FQB32N20C/FQI32N20C ## 200V N-Channel MOSFET ## **General Description** These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switched mode power supplies, active power factor correction, electronic lamp ballasts based on half bridge topology. ### **Features** - 28A, 200V, $R_{DS(on)}$ = 0.082 Ω @V_{GS} = 10 V Low gate charge (typical 82.5 nC) - Low Crss (typical 185 pF) - Fast switching - · 100% avalanche tested - · Improved dv/dt capability - RoHS Compliant # Absolute Maximum Ratings T_C = 25°C unless otherwise noted | Symbol | Parameter | | FQB32N20C / FQI32N20C | Units | |-------------------|--|----------|-----------------------|-------| | V_{DSS} | Drain-Source Voltage | | 200 | V | | I _D | Drain Current - Continuous (T _C = 25°C) - Continuous (T _C = 100°C) | | 28.0 | Α | | | | | 17.8 | Α | | I _{DM} | Drain Current - Pulsed | (Note 1) | 112 | Α | | V _{GSS} | Gate-Source Voltage | | ± 30 | V | | E _{AS} | Single Pulsed Avalanche Energy | (Note 2) | 955 | mJ | | I _{AR} | Avalanche Current | (Note 1) | 28.0 | Α | | E _{AR} | Repetitive Avalanche Energy | (Note 1) | 15.6 | mJ | | dv/dt | Peak Diode Recovery dv/dt | (Note 3) | 5.5 | V/ns | | | Power Dissipation (T _A = 25°C)* | | 3.13 | W | | P_D | Power Dissipation (T _C = 25°C) | | 156 | W | | | - Derate above 25°C | | 1.25 | W/°C | | T_J , T_{STG} | Operating and Storage Temperature Range | | -55 to +150 | °C | | T _L | Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds | | 300 | °C | ## **Thermal Characteristics** | Symbol | Parameter | Тур | Max | Units | |------------------|--|-----|------|-------| | $R_{\theta JC}$ | Thermal Resistance, Junction-to-Case | | 0.8 | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient* | | 40 | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient | | 62.5 | °C/W | | * When mounted o | n the minimum pad size recommended (PCB Mount) | | | 1 | | Symbol | Parameter | Test Conditions | | Min | Тур | Max | Units | |--|---|---|-----------|-----|--------------------|--------------------|----------| | Off Cha | racteristics | | | | | | | | BV _{DSS} | Drain-Source Breakdown Voltage | V _{GS} = 0 V, I _D = 250 μA | | 200 | | | V | | ΔBV _{DSS}
/ ΔT _J | Breakdown Voltage Temperature
Coefficient | $I_D = 250 \mu A$, Referenced to 25°C | | | 0.24 | ı | V/°C | | I _{DSS} | Zana Oata Waltana Basin Oursant | V _{DS} = 200 V, V _{GS} = 0 V | | | | 10 | μА | | | Zero Gate Voltage Drain Current | V _{DS} = 160 V, T _C = 125°C | | | | 100 | μА | | I _{GSSF} | Gate-Body Leakage Current, Forward | V _{GS} = 30 V, V _{DS} = 0 V | | | | 100 | nA | | I _{GSSR} | Gate-Body Leakage Current, Reverse | V _{GS} = -30 V, V _{DS} = 0 V | | | | -100 | nA | | On Cha | racteristics | | | | | | | | V _{GS(th)} | Gate Threshold Voltage | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$ | | 2.0 | | 4.0 | V | | R _{DS(on)} | Static Drain-Source On-Resistance | V _{GS} = 10 V, I _D = 14 A | | | 0.068 | 0.082 | Ω | | 9 _{FS} | Forward Transconductance | V _{DS} = 40 V, I _D = 14 A | (Note 4) | | 20 | - | S | | C _{iss} C _{oss} C _{rss} | Input Capacitance Output Capacitance Reverse Transfer Capacitance | V _{DS} = 25 V, V _{GS} = 0 V,
f = 1.0 MHz | | | 1700
400
185 | 2220
520
245 | pF
