MOSFET – Power, Single **N-Channel, Logic Level, SOT-23 60 V, 155 m** Ω

NVR5198NL

Features

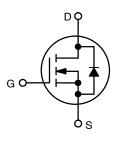
- Small Footprint Industry Standard Surface Mount SOT–23 Package
- Low R_{DS(on)} for Low Conduction Losses and Improved Efficiency
- NVR Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_{.J} = 25°C unless otherwise noted)

,					
Para	Symbol	Value	Unit		
Drain-to-Source Voltage			V_{DSS}	60	V
Gate-to-Source Voltage	Gate-to-Source Voltage			±20	V
Continuous Drain Current R _{ΨJmb}	Steady State	T _{mb} = 25°C	I _D	2.2	Α
(Notes 1, 2, 3, and 4)	State	T _{mb} = 100°C	1	1.6	
Power Dissipation		T _{mb} = 25°C	P _D	1.5	W
R _{ΨJmb} (Notes 1 and 3)		T _{mb} = 100°C		0.6	
Continuous Drain Current R _{θJA}	Steady State	T _A = 25°C	I _D	1.7	Α
(Note 1, 2, 3, and 4)	State	T _A = 100°C		1.2	
Power Dissipation		T _A = 25°C	P _D	0.9	W
R _{θJA} (Notes 1 and 3)		T _A = 100°C		0.4	
Pulsed Drain Current	$T_A = 25^{\circ}C,$ $t_p = 10 \ \mu s$		I _{DM}	27	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to 150	ç
Source Current (Body Diode)			Is	1.9	Α
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

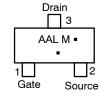
- 1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Psi (Ψ) is used as required per JESD51-12 for packages in which substantially less than 100% of the heat flows to single case surface.
- 3. Surface-mounted on FR4 board using a 650 mm2, 2 oz. Cu pad.
- 4. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX	
60 V	155 mΩ @ 10 V	2.2 A	
60 V	205 mΩ @ 4.5 V		


N-Channel

SOT-23 **CASE 318** STYLE 21

= Device Code AAL Μ = Date Code* = Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NVR5198NLT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel
NVR5198NLT3G	SOT-23 (Pb-Free)	10000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Lead #3 - Drain (Notes 2 and 3)	R _{ΨJmb}	86	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{ heta JA}$	139	°C/W

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS							-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	Reference to 25	5°C, I _D = 250 μA		70		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1.0	μА
		$V_{DS} = 60 \text{ V}$	T _J = 125°C			10	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, \	/ _{GS} = ±20 V			±100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} ,	I _D = 250 μA	1.5		2.5	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J	Reference to 25	5°C, I _D = 250 μA		-6.5		mV/°C
Drain-to-Source On-Resistance	R _{DS(on)}	V _{GS} = 10	V, I _D = 1 A		107	155	mΩ
		V _{GS} = 4.5	V, I _D = 1 A		142	205	
Forward Transconductance	9FS	V _{DS} = 5.0 V, I _D = 1 A			3		S
CHARGES, CAPACITANCES & GATE	RESISTANCE						
Input Capacitance	C _{iss}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = 25 \text{ V}$			182		pF
Output Capacitance	C _{oss}				25		
Reverse Transfer Capacitance	C _{rss}				16		
Total Gate Charge	Q _{G(TOT)}	V _{DS} = 48 V, V _{GS} = 4.5 V			2.8		nC
-		I _D = 1 A	V _{GS} = 10 V		5.1		
Threshold Gate Charge	Q _{G(TH)}	V _{DS} = 48 V, I _D = 1 A			0.3		
Gate-to-Source Charge	Q _{GS}				0.8		
Gate-to-Drain Charge	Q_{GD}	V _{GS} =	= 10 V		1.5		
Plateau Voltage	V_{GP}				3.1		V
Gate Resistance	R_{G}				8		Ω
SWITCHING CHARACTERISTICS (No	ote 6)			•	-		-
Turn-On Delay Time	t _{d(on)}				5		ns
Rise Time	t _r	Vne = 30 V.	V _{GS} = 10 V.		7		
Turn-Off Delay Time	t _{d(off)}	$I_D = 1 A$	$V_{GS} = 10 \text{ V},$ $R_G = 10 \Omega$		13		
Fall Time	t _f				2		
DRAIN-SOURCE DIODE CHARACTE	RISTICS						
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.8	1.2	V
		$I_S = 1 \text{ A}$ $T_J = 125^{\circ}\text{C}$			0.6		
Reverse Recovery Time	t _{rr}				12		ns
Charge Time	ta	Is = 1 Ado: \	$V_{GS} = 0 V_{dc}$		9		
Discharge Time	t _b	$dI_S/dt =$	100 A/μs		3		
Reverse Recovery Stored Charge	Q _{RR}	1			6		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

