High Efficiency Backlight LED Driver # **General Description** The RT4501/A is a high-efficiency LED driver for backlight applications. An asynchronous boost converter with an internal Schottky diode and a current source driver are designed to support 6LED/channel with wide input voltage range from 2.5V to 5.5V. An I²C interface can provide easy backlight control in fast and high speed mode. The RT4501 supports linear mappings with 256 steps to setup the brightness of backlight LEDs. It also supports PWM dimming to adjust the brightness. For brightness dimming, the RT4501A supports 128 steps pulse dimming which determines the LED current, and RT4501 support 256 steps PWM dimming which determines the LED current. The RT4501/A provides complete protection functions such as input under-voltage lockout, over-current, output over-voltage and over-temperature protection. The OVP threshold voltage can be set at 16V and 25.5V for different applications. The RT4501/A is available in the WL-CSP-10B 0.87x2.07 (BSC) package. ### **Features** - Input Voltage Range: 2.5V to 5.5V - Internal Schottky Diode - Fast-speed mode I²C Compatible Interface - Drive Up to 7 WLEDs in 2 String - External PWM/Pulse Brightness Control - 550k/1.1MHz Switching Frequency - Built-in Internal Soft-Start - PWM Dimming/Pulse Dimming Resolution 256/128 Steps - I²C Programmable 256 Steps Linear Current Regulation - Up to 85% Efficiency with Small Magnetics - Programmable 16V/25.5V OVP - Current Accuracy ±5% and Current Balance ±3% - UVLO, OVP, OCP, OTP Protection - Shutdown Current : < 1μA - Temperature Range : -40°C to 85°C - RoHS Compliant and Halogen Free # **Applications** - Cellular Phones - Digital Cameras - PDAs and Smart Phones - Portable Instruments # Simplified Application Circuit # **Ordering Information** RT4501/A 🗖 Package Type WSC: WL-CSP-10B 0.87x2.07 (BSC) RT4501: PWM Dimming RT4501A: Pulse Dimming Note: Richtek products are: - ▶ RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020. - ▶ Suitable for use in SnPb or Pb-free soldering processes. # **Pin Configurations** (TOP VIEW) WL-CSP-10B 0.87x2.07(BSC) # **Marking Information** RT4501WSC 1T: Product Code W: Date Code RT4501AWSC 28 : Product Code W: Date Code **Functional Pin Description** | Pin No. | Pin Name | Pin Function | | | | |---------|----------|---|--|--|--| | A1 | LX | Switch Node of Boost Converter. Connect an inductor between LX and VIN. | | | | | A2 | GND | Ground. | | | | | B1 | VOUT | Power Output of the Asynchronous Boost Converter for Backlight LEDs. Connect a 1µF or larger ceramic capacitor from VOUT to ground. | | | | | B2 | VIN | Power Input. Connect this pin to the input power supply volta Connect a $10\mu F$ or larger ceramic capacitor from the VIN to ground. | | | | | C1 | PWM | PWM Dimming Input for Backlight LED. | | | | | C2 | EN | Enable Control Input (Active High). The chip is in shutdown mode when the EN pin is low. | | | | | D1 | SDA | I ² C Serial Data Input/Output. An external pull-up resistor is required. | | | | | D2 | SCL | I ² C Serial Clock Input. An external pull-up resistor is required. | | | | | E1 | FB2 | Single Output 2 for Backlight LED. | | | | | E2 | FB1 | Single Output 1 for Backlight LED. | | | | www.richtek.com # **Function Block Diagram** # **Operation Description** The RT4501/A is a high efficiency solution with 14 WLEDs in 2 parallels 7 series for backlight applications. The RT4501/A optimizes the feedback regulation voltage to provide up to 85% high efficiency with as high as 8bits resolution application. ### **Linear Brightness Dimming** The RT4501/A is built-in a I^2C 8-bit resolution brightness control with maximum 20mA/30mA selection. Reg0x02<3> corresponds to full-scale LED current control. Reg0x04 sets 8bits resolution brightness dimming. ### **PWM Brightness Dimming** Besides programmable built-in I²C backlight LED current control, the RT4501 features a built-in PWM dimming current control by setting Reg0x02<6> to 1, offering a linear current dimming by external clock source. In order to guarantee the PWM dimming resolution, recommending dimming frequency have to be operated at range of 400Hz to 20kHz. ### **Pulse Brightness Dimming** The EN pin features a simple digital interface to allow digital brightness control. Using the one-wire dimming brightness control can achieve as high as 128 steps resolution, recommending dimming pulse is larger than $0.2\mu s$. RT4501/A keeps shunt down status, when EN pin is pulled low keeping 1ms. #### **OCP Protection** The RT4501/A features a 1A current limitation. Once detecting current level over current limitation, the RT4501/A's LX witching will be forced off to avoid large current damage. #### **OTP Protection** The over-temperature protection function will be latched at shutdown status when the junction temperature exceeds 150°C for 2ms. After re-power on sequence, the converter will automatically resume switching. ### **OVP Protection** The over-voltage protection function monitors the output voltage via the VOUT pin voltage. The OVP threshold voltage is 25.5V/16V by selection Reg0x02<7>, Once the LED is open, the output voltage will be limited at OVP protection level to avoid device breakdown. RT4501 is shunt-down latched, by triggering OVP event over 40 times. # Absolute Maximum Ratings (Note 1) | • Supply Input Voltage, VIN | 0.3V to 6V | |---|---------------| | Boost Output Voltage, VOUT | 0.3V to 27V | | Switching Voltage, LX | 0.3V to 27V | | • Current Source Voltage, FB1, FB2 | 0.3V to 27V | | • Other Pins, EN, PWM, SCL, SDA | 0.3V to 6V | | Power Dissipation, P_D @ T_A = 25°C | | | WL-CSP-10B 0.87X2.07 (BSC) | 1W | | Package Thermal Resistance (Note 2) | | | WL-CSP-10B 0.87x2.07 (BSC), θ_{JA} | 99.6°C/W | | • Lead Temperature (Soldering, 10 sec.) | 260°C | | • Junction Temperature | 150°C | | Storage Temperature Range | 65°C to 150°C | | ESD Susceptibility (Note 3) | | | HBM (Human Body Model) | 2kV | | MM (Machine Model) | 200V | | | | | Recommended Operating Conditions (Note 4) | | | Supply Input Voltage, VIN | 2.5V to 5.5V | • Junction Temperature Range ----- --- -40°C to 125°C • Ambient Temperature Range ----- -40°C to 85°C # **Electrical Characteristics** $(V_{IN} = 3.6V, C_{IN} = 10\mu F, C_{OUT} = 1\mu F, L = 10\mu H, T_A = 25^{\circ}C, unless otherwise specified)$ | Parameter | r Symbol Test Conditions | | Min | Тур | Max | Unit | | | |-------------------------------------|--------------------------|---|--------|--------|--------|------|--|--| | Input Power Supply | | | | | | | | | | Input Supply Voltage | V _{IN} | | 2.5 | | 5.5 | V | | | | VIN Quiescent Current | IQ | PWM, No Switching | | 0.6 | | mA | | | | Shutdown Current | I _{SHDN} | V _{IN} = 4.2V, EN = GND | | 1 | 3 | μΑ | | | | Under-Voltage Lockout
Threshold | V _{UVLO} | V _{IN} Falling, Check I _Q < 200μA | | | 2.3 | V | | | | Under-Voltage Lockout
Hysteresis | ΔV_{UVLO} | After UVLO, V _{IN} Rising,
Until I _Q > 200µA | | 200 | | mV | | | | Backlight LED Current Sou | irce | | | | | | | | | Accuracy of Output Current | I _{LED_ACC} | FB1, FB2 = 0.15V, I _{FB1} = I _{FB2} = 20mA | -5 | | 5 | % | | | | Matching of Output Current | I _{LED_MAT} | FB1, FB2 = 0.15V, I _{FB1} = I _{FB2} = 20mA | -3 | | 3 | % | | | | Oscillator and Timing | | | | | | | | | | Operating Frequency | f _{SW} | Reg0x03 [6] = 1 | 0.88 | 1.1 | 1.32 | MHz | | | | Maximum Duty Cycle | D _{MAX} | FB1 = FB2 = 0V, check MAX duty | 90 | 95 | | % | | | | Brightness Ramp Rate | T _{RAMP} | Reg0x03 [5:0] = 111111 | 209.72 | 262.14 | 314.58 | ms | | | | Parameter | | Symbol | Test Conditions | Min | Тур | Max | Unit | | |-------------------------------------|-------------------------|-----------------------|------------------------|------|------|------|--------|--| | Power Switch | | | | | | | | | | N-MOSFET On-Resistance | | R _{DS(ON)_N} | V _{IN} = 3.6V | 90 | 175 | 350 | mΩ | | | N-MOSFET Cu | ırrent Limit | IOCP | | 0.8 | 1 | 1.2 | Α | | | N-MOSFET Le
Current | akage | I _{LEAK} | LX = 24V, No Switching | | | 1 | μА | | | Protection Fu | nction | | | | | | | | | Over Veltage F | Over Voltage Protection | | Reg0x02 [7] = 0 | 14 | 16 | 18 | V | | | Over voitage P | | | Reg0x02 [7] = 1 | 24.5 | 25.5 | 26.5 | ٧ | | | Thermal Shutd
Threshold | own | T _{SD} | Thermal latch | | 150 | | °C | | | Logic Control | | | | | | | | | | EN Input | Logic-High | VENH | | 1.3 | | | | | | Voltage | Logic-Low | VENL | | | | 0.4 | V | | | PWM Input | Logic-High | V _{PWML} | | 1.3 | | | · V | | | Voltage | Logic-Low | V _{PWML} | | | | 0.4 | | | | SCL Input | Logic-High | V _{SCLH} | | 1.3 | | | V | | | Voltage | Logic-Low | V _{SCLL} | | | | 0.4 | | | | SDA Input | Logic-High | VSDAH | | 1.3 | | | \
\ | | | Voltage | Logic-Low | V _{SDAL} | | | | 0.4 | V | | | EN Pull-Down | Resistance | | | | 400 | | kΩ | | | PWM Pull-Dow | n Resistance | | | | 400 | | kΩ | | | Clock Frequency of SCL | | fscl | | | | 400 | kHz | | | Pulse Dimmin | g Control | | | | | | | | | EN Minimum Shut Down
Pulse Width | | toff | | 1 | | | ms | | | EN Minimum Logic High Pulse Width | | t _{High_Min} | | 0.2 | | | μS | | | EN Minimum Logic Low
Pulse Width | | t _{Low} | | 0.2 | | 500 | μ\$ | | - **Note 1.** Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability. - Note 2. θ_{JA} is measured at $T_A = 25^{\circ}C$ on a high effective thermal conductivity four-layer test board per JEDEC 51-7. - Note 3. Devices are ESD sensitive. Handling precaution is recommended. - Note 4. The device is not guaranteed to function outside its operating conditions. # **Typical Application Circuit** # **Timing Diagram** ## **PWM Dimming** ### **Pulse Dimming** ## **Protection Timing** **OTP** ### **LED Short** ## **LED Open** # **Typical Operating Characteristics** Table 1. Pulse Dimming Register Map ## Slave address =0100010x | Address | Address
Name | ВІТ | LABEL | Default
(Reset Value) | Description | |---------|-----------------|-----|-------------|--------------------------|---| | 0x00 | Device ID | 7:0 | DEV_ID | | | | 0.404 | | 7:2 | REV | 000000 | Revision number | | 0x01 | Manufacture | 1:0 | VID | 11 | Vendor ID : Richtek | | | | 7 | OVPsel | 1 | OVP threshold ([0] 16V, [1] 25.5V) | | | | 6 | Reserved | | | | | | 5 | Reserved | | | | 0x02 | Config1 | 4 | Reserved | | | | 0002 | Config1 | 3 | MAX_Current | 0 | [0] 20mA, [1] 30mA, | | | | 2 | LED1_EN | 1 | Backlight LED1 : [0] OFF, [1] ON | | | | 1 | LED2_EN | 1 | Backlight LED2 : [0] OFF, [1] ON | | | | 0 | DEV_EN | 1 | CHIP enable : [0] OFF, [1] ON | | | | 7 | RST_SW | 0 | Software reset : [0] Disable(Auto), [1] Reset all registers | | 0x03 | Timing | 6 | FSW | 1 | Switching frequency ([0]550kHz, [1]1.1MHz) | | | | 5:0 | Reserved | | | | | FLAG | 7:4 | Reserved | 0 | | | | | 3 | LED1_FT | 0 | LED1 short : [0] Normal, [1] Fault | | 0x05 | | 2 | LED2_FT | 0 | LED2 short : [0] Normal, [1] Fault | | | | 1 | OVP | 0 | Output over voltage : [0] Normal, [1] Fault | | | | 0 | ОТР | 0 | Over temperature : [0] Normal, [1] Fault | ## Table 2. PWM Dimming Register Map ### Slave address =0100010x | Address | Address
Name | BIT | LABEL | Default
(Reset Value) | Description | |---------|---------------------------------|-----|-------------|--------------------------|--| | 0x00 | Device ID | 7:0 | DEV_ID | | | | 0x01 | Manufacture | 7:2 | REV | 000000 | Revision number | | UXUT | | 1:0 | VID | 11 | Vendor ID : Richtek | | | | 7 | OVPsel | 1 | OVP threshold ([0] 16V, [1] 25.5V) | | | | 6 | PWM_EN | 0 | PWM enable : [0] Ignored, [1] Enable | | | | 5 | PWM_SET | 0 | PWM active setup : [0] High active, [1] Low active | | 0x02 | Config1 | 4 | Reserved | | | | | | 3 | MAX_Current | 0 | [0] 20mA, [1] 30mA, | | | | 2 | LED1_EN | 1 | Backlight LED1 : [0] OFF, [1] ON | | | | 1 | LED2_EN | 1 | Backlight LED2 : [0] OFF, [1] ON | | | | 0 | DEV_EN | 1 | CHIP enable : [0] OFF, [1] ON | | | Timing | 7 | RST_SW | 0 | Software reset : [0] Disable(Auto), [1] Reset all registers | | | | 6 | FSW | 1 | Switching frequency ([0]550kHz, [1]1.1MHz) | | 0x03 | | 5:3 | UP_RATE | 000 | Brightness ramp-up rate : [000] 32µs, [001] 4.096ms, [010] 8.192ms, [011] 16.383ms, [100] 32.768ms, [101] 65.536ms, [110] 131.072ms, [111] 262.144ms | | | | 2:0 | DN_RATE | 000 | Brightness ramp-down rate : [000] 32µs, [001] 4.096ms, [010] 8.192ms, [011] 16.383ms, [100] 32.768ms, [101] 65.536ms, [110] 131.072ms, [111] 262.144ms | | 0x04 | Linear
Brightness
Control | 7:0 | BRIGHT_LIN | 11111111 | [00000000] 0.39%, [00000001] 0.39%,
[11111111] 100% | | | FLAG | 7:4 | Reserved | 0 | | | | | 3 | LED1_FT | 0 | LED1 short : [0] Normal, [1] Fault | | 0x05 | | 2 | LED2_FT | 0 | LED2 short : [0] Normal, [1] Fault | | | | 1 | OVP | 0 | Output over voltage : [0] Normal, [1] Fault | | | | 0 | OTP | 0 | Over temperature : [0] Normal, [1] Fault | # **Application Information** #### **LED Short Protection** LED short protection prevents abnormal connection to cause IC damage avoiding FB1/FB2 connecting power supply. And, If unbalanced LEDs series (cause FB1 or FB2 >12V) is different between channel1 and channel2, IC will also occur LED short event. As LED short event occur more than deglitch time 2ms, IC will shut-down latch until IC is reset by EN pin. #### Soft-Start The RT4501/A includes a soft-start function to avoid high inrush current during start-up. The soft-start function is achieved by clamping the output voltage of the error amplifier with another voltage source that is increased slowly from zero to near VIN during the soft-start period. #### **OCP Protection** The RT4501/A features a 1A current limitation. The current flowing through the inductor during a charging period is detected by a current sensing circuit. If the value exceeds the current limit, the N-MOSFET will be turned off. The inductor will then be forced to leave charging stage and enter discharging stage. Therefore, the inductor current will not increase to reach current limit. The over-temperature protection function will be latched at shutdown status when the junction temperature exceeds 165°C for 2ms. After re-power on sequence, the converter will automatically resume switching. #### **OVP Protection** The chip provides over-voltage protection function to limit the output voltage in abnormal conditions. The OVP threshold voltage is 25.5V/16V by selecting Reg0x02 <7>. Once the LED is open, the output voltage will be limited at OVP protection level to avoid device breakdown. #### **Under-Voltage Lockout** An under-voltage lockout circuit prevents the operation of the device at input voltages below under-voltage threshold (2.3V maximum). When the input voltage is below the threshold, the device is shut down. If the input voltage rises over under-voltage lockout hysteresis (200mV typical), the IC restarts. ### **Linear Brightness Dimming** The chip is built-in an I²C 8-bit resolution brightness control with maximum 20mA/30mA selection. Reg0x02 <3> corresponds to full-scale LED current control. Reg0x04 <7:0> sets 8bits resolution brightness dimming control. $$I_{LED} = \frac{Code}{255} \times I_{LED, Full}$$ Where I_{LED, Full}: the full-scale LED current set by Reg0x02 <3>. Code: the 8bit brightness code Reg0x04 <7:0> programmed by I²C interface. ### **PWM Brightness Dimming** Besides programmable built-in I²C backlight LED current control, the RT4501/A features a built-in PWM dimming current control by setting Reg0x02 <6> to 1, offering a linear current dimming by external clock source. In order to guarantee the PWM dimming resolution (7 bit at > 15kHz application), recommending dimming frequency have to be operated at range of 400Hz to 20kHz. ### **Pulse Brightness Dimming** The EN pin features a simple digital interface to allow digital brightness control. Using the one-wire dimming brightness control can achieve as high as 128 steps resolution, recommending dimming pulse is larger than 0.2µs. RT4501/A keeps shunt down status, when EN pin is pulled low keeping 1ms. $$I_{LED} = \left(\frac{Code}{128} + \frac{1}{256}\right) \times I_{LED, Full}$$ I_{LED, Full}: the full-scale LED current set by Reg0x02 <3>. RT4501/A ### **Inductor Selection** The recommended inductor value for dual-channel 6 WLEDs applications is $10\mu H$. When selecting the inductor, the inductor rated saturation current should be higher than the peak current at maximum load. Small size and better efficiency are major concerns for portable devices. The inductor should have low core loss at 1.1MHz and low DCR for better efficiency. ### **Capacitor Selection** $10\mu F$ input ceramic capacitor and $1\mu F$ output ceramic capacitor are recommended for driving dual-channel 6 WLEDs applications. For better voltage filtering, ceramic capacitors with low ESR are recommended. X5R and X7R types are suitable because of their wide voltage and temperature ranges. #### **Thermal Considerations** For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula: $$P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$$ where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance. For recommended operating condition specifications, the maximum junction temperature is 125°C. The junction to ambient thermal resistance, θ_{JA} , is layout dependent. For WL-CSP-10B 0.87x2.07 (BSC) package, the thermal resistance, θ_{JA} , is 99.6°C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at T_A = 25°C can be calculated by the following formula : $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (99.6^{\circ}C/W) = 1W$ for WL-CSP-10B 0.87x2.07 (BSC) package The maximum power dissipation depends on the operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance, θ_{JA} . The derating curve in Figure 1 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation. Figure 1. Derating Curve of Maximum Power Dissipation #### **Layout Consideration** As for all switching power supplies, the layout is an important step in the design, especially at high peak currents and switching frequencies. If the layout is not carefully done, the regulator might expose noise problems and duty cycle jitter. Therefore, use wide and short traces for high current paths. The input capacitor should be placed as close as possible to the input pin for good input voltage filtering. The inductor should be placed as close as possible to the switch pin to minimize the noise coupling into other circuits. The output capacitor needs to be placed directly from the VOUT pin to GND rather than across the LEDs. This reduces the ripple current in the trace to the LEDs. When doing the PCB layout, the bold traces should be routed first, as well as placement of the inductor, and input and output capacitors. # **Outline Dimension** | Symbol | Dimensions I | n Millimeters | Dimensions In Inches | | | |--------|--------------|---------------|----------------------|-------|--| | Symbol | Min. | Max. | Min. | Max. | | | А | 0.500 | 0.600 | 0.020 | 0.024 | | | A1 | 0.170 | 0.230 | 0.007 | 0.009 | | | b | 0.240 | 0.300 | 0.009 | 0.012 | | | D | 2.020 | 2.120 | 0.080 | 0.083 | | | D1 | 1.6 | 000 | 0.0 | 063 | | | E | 0.820 | 0.920 | 0.032 | 0.036 | | | E1 | 0.4 | 100 | 0.016 | | | | е | 0.4 | 100 | 0.0 |)16 | | 10B WL-CSP 0.87x2.07 Package (BSC) ## **Richtek Technology Corporation** 14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789 Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.