Dual 1:4 Low Additive Jitter LVDS Buffer Check for Samples: CDCLVD2104 #### **FEATURES** - Dual 1:4 Differential Buffer - Low Additive Jitter <300 fs, RMS in 10 kHz to 20 MHz - Low Within Bank Output Skew of 35ps (Max) - Universal Inputs Accept LVDS, LVPECL, LVCMOS - One Input Dedicated for Four Output Buffers - 8 LVDS Outputs, ANSI EIA/TIA-644A Standard Compatible - Clock Frequency up to 800 MHz - 2.375–2.625V Device Power Supply - LVDS Reference Voltage, V_{AC_REF}, Available for Capacitive Coupled Inputs - Industrial Temperature Range –40°C to 85°C - Packaged in 5mm × 5mm 28-Pin QFN (RHD) - ESD Protection Exceeds 3 kV HBM, 1 kV CDM #### **APPLICATIONS** - Telecommunications/Networking - Medical Imaging - Test and Measurement Equipment - Wireless Communications - General Purpose Clocking #### DESCRIPTION The CDCLVD2104 clock buffer distributes two clock inputs (IN0, IN1) to a total of 8 pairs of differential LVDS clock outputs (OUT0, OUT7). Each buffer block consists of one input and 4 LVDS outputs. The inputs can either be LVDS, LVPECL, or LVCMOS. The CDCLVD2104 is specifically designed for driving $50-\Omega$ transmission lines. If the input is in single ended mode, the appropriate bias voltage (V_{AC_REF}) should be applied to the unused negative input pin. Using the control pin (EN), outputs can be either disabled or enabled. If the EN pin is left open two buffers with all outputs are enabled, if switched to a logical "0" both buffers with all outputs are disabled (static logical "0"), if switched to a logical "1", one buffer with four outputs is disabled and another buffer with four outputs is enabled. The part supports a fail safe function. It incorporates an input hysteresis, which prevents random oscillation of the outputs in absence of an input signal. The device operates in 2.5V supply environment and is characterized from -40°C to 85°C (ambient temperature). The CDCLVD2104 is packaged in small 28-pin, 5-mm × 5-mm QFN package. Figure 1. Application Example Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. Figure 2. CDCLVD2104 Block Diagram #### **PIN FUNCTIONS** | PIN | | TYPE | DESC | CRIPTION | |----------------------|---------|--|---|---| | NAME | NO. | | | | | VCC | 8,15,28 | Power | 2.5V supplies for the device | | | GND | 1,14 | Ground | Device ground | | | INP0, INN0 | 9,10 | Input | Differential input pair or single ended in | nput | | INP1, INN1 | 5,6 | Input | Differential redundant input pair or sing | le ended input | | OUTP0, OUTN0 | 12,13 | Output | Differential LVDS output pair no. 0 | | | OUTP1, OUTN1 | 16,17 | Output | Differential LVDS output pair no. 1 | INDO/ININIO is the dispart | | OUTP2, OUTN2 | 18,19 | Output | Differential LVDS output pair no. 2 | INP0/INN0 is the input | | OUTP3, OUTN3 | 20,21 | Output | Differential LVDS output pair no. 3 | | | OUTP4, OUTN4 | 22,23 | Output | Differential LVDS output pair no. 4 | | | OUTP5, OUTN5 | 24,25 | Output | Differential LVDS output pair no. 5 | INDA/ININIA is the input | | OUTP6, OUTN6 | 26,27 | Output | Differential LVDS output pair no. 6 | INP1/INN1 is the input | | OUTP7, OUTN7 | 2,3 | Output | Differential LVDS output pair no. 7 | | | V _{AC_REF0} | 11 | Output | Bias voltage output for capacitive coup use a 0.1µF to GND on this pin. | led inputs. If used, it is recommended to | | V _{AC_REF1} | 7 | Output | Bias voltage output for capacitive coup use a 0.1µF to GND on this pin. | led inputs. If used, it is recommended to | | EN | 4 | Input with an internal 200kΩ pull-up and pull-down | Control pin – enables or disables the o | utputs, (See