^{6.} Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

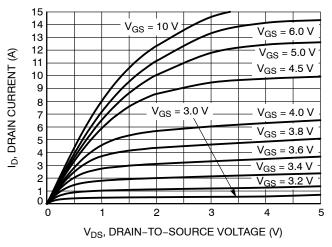


Figure 1. On-Region Characteristics

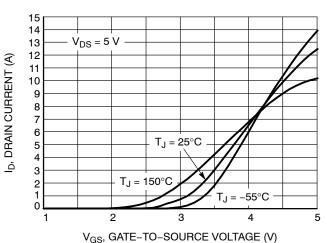


Figure 2. Transfer Characteristics

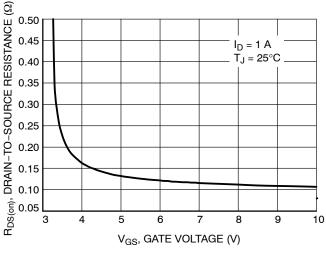


Figure 3. On-Resistance vs. Gate-to-Source Voltage

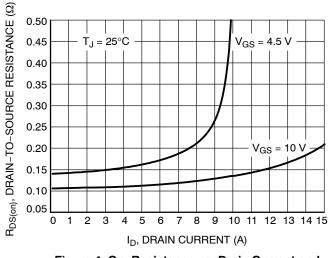


Figure 4. On-Resistance vs. Drain Current and **Gate Voltage**

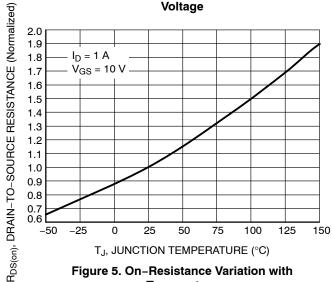


Figure 5. On-Resistance Variation with **Temperature**

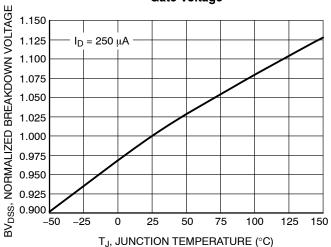


Figure 6. Breakdown Voltage Variation with **Temperature**

TYPICAL CHARACTERISTICS

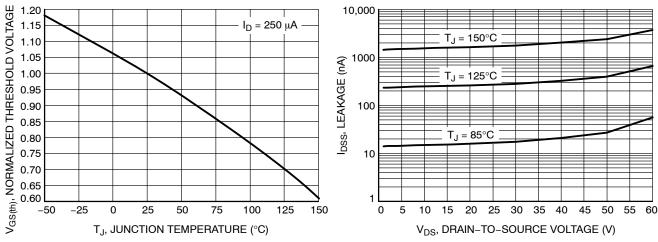


Figure 7. Threshold Voltage Variation with Temperature

Figure 8. Drain-to-Source Leakage Current vs. Voltage

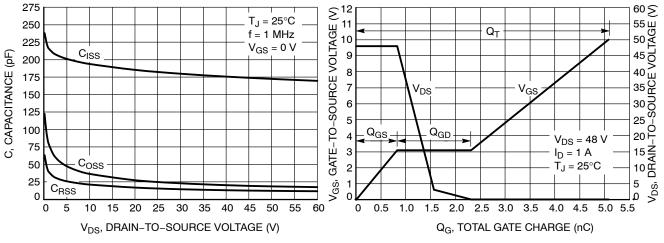


Figure 9. Capacitance Variation

Figure 10. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

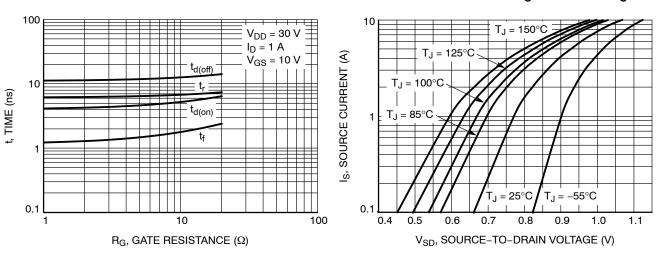


Figure 11. Resistive Switching Time Variation vs. Gate Resistance

Figure 12. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS

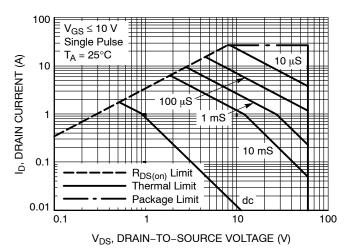


Figure 13. Maximum Rated Forward Biased Safe Operating Area

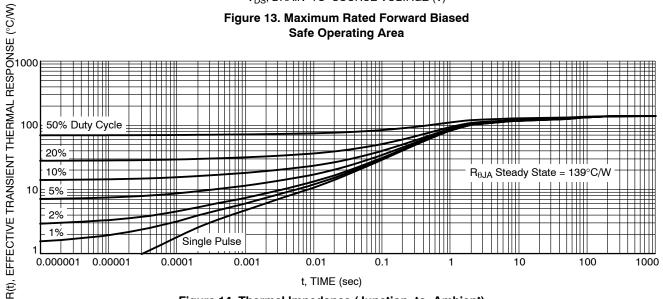
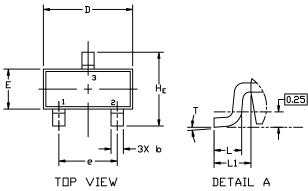
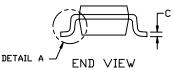


Figure 14. Thermal Impedance (Junction-to-Ambient)



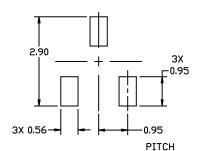

SOT-23 (TO-236) CASE 318 ISSUE AT

DATE 01 MAR 2023

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M,1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS		INCHES			
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
С	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
Ε	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
HE	2.10	2.40	2.64	0.083	0.094	0.104
Т	0*		10°	0*		10*



XXX = Specific Device Code

M = Date Code

■ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-23 (TO-236)		PAGE 1 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318 ISSUE AT

DATE 01 MAR 2023

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE	ı	
STYLE 9: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 10: PIN 1. DRAIN 2. SOURCE 3. GATE	STYLE 11: PIN 1. ANODE 2. CATHODE 3. CATHODE-ANODE	STYLE 12: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 13: PIN 1. SOURCE 2. DRAIN 3. GATE	STYLE 14: PIN 1. CATHODE 2. GATE 3. ANODE
STYLE 15: PIN 1. GATE 2. CATHODE 3. ANODE	STYLE 16: PIN 1. ANODE 2. CATHODE 3. CATHODE	STYLE 17: PIN 1. NO CONNECTION 2. ANODE 3. CATHODE	STYLE 18: PIN 1. NO CONNECTION 2. CATHODE 3. ANODE	STYLE 19: I PIN 1. CATHODE 2. ANODE 3. CATHODE-ANODE	STYLE 20: PIN 1. CATHODE 2. ANODE 3. GATE
STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN	STYLE 22: PIN 1. RETURN 2. OUTPUT 3. INPUT	STYLE 23: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 24: PIN 1. GATE 2. DRAIN 3. SOURCE	STYLE 25: PIN 1. ANODE 2. CATHODE 3. GATE	STYLE 26: PIN 1. CATHODE 2. ANODE 3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE				

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Repr Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-23 (TO-236)		PAGE 2 OF 2

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales