40	-	105	°C	
Junction temperature	T _J SR	-40	-	115	°C	
Positive DC Bus Input Voltage	V _{DCP} SR	12	-	400	V	
Gate Driver High Side Floating Supply Voltage	V _{B1,2,3} SR	V _S + 5	-	V _S + 18	V	
Gate Driver Low Side Supply Voltage	V _{CC} SR	12	-	16.5		
Digital supply voltage	V _{DD} SR	3.0	3.3	5.5	V	Internal voltage regulator disabled
Voltage regulator input voltage	V _{CC1} SR	5.5	-	20	V	

4.2 DC characteristics

4.2.1 Input/Output Characteristics

The table below provides the characteristics of the input/output pins of the controller.

- *Note:* These parameters are not subject to production test, but verified by design and/or characterization.
- *Note:* Unless otherwise stated, input DC and AC characteristics, including peripheral timings, assume that the input pads operate with the standard hysteresis.

Table 7 Input/Output Characteristics (Operating Conditions apply)

Parameter	Symbol		Limit Valu	es	Unit	Test Conditions
			Min.	Max.		
Input low voltage on port pins (Standard Hysteresis)	V _{ILPS}	SR	-	0.19 × V _{DD}	V	CMOS Mode
Input high voltage on port pins (Standard Hysteresis)	V _{IHPS}	SR	0.7 × V _{DD}	-	V	CMOS Mode
Input low voltage on port pins (Large Hysteresis, scripting pins only)	V _{ILPL}	SR	-	0.08 × V _{DD}	V	CMOS Mode
Input high voltage on port pins (Large Hysteresis, scripting pins only)	V _{IHPL}	SR	0.85 × V _{DD}	-	V	CMOS Mode
Output low voltage on port pins	V _{OLP}	СС	-	1.0	V	I _{OL} = 11 mA (V) I _{OL} = 7 mA (3.3 V)
			-	0.4	V	I _{OL} = 5 mA (5 V) I _{OL} = 3.5 mA (3.3 V)
Output high voltage on port pins	V _{OHP}	СС	V _{DD} - 1.0	-	V	I _{OH} = -10 mA (5 V) I _{OH} = -7 mA (3.3 V)
			<i>V</i> _{DD} - 0.4	-	V	I _{OH} = -4.5 mA (5 V) I _{OH} = -2.5 mA (3.3 V)
Rise/fall time on standard pad	t _R , t _F	CC	-	12	ns	50 pF @ 5 V
			-	15	ns	50 pF @ 3.3 V.
Pin capacitance (digital inputs/outputs)	C _{IO}	CC	-	10	pF	
Pull-up/-down resistor on port pins	R _{PUP}	СС	20	50	kΩ	$V_{\rm IN} = V_{\rm SS}$
(if enabled in software)						
Input leakage current ⁵⁾	I _{OZP}	CC	-1	1	μA	$0 < V_{\rm IN} < V_{\rm DD},$

⁵ An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin.

Table 7 Input/Output Characteristics (Operating Conditions apply) (continued)

Parameter	Symbol		Limit Va	Limit Values		Test Conditions
			Min.	Max.		
						<i>T</i> _A 105°C
Maximum current per pin standard pin	I _{MP}	SR	-10	11	mA	-
Maximum current into V_{DD} / out of V_{SS}	I _{MVDD} / I _{MVSS}	SR	-	260	mA	

4.2.2 Analog to Digital Converter (ADC)

The following table shows the Analog to Digital Converter (ADC) characteristics. This specification applies to all analog input including the analog Hall sensor interface input (AHALLx+/AHALLx-, where x=1,2) as given in the pin configuration list.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Value	S	Unit	Note or Test Condition
		Min.	Тур.	Max.		
Supply voltage range	V _{DD} SR	3.0	-	5.5	V	
Analog input voltage range	V _{AIN} SR	V _{SS} - 0.05	_	V _{DD} + 0.05	V	
Conversion time	<i>t</i> _{C12} CC	-	1.0	-	μs	Defined by SW
Total capacitance of an analog input	C _{AINT} CC	-	-	10	pF	
Sample time	t _{sample} CC	-	333	-	ns	Defined by SW
RMS noise	EN _{RMS} CC	-	1.5	-	LSB12	
DNL error	EA _{DNL} CC	-	±2.0	-	LSB12	
INL error	EA _{INL} CC	-	±4.0	-	LSB12	
Gain error	EA _{GAIN} CC	-	±0.5	-	%	
Offset error	EA _{OFF} CC	-	±8.0	-	mV	