Table 1) | | Thermal Pad | | | See thermal management recommend | ations | ### **Table 1. Output Control Table** | EN | CLOCK OUTPUTS | |------|---| | 0 | All outputs disabled (static "0") | | OPEN | All outputs enabled | | 1 | OUT0, OUT3 enabled and OUT4, OUT7 disabled (static "0") | ### **ABSOLUTE MAXIMUM RATINGS** over operating free-air temperature range (unless otherwise noted)(1) | | | VALUE / UNIT | |------------------|---|-----------------------------------| | V_{CC} | Supply voltage range | -0.3 to 2.8 V | | V_{I} | Input voltage range | -0.2 to (V _{CC} + 0.2) V | | Vo | Output voltage range | -0.2 to (V _{CC} + 0.2) V | | I _{OSD} | Driver short circuit current | See Note (2) | | ESD | Electrostatic discharge (HBM, 1.5 kΩ, 100 pF) | >3000 V | ⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute—maximum—rated conditions for extended periods may affect device reliability. ## RECOMMENDED OPERATING CONDITIONS | | | MIN | TYP | MAX | UNITS | |----------|-----------------------|-------|-----|-------|-------| | V_{CC} | Device supply voltage | 2.375 | 2.5 | 2.625 | V | | T_A | Ambient temperature | -40 | | 85 | °C | Copyright © 2010, Texas Instruments Incorporated ⁽²⁾ The outputs can handle permanent short. #### THERMAL INFORMATION | | | CDCLVD2104 | | |-----------------------|--|------------|--------| | | THERMAL METRIC ⁽¹⁾ | QFN | UNITS | | | | 28 PINS | | | θ_{JA} | Junction-to-ambient thermal resistance | 34 | | | θ _{JC(top)} | Junction-to-case(top) thermal resistance | 27 | | | θЈВ | Junction-to-board thermal resistance | 9 | °C /\/ | | ΨЈТ | Junction-to-top characterization parameter | 0.4 | °C/W | | ΨЈВ | Junction-to-board characterization parameter | 8 | | | $\theta_{JC(bottom)}$ | Junction-to-case(bottom) thermal resistance | 4 | | ⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. ## **ELECTRICAL CHARACTERISTICS** At $V_{CC} = 2.375$ V to 2.625 V and $T_A = -40$ °C to 85°C (unless otherwise noted). | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-----------------------|---|---|---------------------|---------------------|---------------------|-----------------| | EN CONTR | OL INPUT CHARACTERISTICS | • | | | • | | | Vd _{I3} | 3-State | Open | | 0.5×V _{CC} | | V | | Vd _{IH} | Input high voltage | | 0.7×V _{CC} | | | V | | Vd _{IL} | Input low voltage | | | 0. | .2×V _{CC} | V | | Id _{IH} | Input high current | V _{CC} = 2.625 V, V _{IH} = 2.625 V | | | 30 | μΑ | | ld _{IL} | Input low current | V _{CC} = 2.625 V, V _{IL} = 0 V | | | -30 | μΑ | | R _{pull(EN)} | Input pull-up/ pull-down resistor | | | 200 | | kΩ | | 2.5V LVCM | OS (see Figure 7) INPUT CHARACTER | ISTICS | | | | | | f _{IN} | Input frequency | | | | 200 | MHz | | V _{th} | Input threshold voltage | External threshold voltage applied to complementary input | 1.1 | | 1.5 | V | | V_{IH} | Input high voltage | | $V_{th} + 0.1$ | | V_{CC} | V | | V _{IL} | Input low voltage | | 0 | V ₁ | _{th} - 0.1 | V | | I _{IH} | Input high current | $V_{CC} = 2.625 \text{ V}, V_{IH} = 2.625 \text{ V}$ | | | 10 | μΑ | | $I_{\rm IL}$ | Input low current | V _{CC} = 2.625 V, V _{IL} = 0 V | | | -10 | μΑ | | ΔV/ΔΤ | Input edge rate | 20% – 80% | 1.5 | | | V/ns | | C _{IN} | Input capacitance | | | 2.5 | | pF | | DIFFEREN' | TIAL INPUT CHARACTERISTICS | | | | | | | f _{IN} | Input frequency | Clock input | | | 800 | MHz | | V _{IN, DIFF} | Differential input voltage peak-to-peak | V _{ICM} = 1.25 V | 0.3 | | 1.6 | V _{PP} | | V _{ICM} | Input common-mode voltage range | V _{IN, DIFF, PP} > 0.4V | 1 | V _C | _C – 0.3 | V | | I _{IH} | Input high current | V _{CC} = 2.625 V, V _{IH} = 2.625 V | | | 10 | μΑ | | I _{IL} | Input low current | V _{CC} = 2.625 V, V _{IL} = 0 V | | | -10 | μΑ | | ΔV/ΔΤ | Input edge rate | 20% to 80% | 0.75 | | | V/ns | | C _{IN} | Input capacitance | | | 2.5 | | pF | Submit Documentation Feedback # **ELECTRICAL CHARACTERISTICS (continued)** At V_{CC} = 2.375 V to 2.625 V and T_A = -40°C to 85°C (unless otherwise noted). | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------------|--|---|-----|------|-------|---------| | LVDS OUTF | PUT CHARACTERISTICS | | | | | | | V _{OD} | Differential output voltage magnitude | | 250 | | 450 | mV | | ΔV_{OD} | Change in differential output voltage magnitude | $V_{IN, DIFF, PP} = 0.3 \text{ V,R}_L = 100 \Omega$ | -15 | | 15 | mV | | V _{OC(SS)} | Steady-state common mode output voltage | | 1.1 | | 1.375 | V | | $\Delta V_{OC(SS)}$ | Steady-state common mode output voltage | $V_{IN, DIFF, PP} = 0.6 \text{ V,R}_L = 100 \Omega$ | -15 | | 15 | mV | | V_{ring} | Output overshoot and undershoot | Percentage of output amplitude V _{OD} | | | 10% | | | Vos | Output ac common mode | $V_{IN, DIFF, PP} = 0.6 \text{ V}, R_L = 100 \Omega$ | | 40 | 70 | mV_PP | | I _{OS} | Short-circuit output current | $V_{OD} = 0 V$ | | | ±24 | mA | | t _{PD} | Propagation delay | V _{IN, DIFF, PP} = 0.3 V | | 1.5 | 2.5 | ns | | t _{SK, PP} | Part-to-part skew | | | | 600 | ps | | t _{SK, O_WB} | Within bank output skew | | | | 35 | ps | | t _{SK,O_BB} | Bank-to-bank output skew | both inputs are phase aligned | | | 100 | ps | | t _{SK,P} | Pulse skew(with 50% duty cycle input) | Crossing-point-to-crossing-point distortion | -50 | | 50 | ps | | t _{RJIT} | Random additive jitter (with 50% duty cycle input) | Edge speed 0.75V/ns
10 kHz – 20 MHz | | | 0.3 | ps, RMS | | t_R/t_F | Output rise/fall time | 20% to 80%,100 Ω, 5 pF | 50 | | 300 | ps | | I _{CCSTAT} | Static supply current | Outputs unterminated, f = 0 Hz | | 27 | 45 | mA | | I _{CC100} | Supply current | All outputs, $R_L = 100 \Omega$, $f = 100 \text{ MHz}$ | | 74 | 108 | mA | | I _{CC800} | Supply current | All outputs, $R_L = 100 \Omega$, $f = 800 \text{ MHz}$ | | 108 | 144 | mA | | V _{AC_REF} CH | ARACTERISTICS | | • | | | | | V _{AC_REF} | Reference output voltage | $V_{CC} = 2.5 \text{ V}, I_{load} = 100 \mu\text{A}$ | 1.1 | 1.25 | 1.35 | V | # Typical Additive Phase Noise Characteristics for 100 MHz Clock | | PARAMETER | MIN | TYP | MAX | UNIT | |---------------------|--|-----|--------|-----|---------| | phn ₁₀₀ | Phase noise at 100 Hz offset | | -132.9 | | dBc/Hz | | phn _{1k} | Phase noise at 1 kHz offset | | -138.8 | | dBc/Hz | | phn _{10k} | Phase noise at 10 kHz offset | | -147.4 | | dBc/Hz | | phn _{100k} | Phase noise at 100 kHz offset | | -153.6 | | dBc/Hz | | phn _{1M} | Phase noise at 1 MHz offset | | -155.2 | | dBc/Hz | | phn _{10M} | Phase noise at 10 MHz offset | | -156.2 | | dBc/Hz | | phn _{20M} | Phase noise at 20 MHz offset | | -156.6 | | dBc/Hz | | t _{RJIT} | Random additive jitter from 10 kHz to 20 MHz | | 171 | | fs, RMS | # Typical Additive Phase Noise Characteristics for 737.27 MHz Clock | | PARAMETER | MIN | TYP | MAX | UNIT | |---------------------|--|-----|--------|-----|---------| | phn ₁₀₀ | Phase noise at 100 Hz offset | | -80.2 | | dBc/Hz | | phn _{1k} | Phase noise at 1 kHz offset | | -114.3 | | dBc/Hz | | phn _{10k} | Phase noise at 10 kHz offset | | -138 | | dBc/Hz | | phn _{100k} | Phase noise at 100 kHz offset | | -143.9 | | dBc/Hz | | phn _{1M} | Phase noise at 1 MHz offset | | -145.2 | | dBc/Hz | | phn _{10M} | Phase noise at 10 MHz offset | | -146.5 | | dBc/Hz | | phn _{20M} | Phase noise at 20 MHz offset | | -146.6 | | dBc/Hz | | t _{RJIT} | Random additive jitter from 10 kHz to 20 MHz | | 65 | | fs, RMS | ### TYPICAL CHARACTERISTICS #### INPUT CLOCK AND OUTPUT CLOCK PHASE NOISES #### vs FREQUENCY FROM THE CARRIER ($T_A = 25^{\circ}C$ and $V_{CC} = 2.5V$) Input clock RMS jitter is 32 fs from 10 kHz to 20 MHz and additive RMS jitter is 152 fs Figure 3. 