

12mm LED Pixels

Created by Phillip Burgess

https://learn.adafruit.com/12mm-led-pixels

Last updated on 2022-12-01 01:50:11 PM EST

©Adafruit Industries Page 1 of 24

3

6

6

8

12

14

16

17

20

22

Table of Contents

Overview

Project Ideas

Power

• Tips for powering pixel strands:

Arduino Wiring

• Connecting to Arduino

Arduino Code

• Install Arduino Libraries

• Example Code

CircuitPython and Python Wiring

• CircuitPython Wiring

• Python Wiring

CircuitPython and Python Setup

• CircuitPython Setup

• Python Setup

CircuitPython and Python Usage

• Initialization

• Showing Changes

• Filling All Lights At Once

• Setting an individual LED

• Setting Multiple Values

• Getting a Value

• Setting the Brightness

• Full Example Code

Troubleshooting

Dimensions

• “Bullet” Pixels

• “Square” Pixels

©Adafruit Industries Page 2 of 24

Overview

RGB Pixels are digitally-controllable lights you can set to any color, or animate. Each

pixel contains an RGB LED and a controller chip molded into a 'dot' of silicone, with

flanges so they can be pushed into holes in thin sheet material. The dots are

waterproof and rugged — they're typically used to make outdoor signs.

©Adafruit Industries Page 3 of 24

12mm RGB pixels come in two different shapes: “bullet” (thin) and “square” (flat). Both

use the same type of LED, driver chip and data protocols…the main difference is how

they can be mounted: bullets fit better into narrow spaces, while squares are better

suited to shallow spaces.

Both types use an 8mm diffused RGB LED (“12mm” refers to the size of the mounting

hole for installation) — diffused pixels mix colors nicer. At 5 volts, they draw a

maximum of 60 milliamps per pixel: 20 mA each for red, green and blue.

The LED pixels are spaced along a strand of ribbon cable, with about 3 inches (75mm)

©Adafruit Industries Page 4 of 24

between pixels. If additional distance is needed you can cut the ribbon cable and

solder 4 wires to extend the gap to the desired length.

Each pixel contains a small microchip within the silicone dot. The WS2801 LED driver

chip is custom designed for this purpose. We provide an Arduino library for

communicating with the pixels (explained in subsequent pages), but if you want to

write your own code for other microcontrollers, they’re very easy to communicate with

using an SPI-like protocol. For each pixel, one “shifts out” 24 bits of color information

— the first data out corresponds to the pixel closest to the microcontroller. To write

colors to 10 LEDs, you would issue 240 bits (10 * 24). Following the data, a 500

microsecond pause will then “latch” the data and display the new LED colors.

©Adafruit Industries Page 5 of 24

Project Ideas

These pixels could be used for stuff like…

An LED coffee table (this one was “hand made” some time ago…now you could simply

use a long strand of our LED pixels and skip the complicated wiring and driver parts):

A trippy “light bar”:

Signs and displays:

A ball of LEDs:

Power

When running a lot of LEDs, it’s important to keep track of power usage. Individual

LEDs don't get very hot or use tons of power, but they add up fast!

Each single 12mm RGB LED pixel can draw up to 60mA from a 5V supply. That means

a strand of 25 can use up to 1.5 Amps. That’s a peak rate, which assumes that all the

LEDs are on at full brightness. If most of the LEDs are kept dim or off (as when

animating patterns), the power usage can be 1/3 this or less.

As shown in the previous wiring diagram, connect ground to both your power supply

and microcontroller. Then connect the 5V line from the power supply to the red wire

on the LED strand.

We suggest a nice switching supply for driving LED pixels:

Never, NEVER connect more than 5 Volts to the pixels! This will permanently

damage them!

©Adafruit Industries Page 6 of 24

Our 5 Volt, 2 Amp power supply (http://

adafru.it/276) is ideal for one strand of

pixels.

For larger projects using multiple strands

of pixels, our 5 Volt 10 Amp power

supply (http://adafru.it/658) is good for up

to 6 strands (150 pixels total).

The female DC power adapter (http://

adafru.it/368) mates with either of the

above power supplies. Screw terminals

clamp down on the power leads at the end

of an LED strand, so there’s no soldering

required.

Note the embossed polarity markings.

Connect the red wire to the + terminal and

the blue wire to the - terminal.

Pixel strands have these power wires at

both ends. You can use either side. But

don’t leave the wires exposed at the

opposite end! Insulate them with heat

shrink or tape, or trim the exposed wire

flush with the insulation.