Table 8 ADC Characteristics (Operating Conditions apply)⁶⁾

4.2.3 Analog comparator characteristics

The table below shows the Analog Comparator characteristics.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 9	Table 9 Analog Comparator Characteristics (Operating Conditions apply)										
Parameter	Symbol	Symbol		/alues		Unit	Notes/				
			Min.	Тур.	Max.		Test Conditions				
Input Voltage	V _{CMP}	SR	-0.05	-	V _{DDP} + 0.05	V	includes common mode and differential input voltages				
Input Offset	V _{CMPOFF}	CC	-	+/-3	-	mV	High power mode ΔV _{CMP} < 200 mV				
Input Hysteresis	V _{HYS}	СС	-	+/-15	-	mV	Defined by SW				

⁶ All parameters are defined for the full supply range if not stated otherwise.

4.2.4 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component for the voltage regulator and the controller through the V_{CC1} pin. The V_{CC} supply current is listed under the gate driver parameters.

Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Value	S	Unit	Note or Test Condition
		Min.	Тур.	Max.		
Active mode current motor control only	I _{CC1PWM} CC	-	12	25	mA	T _a = 25°C
Active mode current motor control plus PFC	I _{CC1PFC} CC	-	16	25	mA	T _a = 25°C

Table 10Power Supply parameter table; V_{CC1} =15V

4.2.5 Flash Memory Parameters

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 11Flash Memory Parameters

Parameter	Symbol		Value	es	Unit	Note or Test Condition
		Min.	Тур.	Max.		
Data Retention Time	t _{RET} CC	10			years	Max. 100 erase / program cycles
Erase Cycles	N _{ECYC} CC			5*10 ⁴	cycles	Sum of page and sector erase cycles a page sees
Total Erase Cycles	N _{TECYC} CC			2*10 ⁶	cycles	

4.2.6 Static parameters gate driver

Note: $V_{CC} = V_{BS} = 15V$ unless otherwise specified. All parameters valid for $T_a = 25 \text{ °C}$

Table 12Static parameter

Parameter	Symbol		Value	S	Unit	Note or Test Condition
		Min.	Тур.	Max.		
High level output voltage, LO1,2,3	V _{OH}	_	V _{CC} -0.7		V	I _O = 20mA
High level output voltage, HO1,2,3			V _B -0.7		V	I _O = 20mA
Low level output voltage , LO1,2,3	V _{OL}	_	V _{COM} + 0.2		V	I ₀ = -20mA
Low level output voltage , HO1,2,3	V _{OL}	-	V _S + 0.2		V	I _O = -20mA
V _{CC} and V _{BS} supply undervoltage positive going threshold	V _{CCUV} + V _{BSUV} +	8.3	9	9.8	V	-
V _{CC} and V _{BS} supply undervoltage negative going threshold	V _{CCUV} - V _{BSUV} -	7.5	8.1	8.8	V	-
V _{CC} and V _{BS} supply undervoltage lockout hysteresis	V _{CCUVH} V _{BSUVH}	0.5	0.9		V	V _S = 600V
High side leakage current betw. VS and VSS	I _{LVS+}	-	1	12.5	μA	V _S = 600V
High side leakage current betw. VS and VSS	I _{LVS+} 7)		10	-	μA	T _J = 125 °C, V _S = 600V
High side leakage current between VSx and VSy (x=1,2,3 and y=1,2,3)	I _{LVS-}	-	10	-	μΑ	$T_J = 125 \text{ °C}, V_{Sx} - V_{Sy} = 600V$
Quiescent current V _{BS} supply (VB only)	I _{QBS}	-	210	400	μA	-
Quiescent current V _{CC} supply (VCC only)	I _{QCC}	-	0.75	1.5	mA	
Mean output current for load capacity charging in range from 3 V (20%) to 6 V (40%)	I _{O+}	120	165	-	mA	C _L =10 nF
Peak output current turn on (single pulse)	I _{Opk+}	-	240	-	mA	$R_L = 0 \Omega, t_p < 10 \mu s$
Mean output current for load capacity discharging in range from 12 V (80%) to 9 V (60%)	I _{O-}	250	375	-	mA	C _L =10 nF
Peak output current turn off (single pulse)	I _{Opk-}	-	420		mA	$R_L = 0 \Omega, t_p < 10 \mu s$
Bootstrap diode forward voltage between VCC and VB	V _{F,BSD}	-	1.0	1.3	V	I _F =0.5 mA

⁷ Not subject of production test, verified by characterization

Table 12 Static parameter (continued)

Parameter	Symbol		Values	;	Unit	Note or Test Condition
		Min.	Тур.	Max.		
Bootstrap diode forward current between VCC and VB	I _{F,BSD}	27	51	75	mA	V _F =4 V
Bootstrap diode resistance	R _{BSD}	24	40	60	Ω	V _{F1} =4 V, V _{F2} =5 V

4.2.7 Static parameters voltage regulator

Table 13Static parameters

Parameter	Symbol		Value	es	Unit	Note or Test Condition
		Min.	Тур.	Max.		
Input Voltage	V _{CC1}	5.5		20	V	
Output Voltage	V _Q	4.80	5.00	5.20	V	$1 \text{ mA} \le I_Q \le 30 \text{ mA}$
Output Current Limitation	/ _{QExt}			10	mA	Total regulator output for external devices
Dropout Voltage ⁸⁾	V _{dr}	-	250	300	mV	l _Q = 20 mA
Output capacitor	C _Q	3.3	-	-	μF	ESR≤2Ωat 10 kHz
Load Regulation	ΔV _Q	-	17	50	mV	1 mA < <i>I</i> _Q < 25 mA; <i>T</i> _j = 25°C;
Line Regulation	ΔV _Q	-	10	25	mV	$V_{\rm I} = (V_{\rm Q,nom} + 0.5 \text{ V})$ to 36 V;
						$I_{Q} = 1 \text{ mA}; T_{j} = 25^{\circ}\text{C}$
Power Supply Ripple Rejection	PSRR	-	60	-	dB	<i>f</i> _r = 100 kHz ;
						<i>V</i> _r = 0.5 Vpp

⁸ Measured when the output voltage VQ has dropped 100 mV from the nominal value.

4.3 AC characteristics

4.3.1 Testing Waveforms

Figure 10 Rise/Fall Time Parameters

Figure 11 Testing Waveform, Output Delay

4.3.2 On-Chip Oscillator Characteristics

Table 14 provides the characteristics of the 96 MHz digital controlled oscillator DCO1. The DCO1 is used as the time base during normal operation.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol	Limit	Values		Unit	Test Conditions
		Min.	Тур.	Max.		
Nominal frequency	f _{NOM} CC	-	96	-	MHz	under nominal conditions after trimming

Table 1496 MHz DC01 Characteristics

Table 1496 MHz DCO1 Characteristics (continued)

Parameter	Symbol	Limit	Values		Unit	Test Conditions
		Min.	Тур.	Max.		
Accuracy with adjustment algorithm ⁹⁾ based on temperature sensor	$\Delta f_{\rm LTTS}$ CC	-0.6	-	+0.6	%	with respect to f _{NOM} (typ), T _A from 0°C to 105°C
		-1.9	-	+1.0	%	with respect to f _{NOM} (typ), T _A from -25 °C to 105°C
		-2.6	-	+1.3	%	with respect to f _{NOM} (typ), T _A from -40° C to 105 °C
Accuracy	$\Delta f_{LT} CC$	-1.7	-	+3.4	%	with respect to f _{NOM} (typ), T _A from 0 ° C to 85 °C
		-3.9	-	+4.0	%	with respect to f _{NOM} (typ), T _A from -40° C to 105 °C

Table 15 provides the characteristics of the 32 kHz digital controlled oscillator used internally as a secondary clock source for the internal watchdog.

Table 1532 kHz WD DCO Characteristics

Parameter	Symbol	Limit	Values		Unit	Test Conditions
		Min.	Тур.	Max.		
Nominal frequency	f _{NOM} CC	32.5	32.75	33	kHz	under nominal conditions ¹⁰⁾ after trimming
Accuracy	$\Delta f_{LT} CC$	-1.7	-	+3.4	%	with respect to f _{NOM} (typ), T _A from 0 ° C to 85 °C
		-3.9	-	+4.0	%	with respect to f _{NOM} (typ), T _A from -40° C to 105 °C

⁹ MCE version newer or equal to V1.03.00, clock adjustment algorithm for improved accuracy enabled

¹⁰ The deviation is relative to the factory trimmed frequency at nominal V_{DDC} and $T_A = +25^{\circ}C$.

4.3.3 Dynamic parameters gate driver

 $V_{CC} = V_{BS} = 15 \text{ V}, V_S = V_{SS} = V_{COM}$ unless otherwise specified. All parameters are valid for $T_a=25 \text{ °C}$.

Table 16Dynamic parameters

Parameter	Symbol		Value	25	Unit	Note or Test Condition
		Min.	Тур.	Max.		
Turn-on propagation delay	t _{on}	400	530	800	ns	
Turn-off propagation delay	t _{off}	400	530	800	ns	
Turn-on rise time	t _r	_	60	100	ns	C _L = 1 nF
Turn-off fall time	t _f	_	26	45	ns	C _L = 1 nF
Dead time	DT	150	310	-	ns	
Matching delay ON, max(ton)- min(ton), ton are applicable to all 6 driver outputs	MT _{ON}	-	20	100	ns	
Matching delay OFF, max(toff)- min(toff), toff are applicable to all 6 driver outputs	MT _{OFF}	-	40	100	ns	
Output pulse width matching. P _{win} -P _{Wout}	РМ	-	10	100	ns	

4.3.4 Timing diagrams

4.4 Motor Control Parameters

The following parameters are defined in the iMOTION[™] Motion Control Engine (MCE) software.

4.4.1 **PWM Characteristics**

Table 17Electrical characteristics

Parameter Symb	Symbol	Symbol Values				Note or test
		Min.	Тур.	Max.		condition
Motor PWM Frequency ¹¹⁾	f _{PWM}	5	16	40	kHz	Min. and Max defined by SW

4.4.2 Current Sensing

Table 18Motor Current Sensing

Parameter	Symbol	Symbol Values				Note or test
		Min.	Тур.	Max.		condition
Input range	I _{PWM}	V _{SS} -0.05	-	V _{DD} +0.05	V	
Configurable analog gain		-	1/3/6/12	-		
Itrip input range	I _{PWMTRIP}	V _{SS} -0.05	-	V _{DD} +0.05	V	
Itrip offset		-	±8	-	mV	

¹¹ Min. and Max limits subject to change in future SW revisions

4.4.3 Fault Timing

Figure 14

Fault timing

Table 19Gatekill timing

Parameter	Symbol		Values			Note or test
		Min.	Тур.	Max.		condition
Motor Fault reset timing	t _{RESET}	-	1.84	-	ms	fault reset command via UART to PWM reactivation
Itrip to PWM shutoff	t _{PWMOFF}	0.075	1.0	10	μs	Configurable in SW

4.5 **Power Factor Correction (PFC) parameters**

The parameters specified for the power factor correction only refer to products with integrated PFC control algorithms.

4.5.1 Boost PFC characteristics

Table 20Electrical characteristics

Parameter	Symbol	Values		bol Values		Unit	Note or test
		Min.	Тур.	Max.		condition	
PFC frequency	f _{PFC}	-	40		kHz	Max defined by SW	

4.5.2 Totem Pole PFC characteristics

Table 21Electrical characteristics

Parameter	Symbol	Values		ymbol Values		Unit	Note or test	
		Min.	Тур.	Max.		condition		
PFC frequency	f _{PFC}	-	40		kHz	Max defined by SW		

4.5.3 PFC Current Sensing

The current sensing specification applies to both PFC algorithms, boost mode and totem pole.

Table 22PFC Current Sensing

Parameter	Symbol		Values			Note or test
		Min.	Тур.	Max.		condition
Input range	I _{PFC}	V _{SS} - 0.05	-	V _{DD} + 0.05	V	V _{DD} = 3.3 or 5.0 V
Configurable analog gain		-	1/3/6/12	-		
PFC Itrip input range	IPFCTRIP	V _{SS} -0.05	-	V _{DD} + 0.05	V	V _{DD} = 3.3 or 5.0 V
Itrip offset		-	±3	-	mV	Input voltage difference > 200mV

4.6 Control Interface Parameters

The following tables specify the interfaces that can be used to control the motor drive in the application.