100 MHz Input and Output Phase Noise Plot # **TYPICAL CHARACTERISTICS (continued)** # **Differential Output Voltage** #### **TEST CONFIGURATIONS** Figure 5. LVDS Output DC Configuration During Device Test Figure 6. LVDS Output AC Configuration During Device Test Figure 7. DC Coupled LVCMOS Input During Device Test Figure 8. Output Voltage and Rise/Fall Time - A. Output skew is calculated as the greater of the following: As the difference between the fastest and the slowest t_{PLHn} or the difference between the fastest and the slowest t_{PHLn} (n = 0, 1, 2, ..7). - B. Part-to-part skew is calculated as the greater of the following: As the difference between the fastest and the slowest t_{PLLn} or the difference between the fastest and the slowest t_{PLLn} across multiple devices (n = 0, 1, 2, ...7). - C. Both inputs (IN0 and IN1) are phase aligned. Figure 9. Output Skew and Part-to-Part Skew Figure 10. Output Overshoot and Undershoot Figure 11. Output AC Common Mode #### APPLICATION INFORMATION #### THERMAL MANAGEMENT For reliability and performance reasons, the die temperature should be limited to a maximum of 125°C. The device package has an exposed pad that provides the primary heat removal path to the printed circuit board (PCB). To maximize the heat dissipation from the package, a thermal landing pattern including multiple vias to a ground plane must be incorporated into the PCB within the footprint of the package. The Thermal Pad must be soldered down to ensure adequate heat conduction to of the package. Figure 12 shows a recommended land and via pattern. Figure 12. Recommended PCB Layout #### **POWER-SUPPLY FILTERING** High-performance clock buffers are sensitive to noise on the power supply, which can dramatically increase the additive jitter of the buffer. Thus, it is essential to reduce noise from the system power supply, especially when jitter/phase noise is critical to applications. Filter capacitors are used to eliminate the low-frequency noise from the power supply, where the bypass capacitors provide the very low impedance path for high-frequency noise and guard the power-supply system against the induced fluctuations. These bypass capacitors also provide instantaneous current surges as required by the device and should have low equivalent series resistance (ESR). To properly use the bypass capacitors, they must be placed very close to the power-supply pins and laid out with short loops to minimize inductance. It is recommended to add as many high-frequency (for example, $0.1~\mu$ F) bypass capacitors as there are supply pins in the package. It is recommended, but not required, to insert a ferrite bead between the board power supply and the chip power supply that isolates the high-frequency switching noises generated by the clock driver; these beads prevent the switching noise from leaking into the board supply. Choose an appropriate ferrite bead with very low dc resistance because it is imperative to provide adequate isolation between the board supply and the chip supply, as well as to maintain a voltage at the supply pins that is greater than the minimum voltage required for proper