pF | | | ing Characteristics | | | | 100 | 210 | Pi | | t _{d(on)} | Turn-On Delay Time | $V_{DD} = 100 \text{ V}, I_{D} = 32 \text{ A},$ $R_{G} = 25 \Omega$ | | | 25 | 60 | ns | | t _r | Turn-On Rise Time | | | | 270 | 550 | ns | | t _{d(off)} | Turn-Off Delay Time | | | | 245 | 500 | ns | | t _f | Turn-Off Fall Time | () | ote 4, 5) | | 210 | 430 | ns | | Qg | Total Gate Charge | V _{DS} = 160 V, I _D = 32 A, | | | 82.5 | 110 | nC | | Q _{gs} | Gate-Source Charge | $V_{GS} = 10 \text{ V}$ (Note 4, 5) | | | 10.5 | | nC | | Q _{gd} | Gate-Drain Charge | | | | 44.5 | | nC | | | ource Diode Characteristics ar | | | | | | | | l _S | Maximum Continuous Drain-Source Diode Forward Current | | | | 28 | A | | | I _{SM} | Maximum Pulsed Drain-Source Diode F | | | | | 112 | Α | | V _{SD} | Drain-Source Diode Forward Voltage | V _{GS} = 0 V, I _S = 28 A | | | | 1.5 | V | | t _{rr} | Reverse Recovery Time | $V_{GS} = 0 \text{ V}, I_S = 32 \text{ A},$ | | | 265 | | ns | | Q_{rr} | Reverse Recovery Charge | dI _F / dt = 100 A/μs | (Note 4) | | 2.73 | | μС | - **Notes:**1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 1.4mH, I_{AS} = 32A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25°C 3. I_{SD} ≤ 28A, di/dt ≤ 300 A/μ s, V_{DD} ≤ BV $_{DSS}$, Starting T_{J} = 25°C 4. Pulse Test : Pulse width ≤ 300 μ s, Duty cycle ≤ 2% 5. Essentially independent of operating temperature # **Typical Characteristics** Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On-Resistance Variation vs Drain Current and Gate Voltage Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature Figure 5. Capacitance Characteristics Figure 6. Gate Charge Characteristics ©2008 Fairchild Semiconductor Corporation Rev. A1, Oct 2008 Figure 7. Breakdown Voltage Variation vs Temperature Figure 8. On-Resistance Variation vs Temperature Figure 9. Maximum Safe Operating Area Figure 10. Maximum Drain Current vs Case Temperature Figure 11. Transient Thermal Response Curve ©2008 Fairchild Semiconductor Corporation Rev. A1, Oct 2008 # **Gate Charge Test Circuit & Waveform** # **Resistive Switching Test Circuit & Waveforms** ## **Unclamped Inductive Switching Test Circuit & Waveforms** ## Peak Diode Recovery dv/dt Test Circuit & Waveforms Body Diode Reverse Current # Package Dimensions (Continued) # I² - PAK Dimensions in Millimeters #### TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. Build it Now™ CorePLUS™ CorePOWER™ $CROSSVOLT^{\text{TM}}$ CTI ™ Current Transfer Logic™ FcoSPARK® EfficentMax™ EZSWITCH™ * airchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FlashWriter® * FPS™ F-PFS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ GTO™ IntelliMAX™ ISOPI ANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® PDP SPM™ Power-SPM™ PowerTrench® PowerXS™ Programmable Active Droop™ QFET QSTM Quiet Series™ RapidConfigure™ Saving our world, 1mW /W /kW at a time™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ SYSTEM ® GENERAL The Power Franchise® prewer TinyBoost™ TinyBuck™ TinyLogic[®] TIŃYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™ * EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor #### DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. #### LIFE SUPPORT POLICY EIPE SUPPORT FOLICE. FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. #### As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user - A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. #### ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. #### PRODUCT STATUS DEFINITIONS Definition of Terms | Datasheet Identification | Product Status | Definition | |--------------------------|-----------------------|---| | Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. | Rev. I37 FQB32N20C/FQI32N20C Rev. A1