4.6.1 Control Input Interfaces

The motor speed control and command input can be selected using software parameters. The available interfaces are the UART interface, the VSP AIN voltage or the DUTYFREQ digital input signal. The software reference manual describes speed signal scaling parameters and the start and stop thresholds for each interface.

4.6.2 Serial Interface Parameters

The IMD111T/IMD112T series provides the following communication interfaces.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

4.6.2.1 UART Interface

The UART interface is configured as given below.

Note: Operating Conditions apply.

Table 23Electrical characteristics

Parameter	Symbol Values				Unit	Note or test
		Min.	Тур.	Max.		condition
UART baud rate		1200	57600	-	Bps	
UART mode		-	8-N-1	-		data-parity-stop bit
UART sampling filter period ¹²⁾	T _{UARTFIL}	-	1/16	-	T _{BAUD}	

UART timing

¹² Each bit including start and stop bit is sampled three times at center of a bit at an interval of $1/16 T_{BAUD}$. If three sampled values do not agree, then UART noise error is generated.

4.6.3 Over Temperature Input

The over temperature input can be used to continuously monitor an external temperature sensor like an NTC.

Table 24Over Temperature Input

Parameter Symbol	Symbol	Values			Unit	Note or test
		Min.	Тур.	Max.		condition
Over Temperature to PWM shutdown	t _{OT}		1.0	2.1	ms	

4.6.4 Pulse Output

The IMD111T/IMD112T series can generate a square wave pulse output in sync with the motor rotation which can be used to monitor the motor speed. The number of pulses to be generated for a full rotation can be configured.

Table 25Pulse Output

Parameter	Symbol	Symbol Values				Note or test
		Min.	Тур.	Max.		condition
Pulses per Rotation	PPR	4	-	24		
Pulse duty cycle	t _{PPR}	-	50	-	%	

5 Device and package specifications

5 Device and package specifications

5.1 Quality declaration

Table 26Quality Parameters

Parameter	Symbol Limit Values		Unit	Notes	
		Min.	Max.		
ESD susceptibility according to Human Body Model (HBM)	V _{HBM} SR	-	2000	V	Conforming to ANSI/ ESDA/JEDEC-JS-001
ESD susceptibility according to Charged Device Model (CDM) pins	V _{CDM} SR	-	1000	V	Conforming to ANSI/ ESDA/JEDEC-JS-002
Moisture sensitivity level	MSL CC	_	3	-	JEDEC J-STD-020D
Soldering temperature	T _{SDR} SR	-	260	°C	Profile according to JEDEC J-STD-020D

5.2 SBSL and Chip-IDs

The table below gives the IDs for the individual devices in the IMD111T/IMD112T family. Depending upon the mode either the SBSL-ID (secure boot loader) or the Chip-ID should be used to identify the device. For details refer to the Reference Manual or the iMOTION[™] Programming Manual.

Table 27 SBSL-IDs and Chip-IDs

Product Type	Package	Chip-ID	SBSL-ID
IMD111T-6F040	LQFP-40	0x21110007	0242dca3b8d9690b68bf429211856693
IMD112T-6F040	LQFP-40	0x21120007	02309452a88ab5cb112fc4cfa84dcedc

5.3 Thermal considerations

Table 28 Thermal characteristics of the packages

Parameter	Symbol	Limit values		Unit	Package types
		Min.	Max.		
Thermal resistance Junction- Ambient ¹³⁾	R _{OJA} CC	-	100.0	K/W	PG-LQFP-40-1

When operating the IMD111T/IMD112T in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance R_{OJA} " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed the value specified under Absolut Maximum Ratings.

The difference between junction temperature and ambient temperature is determined by

 $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta JA}$

The internal power consumption is defined as

 $P_{INT} = V_{DD} \times I_{DDP}$ (switching current and leakage current).

¹³ Device mounted on a 4-layer JEDEC board (JESD 51-5).

5 Device and package specifications

The static external power consumption caused by the output drivers is defined as

 $P_{\text{IOSTAT}} = \Sigma((V_{\text{DD}} - V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}}I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DD} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

5.4 Package Outline PG-LQFP-40-1

Revision history

5.5 Part marking information

Figure 17 Part marking

Revision history

Document version	Date of release	Description of changes	
1.0	2020-12-4	Initial release	

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2020-12-4 Published by Infineon Technologies AG 81726 Munich, Germany

© 2020 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference IFX-jxp1587992470902

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.