©Adafruit Industries Page 7 of 24

https://learn.adafruit.com//assets/1080
https://learn.adafruit.com//assets/1080
http://adafruit.com/products/276
https://learn.adafruit.com//assets/1081
https://learn.adafruit.com//assets/1081
http://adafruit.com/products/658
http://adafruit.com/products/658
https://learn.adafruit.com//assets/1082
https://learn.adafruit.com//assets/1082
http://adafruit.com/products/368

Tips for powering pixel strands:

When linking multiple strands together, power should be split and applied to eac

h strand. If you try to power too many LEDs from just one end of the strand,

they’ll start to “brown out” the further they are from the power supply.

Strands can be powered from either end — “input” and “output” doesn’t apply to

power, only the data signals from the microcontroller.

If the 10 Amp power supply isn’t large enough for your project, a slightly

modified ATX computer power supply () can provide 30 Amps to power upwards

of 500 pixels!

Generally speaking, you should not try to power an LED strand from the

Arduino’s 5V line. This is okay if just a few pixels are lit, but is not adequate for

driving a full strand.

For a standalone application (not USB connected to a computer), you can power

the Arduino from the same regulated 5V supply as the LEDs — connect to the

5V pin on the Arduino, not Vin, and don’t use the DC jack on the Arduino.

Remember to insulate or trim any unused, exposed power wires!

Arduino Wiring

The “magic” of these pixels is that they're digitally controlled…even though there are

only two control lines, you can have as many pixels as you’d like in a single long

strand, yet each remains independently controllable.

Though it looks like the 4-conductor ribbon cable is continuous, it isn't! The pixels

have a distinct “in” and “out” side. Data from the microcontroller arrives on the input

side, where it’s received by the driver chip. The output side then connects to the input

of the next pixel, all the way down the line.

•

•

•

•

•

•

EARLIER VERSIONS OF THESE PIXELS USED A DIFFERENT DRIVER CHIP AND/

OR WIRING COLORS. ANYTHING PURCHASED AFTER AUGUST 2011 SHOULD

MATCH THE FOLLOWING DECRIPTION. We initially sold LEDs in this form factor

using the LPD6803 driver chip (BEFORE August 2011). If you are using those

pixels, please use the 20mm pixel tutorial (www.ladyada.net/products/pixel20mm),

using the wiring and code from that page — nothing further here applies. After

switching to the WS2801 chip, the first batch used different wire colors, but is

functionally the same as described below.

©Adafruit Industries Page 8 of 24

http://www.instructables.com/pages/search/search.jsp?ie=ISO-8859-1&q=ATX
http://www.instructables.com/pages/search/search.jsp?ie=ISO-8859-1&q=ATX
http://www.ladyada.net/products/pixel20mm

The way to tell input from output is different among the shape and version of the

pixels you’re using:

For flat pixels, look for an embossed arrow

on the side of the plastic capsule. This

represents the direction of data flow…bits

from the microcontroller should arrive at

the “tail” of the arrow, not the pointy head

end.

For bullet pixels with a green circuit board

inside, look for the rectangular black chip

on one side of the board. With this chip

facing you, the set of wires in front are the

input — data arrives here — and the wires

underneath are the output to the next

pixel.

For older bullet pixels with a white circuit

board inside, look for the “INPUT” label

printed on the board. With this side facing

you, the set of wires in front are the input

— data arrives here — and the wires

underneath are the output to the next

pixel.

Our LED pixels now include plugs for joining multiple strands and to simplify

connection to a microcontroller:

©Adafruit Industries Page 9 of 24

https://learn.adafruit.com//assets/1022
https://learn.adafruit.com//assets/1022
https://learn.adafruit.com//assets/1023
https://learn.adafruit.com//assets/1023
https://learn.adafruit.com//assets/1024
https://learn.adafruit.com//assets/1024

Your pixels will have one end with a plug -

these tend to be the input side on bullet

shaped pixels but we've found that isn't

true 100% of the time so don't rely on this

as a way of determine which end is the

input

Your pixels will have one end with a

receptacle - these tend to be the input

side on flat shaped pixels but we've found

that isn't true 100% of the time so don't

rely on this as a way of determine which

end is the input

Mating connectors for both are available in

the Adafruit shop. These have a housing at

one end and four tinned wires at the

opposite end…the wires can be soldered

directly to your circuit, or strip a little more

insulation to press these into Arduino pin

sockets.

Luckily, we have them as a pair (http://

adafru.it/578) so no matter what pixels you

end up with, you'll have one for input and

one for output

©Adafruit Industries Page 10 of 24

https://learn.adafruit.com//assets/1051
https://learn.adafruit.com//assets/1051
https://learn.adafruit.com//assets/1052
https://learn.adafruit.com//assets/1052
https://learn.adafruit.com//assets/1053
https://learn.adafruit.com//assets/1053
http://adafruit.com/products/578

There’s one more trick up our sleeve: if

you don’t have a mating connector

available, breadboarding jumper wires can

be pressed into the connector - here we're

assuming that is the input side!

The extra red and blue wires (the exposed ones not inside a connector) are for power

— we’ll explain that in the next section.

Connecting to Arduino

To use our example code for Arduino, connect the yellow wire (serial data) to Arduino

pin 2 and the green wire (serial clock) to pin 3. The software can be configured to use

other pins, but we recommend using this arrangement when starting out, so that

everything is tested in a known configuration. The blue wire (ground) should be

connected to any of the Arduino GND pins.

Why do the bullet and flat pixels use different “genders”

for the connecting plugs? Why can’t I mix and match

strands?

This is intentional, to avoid wiring mishaps. Although the two pixel types have the

same electrical specifications and use the same data protocol, the order of the

wires is different between the two. Joining them directly would mix signal and

power wires improperly, potentially damaging the pixels.

Microcontroller GND to Blue Ground line

Microcontroller D3 to Green Serial Clock

line

Microcontroller D2 to Yellow Serial Data

line

5V Regulated Supply +5V to Red +5V Line

5V Regulated Supply Ground to Blue

Ground line

©Adafruit Industries Page 11 of 24

https://learn.adafruit.com//assets/1054
https://learn.adafruit.com//assets/1054
https://learn.adafruit.com//assets/83414
https://learn.adafruit.com//assets/83414

Download Fritzing Diagram

Arduino Code

Install Arduino Libraries

We have example code ready to go for use with the LEDs. It's written for Arduino,

which should be portable to any microcontroller by adapting the C++ source.

Only one library need to be installed using the Arduino Library Manager…this is the

preferred and modern way. From the Arduino “Sketch” menu, select “Include Library”

then “Manage Libraries…”

Type “adafruit ws2801” in the search field to quickly find the library — Adafruit

WS2801 Library:

After restarting the Arduino software, you should see a new example folder called Ad

afruit WS2801 Library, and inside, an example called strandtest.

©Adafruit Industries Page 12 of 24

https://cdn-learn.adafruit.com/assets/assets/000/083/416/original/arduino-wiring.fzz?1572655029

Example Code

Let's look through the strandtest example code. To use the library in an Arduino

sketch, you'll first need to globally declare a WS2801 object to talk to the strip. It is

invoked with three variables: the number of pixels and the data and clock pins:

int dataPin = 2;

int clockPin = 3;

// Set the first variable to the NUMBER of pixels. 25 = 25 pixels in a row

Adafruit_WS2801 strip = Adafruit_WS2801(25, dataPin, clockPin);

Next, we initialize the strip in the setup() procedure:

void setup() {

 strip.begin();

 // Update LED contents, to start they are all 'off'

 strip.show();

}

begin() initializes the library, while show() refreshes the displayed colors of the

LEDs. You'll need to call show() after changing any pixel colors to see this reflected

in the LEDs. This way you can change the entire strip at one time (it takes the same

amount of time to change one pixel as it does for an entire strip).

Let's look inside an example function, colorWipe() . This creates a 'chase' sequence

that fills the strip with a color. It is basically a loop that increments through every pixel

©Adafruit Industries Page 13 of 24

(which you can query with the numPixels() function) and sets the color of each

(incremented with i) to the value passed (c — colors are expressed as a 32-bit variable

type, though only the bottom 24 bits are used). The strip output is then updated

with show() . Finally there is some delay (otherwise this would happen instantly).

Below that is a helper function that converts a color from separate 8-bit red, green

and blue values into a combined 24-bit value (suitable for passing to colorWipe()).

The brightness range is from 0 (off) to 255 (max brightness).

// fill the dots one after the other with said color

// good for testing purposes

void colorWipe(uint32_t c, uint8_t wait) {

 int i;

 for (i=0; i < strip.numPixels(); i++) {

 strip.setPixelColor(i, c);

 strip.show();

 delay(wait);

 }

}

/* Helper functions */

// Create a 24 bit color value from R,G,B

uint32_t Color(byte r, byte g, byte b)

{

 uint32_t c;

 c = r;

 c <<= 8;

 c |= g;

 c <<= 8;

 c |= b;

 return c;

}

For example, in the loop() function we call colorWipe(Color(255, 0, 0), 50)

which will fill the strand with full-brightness red light, pausing about 50 milliseconds

between pixels.

 colorWipe(Color(255, 0, 0), 50); // red fill

 colorWipe(Color(0, 255, 0), 50); // green fill

 colorWipe(Color(0, 0, 255), 50); // blue fill

CircuitPython and Python Wiring

It's easy to use the 12mm LED pixels with CircuitPython and the Adafruit CircuitPython

WS2801 () module. This module allows you to easily write Python code to control the

lights.

You can use these LEDs with any CircuitPython microcontroller board or with a

computer that has GPIO.

©Adafruit Industries Page 14 of 24

https://github.com/adafruit/Adafruit_CircuitPython_WS2801
https://github.com/adafruit/Adafruit_CircuitPython_WS2801

CircuitPython Wiring

You can wire up the WS2801 strand for CircuitPython and using any two GPIO pins.

One will serve as the clock Pin and one as the Data Pin.

Microcontroller GND to Blue Ground line

Microcontroller D6 to Green Serial Clock

line

Microcontroller D5 to Yellow Serial Data

line

5V Regulated Supply +5V to Red +5V Line

5V Regulated Supply Ground to Blue

Ground line

Download Fritzing Diagram

Python Wiring

Wiring for Python is pretty simple as well.

Microcontroller GND to Blue Ground line

Microcontroller D6 to Green Serial Clock

line

Microcontroller D5 to Yellow Serial Data

line

5V Regulated Supply +5V to Red +5V Line

5V Regulated Supply Ground to Blue

Ground line

Download Fritzing Diagram

Although the driver is capable of using Hardware SPI, we recommend not using it

because the timing can vary from microcontroller to microcontroller and isn't

reliable on certain boards.

©Adafruit Industries Page 15 of 24

https://learn.adafruit.com//assets/83362
https://learn.adafruit.com//assets/83362
https://cdn-learn.adafruit.com/assets/assets/000/083/361/original/circuitpython-software-wiring.fzz?1572636526
https://learn.adafruit.com//assets/94848
https://learn.adafruit.com//assets/94848
https://cdn-learn.adafruit.com/assets/assets/000/094/852/original/python-software-wiring.fzz?1600464229

Hardware SPI Wiring on the Raspberry Pi

The Raspberry Pi seem to be an exception in that Hardware SPI seems to work pretty

well on here.

Microcontroller GND to Blue Ground line

Microcontroller SCLK to Green Serial Clock

line

Microcontroller MOSI to Yellow Serial Data

line

5V Regulated Supply +5V to Red +5V Line

5V Regulated Supply Ground to Blue

Ground line

Download Fritzing Diagram

CircuitPython and Python Setup

CircuitPython Setup

To use the 12mm LED Pixels with your Adafruit CircuitPython board you'll need to

install the Adafruit CircuitPython WS2801 () module on your board.

First make sure you are running the latest version of Adafruit CircuitPython () for your

board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(). Our CircuitPython starter guide has a great page on how to install the library

bundle ().

If you choose, you can manually install the libraries individually on your board:

adafruit_ws2801•

©Adafruit Industries Page 16 of 24

https://learn.adafruit.com//assets/94851
https://learn.adafruit.com//assets/94851
https://cdn-learn.adafruit.com/assets/assets/000/094/853/original/python-hardware-wiring.fzz?1600464247
https://github.com/adafruit/Adafruit_CircuitPython_WS2801
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

Before continuing make sure your board's lib folder or root filesystem has the

adafruit_ws2801.mpy file copied over. You should now be ready to go!

Python Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling SPI on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready ()!

Python Installation of WS2801 Library

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-ws2801

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

CircuitPython and Python Usage

The 12mm LED pixels are really easy to use with CircuitPython and the Adafruit

CircuitPython WS2801 () module.

Initialization

Whether you connected the LED Pixels to your microcontroller through the Hardware

SPI or Software SPI, initialization is about the same.

import board

import adafruit_ws2801

odata = board.D5

oclock = board.D6

numleds = 25

bright = 1.0

•

•

©Adafruit Industries Page 17 of 24

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://github.com/adafruit/Adafruit_CircuitPython_WS2801
https://github.com/adafruit/Adafruit_CircuitPython_WS2801

leds = adafruit_ws2801.WS2801(oclock, odata, numleds, brightness=bright,

auto_write=False)

In this example, we are using D5 and D6 , which are for driving it through software. If

we were driving it through hardware on the Raspberry Pi, we would use the following

Pins:

odata = board.MOSI

oclock = board.SCK

Make sure the number of LEDs corresponds to the actual number that you had. For

instance, if you had two strands of 25 LEDs, that's 50 LEDs.

You can adjust the brightness by changing the number between 0 and 1.0. Setting it

lower than one requires a little more processor power because to achieve that effect,

they need to rapidly turned on and off.

If you didn't want to have to call show() in order to update the strand, you could

either set auto_write to True or remove it from the initializer altogether.

Showing Changes

If auto_write is set to False, you will need to call show() in order to show any

changes you made to the lights:

leds[0] = 0xff0000

leds.show()

Filling All Lights At Once

You can fill all the lights at once with the fill command. The color can either be a

tuple of Red, Green, and Blue as a number between 0-255 each, a hexadecimal

number in the format of 0xRRGGBB:

Use an RGB Tuple

leds.fill((255, 0, 0))

Although the driver is capable of using Hardware SPI, we recommend not using it

because the timing can vary from microcontroller to microcontroller and isn't

reliable on certain boards.

©Adafruit Industries Page 18 of 24

Use a Hexidecimal Value

leds.fill(0xff0000)

Setting an individual LED

You can set the value of a single LED by passing a color value as a tuple or

hexadecimal value to an index:

leds[0] = (0, 0, 255) # Set the first LED blue

leds[1] = 0x00ff00 # Set the second LED Green

Setting Multiple Values

You can set multiple values at the same time using a slice. For instance, if you wanted

to set the first three LEDs to Red, Green, and Blue, you could type the following:

leds[0:3] = ((255, 0, 0),

 (0, 255, 0),

 (0, 0, 255))

Getting a Value

Just like you can set the LEDs, you can also read the current value of the LEDs. The

value will be returned as a Tuple:

leds[0] = 0xff0000

leds[1] = 0x00ff00

leds[2] = 0x0000ff

my_color = leds[0] # Returns (255, 0, 0)

my_colors = leds[0:3] # Returns [(255, 0, 0), (0, 255, 0), (0, 0, 255)]

Setting the Brightness

You can change the brightness of all the lights by changing the brightness property

and setting it between 0 and 1.0:

leds.brightness = 0.5 # Set to 50% Brightness

With just this handful of commands, you can do some cool effects and animations.

Having the auto_write set to False makes adding cool effects even easier

©Adafruit Industries Page 19 of 24

because you can change each light and then call show() to make all changes visible

at once. You could do some cool animations this way. You could even get values and

set other values up the chain for a shifting lights effect.

Full Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

Based on example from

https://github.com/adafruit/Adafruit_CircuitPython_DotStar/tree/master/examples

import time

import random

import board

import adafruit_ws2801

Example for a Feather M4 driving 25 12mm leds

odata = board.D5

oclock = board.D6

numleds = 25

bright = 1.0

leds = adafruit_ws2801.WS2801(

 oclock, odata, numleds, brightness=bright, auto_write=False

)

######################### HELPERS ##############################

a random color 0 -> 224

def random_color():

 return random.randrange(0, 7) * 32

######################### MAIN LOOP ##############################

n_leds = len(leds)

while True:

 # fill each led with a random color

 for idx in range(n_leds):

 leds[idx] = (random_color(), random_color(), random_color())

 # show all leds in led string

 leds.show()

 time.sleep(0.25)

Troubleshooting

How do I install the LEDs (physically)?

It's pretty easy! Simply drill a 12mm hole into any material up to 1.5mm/0.06" thick.

Then push the LED bulb first into the hole. It takes a little wiggling but there are

four flanges molded in so that you can 'push' them thru and the flanges will keep

the LED pixel in place

©Adafruit Industries Page 20 of 24

Many support issues arise from eager users getting ahead of themselves, changing

the code and wiring before confirming that all the pieces work in the standard

configuration. We recommend always starting out with the examples as shown. Use

the pinouts and wiring exactly as in the tutorial, and run the stock, unmodified

“strandtest” example sketch. Only then should you start switching things around.

Here are the most common issues and solutions…

The pixels are wired and powered exactly as in the

tutorial, the sketch compiles and uploads successfully, but

nothing happens.

Double-check all wiring. Are the clock and data wires swapped? Is ground

connected to the Arduino?

Confirm the Arduino is connected to the input end of the strand.

Check power supply polarity and voltage. Are + and – swapped? If you have a

multimeter, confirm 5V DC output (±10%) from the power supply.

Are the power wires at the opposite end of the strand insulated or trimmed?

They should not be left exposed where they might make contact with metal,

or each other.

Is the correct board type selected in the Arduino Tools→Board menu?

A few LEDs randomly turn on when power is applied, but

then nothing happens.

The power supply is probably OK. Check for any of the following:

Double-check all wiring. Are the clock and data wires swapped? Is ground

connected to the Arduino?

Confirm the Arduino is connected to the input end of the strand.

Is the correct board type selected in the Arduino Tools→Board menu?

Did the strandtest code successfully compile and upload?

Only the first few LEDs respond. The rest remain off or

flicker randomly.

Confirm that the number of LEDs in the Adafruit_WS2801() constructor match

the number of LEDs in the strand (both will be 25 if using the strandtest

example and a single strand of LEDs).

Inside each pixel there’s a small circuit board. Give the first bad pixel (and the

one immediately before it) a firm squeeze where the ribbon cable joins the

board — it may simply be a dodgy connection. If that works, you can either

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 21 of 24

cut out the offending pixel and join the two sub-strands, or arrange for a

replacement strand if new.

The LEDs flicker randomly, not the way they’re

programmed to.

Are the clock and data wires swapped? Is ground connected to the Arduino?

“White” LEDs are showing pink instead.

This can happen when trying to power too long of a strand from one end.

Voltage will drop along the length of the strand and the furthest pixels will

“brown out.” Connect power to 25 pixel strand.

Sketch will not compile: error message is

“Adafruit_WS2801 does not name a type”

Confirm the library is unzipped prior to installation.

Confirm the library is properly named and located. The folder should be

called Adafruit_WS2801, and placed inside your personal Documents/

Arduino/Libraries folder — inside the Arduino application folder!

After installation, the Arduino IDE needs to be restarted for new libraries to

be used.

Dimensions

There’s a fair amount of variance between pixels due to the rubbery, waterproof

coating. The figures given here are just guidelines, rounded up to the next whole

millimeter (except for the mounting hole diameter). Allow yourself some extra “wiggle

room” for spacing when planning an installation.

For mounting holes, 11.5 millimeters is a good guideline, or might go as narrow as 11

mm for a really firm grip, though at that size pixels will be hard to remove and the

mounting flange may take some abuse in the process.

•

•

•

•

©Adafruit Industries Page 22 of 24

“Bullet” Pixels

“Square” Pixels

©Adafruit Industries Page 23 of 24

©Adafruit Industries Page 24 of 24

	12mm LED Pixels
	Table of Contents
	Overview
	Project Ideas
	Power
	Arduino Wiring
	Arduino Code
	CircuitPython and Python Wiring
	CircuitPython and Python Setup
	CircuitPython and Python Usage
	Troubleshooting
	Dimensions

	Overview
	Project Ideas
	Power
	Tips for powering pixel strands:
	Arduino Wiring
	Connecting to Arduino
	Why do the bullet and flat pixels use different “genders” for the connecting plugs? Why can’t I mix and match strands?

	Arduino Code
	Install Arduino Libraries
	Example Code
	CircuitPython and Python Wiring
	CircuitPython Wiring
	Python Wiring
	Hardware SPI Wiring on the Raspberry Pi

	CircuitPython and Python Setup
	CircuitPython Setup
	Python Setup
	Python Installation of WS2801 Library

	CircuitPython and Python Usage
	Initialization
	Showing Changes
	Filling All Lights At Once
	Setting an individual LED
	Setting Multiple Values
	Getting a Value
	Setting the Brightness
	Full Example Code

	Troubleshooting
	How do I install the LEDs (physically)?
	The pixels are wired and powered exactly as in the tutorial, the sketch compiles and uploads successfully, but nothing happens.
	A few LEDs randomly turn on when power is applied, but then nothing happens.
	Only the first few LEDs respond. The rest remain off or flicker randomly.
	The LEDs flicker randomly, not the way they’re programmed to.
	“White” LEDs are showing pink instead.
	Sketch will not compile: error message is “Adafruit_WS2801 does not name a type”

	Dimensions
	“Bullet” Pixels
	“Square” Pixels