operation. Figure 13. Power-Supply Decoupling #### LVDS OUTPUT TERMINATION The proper LVDS termination for signal integrity over two 50 Ω lines is 100 Ω between the outputs on the receiver end. Either dc-coupled termination or ac-coupled termination can be used for LVDS outputs. It is recommended to place termination resister close to the receiver. If the receiver is internally biased to a voltage different than the output common mode voltage of the CDCLVD2104, ac-coupling should be used. If the LVDS receiver has internal 100 ohm termination, external termination must be omitted. Unused outputs can be left open without connecting any trace to the output pins. Figure 14. LVDS Output DC Termination Figure 15. LVDS Output AC Termination With Receiver Internally Biased #### INPUT TERMINATION The CDCLVD2104 inputs can be interfaced with LVDS, LVPECL, or LVCMOS drivers. LVDS Driver can be connected to CDCLVD2104 inputs with dc or ac coupling as shown Figure 16 and Figure 17, respectively. Figure 16. LVDS Clock Driver Connected to CDCLVD2104 Input (AC Coupled) Figure 17. LVDS Clock Driver Connected to CDCLVD2104 Input (DC Coupled) Figure 18 shows how to connect LVPECL inputs to the CDCLVD2104. The series resistors are required to reduce the LVPECL signal swing if the signal swing is $>1.6 \text{ V}_{PP}$. Figure 18. LVPECL Clock Driver Connected to CDCLVD2104 Input Copyright © 2010, Texas Instruments Incorporated Figure 19 illustrates how to couple a 2.5 V LVCMOS clock input to the CDCLVD2104 directly. The series resistance (R_S) should be placed close to the LVCMOS driver if needed. 3.3 V LVCMOS clock input swing needs to be limited to $V_{IH} \le V_{CC}$. Figure 19. 2.5V LVCMOS Clock Driver Connected to CDCLVD2104 Input If one of the input buffers is used, the other buffer should be disabled through the EN pin, and unused input pins should be grounded by 1 $k\Omega$ resistors. #### **REVISION HISTORY** # Changes from Original (June 2010) to Revision A Page # **PACKAGE OPTION ADDENDUM** 10-Dec-2020 #### PACKAGING INFORMATION www.ti.com | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|-------------------------|---------| | CDCLVD2104RHDR | ACTIVE | VQFN | RHD | 28 | 3000 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | CDCLVD
2104 | Samples | | CDCLVD2104RHDT | ACTIVE | VQFN | RHD | 28 | 250 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | CDCLVD
2104 | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. 10-Dec-2020 # **PACKAGE MATERIALS INFORMATION** www.ti.com 1-Sep-2021 # TAPE AND REEL INFORMATION | | | Dimension designed to accommodate the component width | |---|----|---| | E | 30 | Dimension designed to accommodate the component length | | K | (0 | Dimension designed to accommodate the component thickness | | | Ν | Overall width of the carrier tape | | F | 21 | Pitch between successive cavity centers | ### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | CDCLVD2104RHDR | VQFN | RHD | 28 | 3000 | 330.0 | 12.4 | 5.3 | 5.3 | 1.5 | 8.0 | 12.0 | Q2 | www.ti.com 1-Sep-2021 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |----------------|--------------|-----------------|------|------|-------------|------------|-------------| | CDCLVD2104RHDR | VQFN | RHD | 28 | 3000 | 350.0 | 350.0 | 43.0 | 5 x 5 mm, 0.5 mm pitch PLASTIC QUAD FLATPACK - NO LEAD Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. PLASTIC QUAD FLATPACK - NO LEAD #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) ^{6.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. ### IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated