

Product Description

Sirenza Microdevices' SBB-5089 is a high performance InGaP HBT MMIC amplifier utilizing a Darlington configuration with an active bias network. The active bias network provides stable current over temperature and process Beta variations. Designed to run directly from a 5V supply, the SBB-5089 does not require a dropping resistor as compared to typical Darlington amplifiers. The SBB-5089 product is designed for high linearity 5V gain block applications that require small size and minimal external components. It is internally matched to 50 ohms.

The matte tin finish on Sirenza's lead-free package utilizes a post annealing process to mitigate tin whisker formation and is RoHS compliant per EU Directive 2002/95. This package is also manufactured with green molding compounds that contain no antimony trioxide nor halogenated fire retardants.

Gain & Return Loss vs. Frequency (w/ BiasTees)

SBB-5089

SBB-5089Z

0.05-6 GHz, Cascadable Active Bias InGaP/GaAs HBT MMIC Amplifier

Product Features

- Available in Lead free, RoHS compliant, & Green packaging
- Wideband Flat Gain to 4GHz: +/-1.1dB
- P1dB = 20.4 dBm @ 1950MHz
- Single Fixed 5V Supply
- Robust 1000V ESD, Class 1C
- Patented Thermal Design & Patent Pending Bias Circuit
- Low Thermal Resistance
- MSL 1 moisture rating

Applications

- PA Driver Amplifier
- Cellular, PCS, GSM, UMTS
- Wideband Intrumentation
- Wireless Data, Satellite Terminals

Symbol	Parameters	Units	Frequency	Min.	Тур.	Max.
S ₂₁	Small Signal Gain	dB	850 MHz 1950 MHz 6000 MHz	19 18.5 14.5	20.5 20 16	22 21.5 17.5
P _{1dB}	Output Power at 1 dB Compression	dBm	850 MHz 1950 MHz	19	20.5 20.5	
IP ₃	Third Order Intercept Point	dBm	850 MHz 1950 MHz	33	38.5 35	
Bandwidth	S ₁₁ , S ₂₂ : Minimum 10dB Return Loss (typ.)	MHz			3000	
S ₁₁	Input Return Loss	dB	1950 MHz	10	14	
S ₂₂	Output Return Loss	dB	1950 MHz	10	14	
S ₁₂	Reverse Isolation	dB	1950 MHz		23.3	
NF	Noise Figure	dB	1950 MHz		4.2	4.9
V _D	Device Operating Voltage	V			5	5.25
I _D	Device Operating Current	mA		65	75	92
R _{TH} , j-l	Thermal Resistance (junction - lead)	°C/W			69.9	

Test Conditions:

 $V_D = 5V$

 $I_D = 75 \text{ mA Typ.}$

OIP₃ Tone Spacing = 1MHz, Pout per tone = 0 dBm

 $T_L = 25$ °C

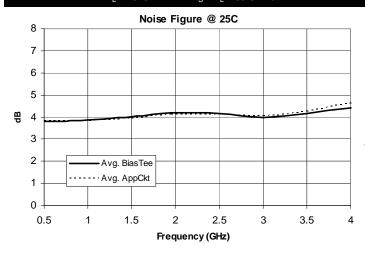
 $Z_S = Z_L = 50 \text{ Ohms}$

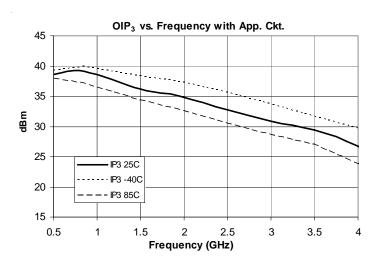
Tested with Bias Tees

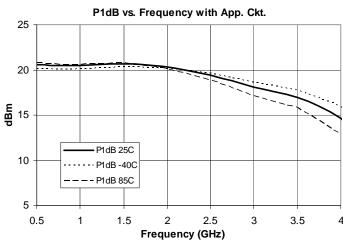
The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems. Copyright 2005 Sirenza Microdevices, Inc.. All worldwide rights reserved.

Typical RF Performance at Key Operating Frequencies (With .5-3.5 GHz Application Circuit)

		Frequency (MHz)						
Symbol	Parameter	Unit	500	850	1950	2500	3500	4000
S ₂₁	Small Signal Gain	dB	20.8	20.8	20.1	19.8	18.7	17.8
OIP ₃	Output Third Order Intercept Point	dBm	38.6	39.2	34.9	32.8	29.4	26.8
P _{1dB}	Output Power at 1dB Compression	dBm	20.5	20.4	20.4	19.4	16.9	14.7
S ₁₁	Input Return Loss	dB	27.2	22.7	14.6	12.9	10.6	11.6
S ₂₂	Output Return Loss	dB	31.8	21.5	13.5	12.0	13.5	27.5
S ₁₂	Reverse Isolation	dB	22.7	22.8	23.4	23.7	24.7	25.7
NF	Noise Figure	dB	3.8	3.8	4.1	4.1	4.3	4.6

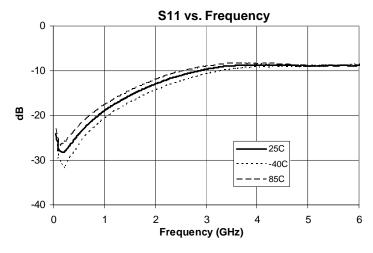

Test Conditions: VCC = 5V

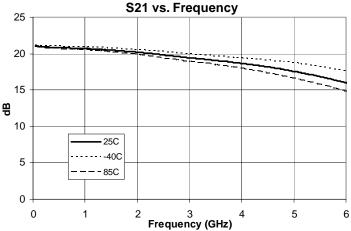

 $I_D = 75 \text{ mA Typ.}$

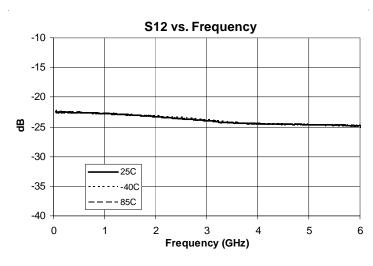

OIP₃ Tone Spacing = 1MHz, Pout per tone = 0 dBm

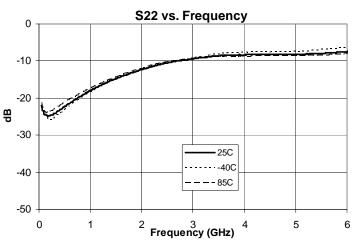
 $T_L = 25^{\circ}C$

 $Z_S = Z_L = 50 \text{ Ohms}$

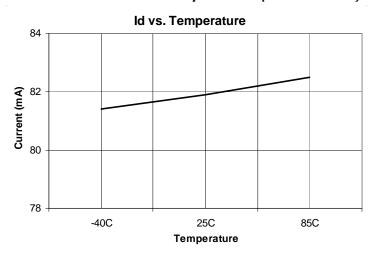


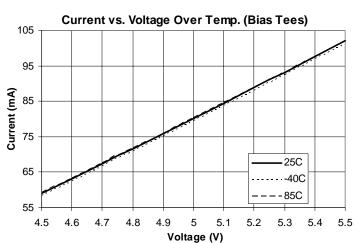


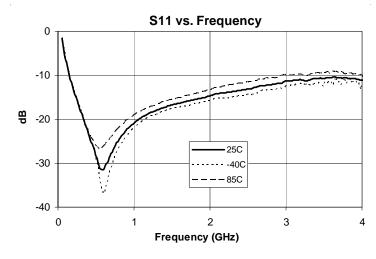


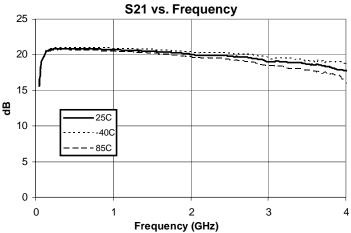


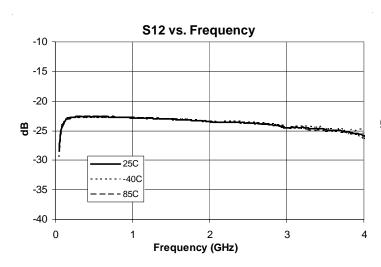
S-Parameters taken with Bias Tees over Temperature

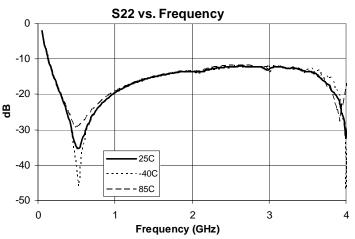




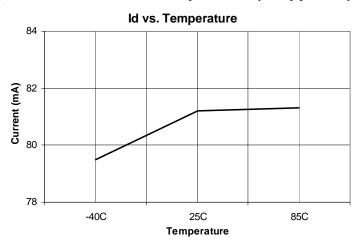

Device Current over Temperature (w/Bias Tees)

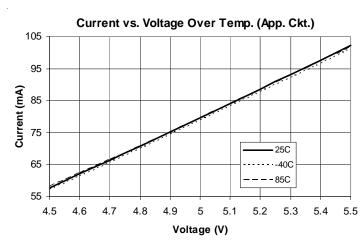




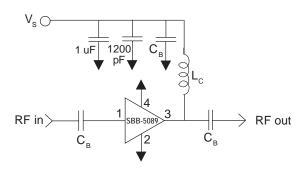


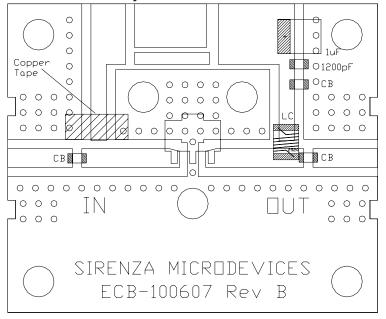
0.5 to 3.5GHz Application Circuit S-Parameters over Temperature





Device Current over Temperature (w/App. Ckt.)




Application Schematic

Application Circuit Element Values

Reference Designator	Frequency (MHz) 500 to 3500
C _B	68pF
L _C	82nH 1008CS

Evaluation Board Layout

Absolute Maximum Ratings

Parameter	Absolute Limit
Max. Device Current (I _D)	100 mA
Max. Device Voltage (V _D)	5.5 V
Max. RF Input Power	+12 dBm
Max. Operating Dissipated Power	0.55 W
Max. Junction Temp. (T _J)	+150°C
Operating Temp. Range (T _L)	-40°C to +85°C
Max. Storage Temp.	+150°C

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

Rias Conditions should also satisfy the following expression:

Bias Conditions should also satisfy the following expression: $I_DV_D < (T_J - T_L) \ / \ R_{TH}, j\text{-}l \qquad T_L = T_{L \in AD}$

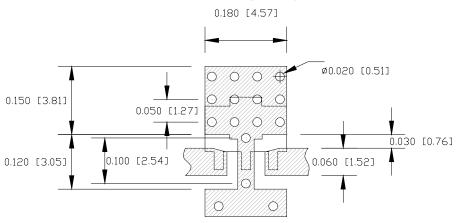
Phone: (800) SMI-MMIC

5

ESD Class 1C

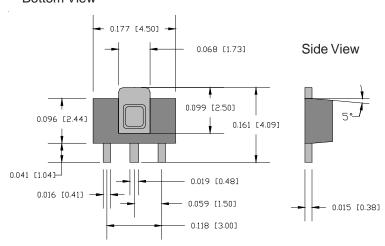
Appropriate precautions in handling, packaging and testing devices must be observed.

Mounting Instructions


- Solder the copper pad on the backside of the device package to the ground plane.
- 2. Use a large ground pad area with many plated through-holes as shown
- We recommend 1 or 2 ounce copper. Measurement for this datasheet were made on a 31 mil thick FR-4 board with 1 ounce copper on both sides.

MSL (Moisture Sensitivity Level) Rating: Level 1

Suggested PCB Pad Layout


Dimensions in inches [millimeters]

Nominal Package Dimensions

Dimensions in inches (millimeters)
Refer to package drawing posted at www.sirenza.com for tolerances

Bottom View

Package Marking

Part Number Ordering Information

Part Number	Reel Size	Devices / Reel
SBB-5089	7"	1000
SBB-5089Z	7"	1000

Pin#	Function	Description
1	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
2, 4	GND	Connection to ground. Use via holes for best performance to reduce lead inductance as close to ground leads as possible
3	RF OUT/ BIAS	RF output and bias pin. DC voltage is present on this pin, therefore a DC blocking capacitor is necessary for proper operation.