32-tap Digital Potentiometer (POT) ### **CAT5115** #### Description The CAT5115 is a single digital POT designed as an electronic replacement for mechanical potentiometers and trim pots. Ideal for automated adjustments on high volume production lines, they are also well suited for applications where equipment requiring periodic adjustment is either difficult to access or located in a hazardous or remote environment. The CAT5115 contains a 32-tap series resistor array connected between two terminals R_H and R_L . An up/down counter and decoder that are controlled by three input pins, determines which tap is connected to the wiper, R_W . The wiper is always set to the mid point, tap 15 at power up. The tap position is not stored in memory. Wiper-control of the CAT5115 is accomplished with three input control pins, \overline{CS} , U/ \overline{D} , and \overline{INC} . The \overline{INC} input increments the wiper in the direction which is determined by the logic state of the U/ \overline{D} input. The \overline{CS} input is used to select the device. The digital POT can be used as a three-terminal resistive divider or as a two-terminal variable resistor. Digital POTs bring variability and programmability to a wide variety of applications including control, parameter adjustments, and signal processing. For a pin-compatible device that recalls a stored tap position on power-up refer to the CAT5114 data sheet. #### **Features** - 32-position Linear Taper Potentiometer - Low Power CMOS Technology - Single Supply Operation: 2.5 V 6.0 V - Increment Up/Down Serial Interface - Resistance Values: $10 \text{ k}\Omega$, $50 \text{ k}\Omega$ and $100 \text{ k}\Omega$ - Available in PDIP, SOIC, TSSOP, MSOP Packages - These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant #### **Applications** - Automated Product Calibration - Remote Control Adjustments - Offset, Gain and Zero Control - Tamper-proof Calibrations - Contrast, Brightness and Volume Controls - Motor Controls and Feedback Systems - Programmable Analog Functions MSOP-8 Z SUFFIX CASE 846AQ PDIP-8 L SUFFIX CASE 646AA TSSOP-8 Y SUFFIX CASE 948AL #### **PIN CONFIGURATIONS** #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet. #### **FUNCTIONAL DIAGRAM** Figure 1. General Figure 2. Detailed Figure 3. Electronic Potentiometer Implementation **Table 1. PIN DESCRIPTIONS** | Name | Function | | |-----------------|-----------------------------|--| | ĪNC | Increment Control | | | U/D | Up/Down Control | | | R _H | Potentiometer High Terminal | | | GND | Ground | | | R _W | Buffered Wiper Terminal | | | R _L | Potentiometer Low Terminal | | | CS | Chip Select | | | V _{CC} | Supply Voltage | | #### **PIN FUNCTION** **INC:** Increment Control Input The \overline{INC} input moves the wiper in the up or down direction determined by the condition of the U/\overline{D} input. U/**D**: Up/Down Control Input The U/\overline{D} input controls the direction of the wiper movement. When in a high state and \overline{CS} is low, any high-to-low transition on \overline{INC} will cause the wiper to move one increment toward the R_H terminal. When in a low state and \overline{CS} is low, any high-to-low transition on \overline{INC} will cause the wiper to move one increment towards the R_L terminal. RH: High End Potentiometer Terminal $R_{\rm H}$ is the high end terminal of the potentiometer. It is not required that this terminal be connected to a potential greater than the $R_{\rm L}$ terminal. Voltage applied to the $R_{\rm H}$ terminal cannot exceed the supply voltage, V_{CC} or go below ground, GND. **R**_W: Wiper Potentiometer Terminal R_W is the wiper terminal of the potentiometer. Its position on the resistor array is controlled by the control inputs, \overline{INC} , U/\overline{D} and \overline{CS} . Voltage applied to the R_W terminal cannot exceed the supply voltage, V_{CC} or go below ground, GND. RL: Low End Potentiometer Terminal $R_{\rm L}$ is the low end terminal of the potentiometer. It is not required that this terminal be connected to a potential less than the $R_{\rm H}$ terminal. Voltage applied to the $R_{\rm L}$ terminal cannot exceed the supply voltage, $V_{\rm CC}$ or go below ground, GND. $R_{\rm L}$ and $R_{\rm H}$ are electrically interchangeable. **CS**: Chip Select The chip select input is used to activate the control input of the CAT5115 and is active low. When in a high state, activity on the $\overline{\rm INC}$ and ${\rm U/\overline{D}}$ inputs will not affect or change the position of the wiper. #### **DEVICE OPERATION** The CAT5115 operates like a digitally controlled potentiometer with R_H and R_L equivalent to the high and low terminals and R_W equivalent to the mechanical potentiometer's wiper. There are 32 available tap positions including the resistor end points, R_H and R_L . There are 31 resistor elements connected in series between the R_H and R_L terminals. The wiper terminal is connected to one of the 32 taps and controlled by three inputs, $\overline{\rm INC}$, U/ $\overline{\rm D}$ and $\overline{\rm CS}$. These inputs control a five-bit up/down counter whose output is decoded to select the wiper position. With $\overline{\text{CS}}$ set LOW the CAT5115 is selected and will respond to the U/ $\overline{\text{D}}$ and $\overline{\text{INC}}$ inputs. HIGH to LOW transitions on $\overline{\text{INC}}$ will increment or decrement the wiper (depending on the state of the U/ $\overline{\text{D}}$ input and five-bit counter). The wiper, when at either fixed terminal, acts like its mechanical equivalent and does not move beyond the last position. When the CAT5115 is powered-down, the wiper position is reset. When power is restored, the counter is set to the mid point, tap 15. **Table 2. OPERATION MODES** | INC | CS | U/D | Operation | |-------------|-------------|------|-----------------------------| | High to Low | Low | High | Wiper toward H | | High to Low | Low | Low | Wiper toward L | | High | Low to High | Х | Store Wiper Position | | Low | Low to High | Х | No Store, Return to Standby | | Х | High | Х | Standby | Figure 4. Potentiometer Equivalent Circuit **Table 3. ABSOLUTE MAXIMUM RATINGS** | Parameters | Ratings | Units | |--|------------------------------|-------| | Supply Voltage V _{CC} to GND | -0.5 to +7 | V | | Inputs CS to GND | -0.5 to V _{CC} +0.5 | V | | INC to GND | -0.5 to V _{CC} +0.5 | ٧ | | U/D to GND | -0.5 to V _{CC} +0.5 | V | | H to GND | -0.5 to V _{CC} +0.5 | V | | L to GND | -0.5 to V _{CC} +0.5 | V | | W to GND | -0.5 to V _{CC} +0.5 | V | | Operating Ambient Temperature
Industrial ('I' suffix) | -40 to +85 | °C | | Junction Temperature | +150 | °C | | Storage Temperature | -65 to 150 | °C | | Lead Soldering (10 s max) | +300 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. **Table 4. RELIABILITY CHARACTERISTICS** | Symbol | Parameter | Test Method | Min | Тур | Max | Units | |-------------------------------|--------------------|-------------------------------|-----------|-----|-----|--------| | V _{ZAP} (Note 1) | ESD Susceptibility | MIL-STD-883, Test Method 3015 | 2000 | | | V | | I _{LTH} (Notes 1, 2) | Latch-up | JEDEC Standard 17 | 100 | | | mA | | T _{DR} | Data Retention | MIL-STD-883, Test Method 1008 | 100 | | | Years | | N _{END} | Endurance | MIL-STD-883, Test Method 1003 | 1,000,000 | | | Stores | ^{1.} This parameter is tested initially and after a design or process change that affects the parameter. ^{2.} Latch-up protection is provided for stresses up to 100 mA on address and data pins from -1 V to V_{CC} + 1 V. Table 5. DC ELECTRICAL CHARACTERISTICS (V_{CC} = +2.5 V to +6 V unless otherwise specified) | Symbol | Parameter | Conditions | Min | Тур | Max | Units | |--|-------------------------------|---|-----------------------|--------|-----------------------|--------| | POWER SUPPL | Y | | | | | - | | V _{CC} | Operating Voltage Range | | 2.5 | _ | 6.0 | V | | I _{CC1} | Supply Current (Increment) | V _{CC} = 6 V, f = 1 MHz, I _W = 0 | _ | - | 100 | μΑ | | | | V _{CC} = 6 V, f = 250 kHz, I _W = 0 | _ | - | 50 | μΑ | | I _{SB1} (Note 4) | Supply Current (Standby) | $\overline{\text{CS}} = \text{V}_{\text{CC}} - 0.3 \text{ V}$
U/ $\overline{\text{D}}$, $\overline{\text{INC}} = \text{V}_{\text{CC}} - 0.3 \text{ V}$ or GND | - | 0.01 | 1 | μΑ | | LOGIC INPUTS | • | • | • | | | • | | I _{IH} | Input Leakage Current | V _{IN} = V _{CC} | - | _ | 10 | μΑ | | I _{IL} | Input Leakage Current | V _{IN} = 0 V | _ | - | -10 | μΑ | | V _{IH1} | TTL High Level Input Voltage | 4.5 V ≤ V _{CC} ≤ 5.5 V | 2 | - | V _{CC} | V | | V _{IL1} | TTL Low Level Input Voltage | | 0 | - | 0.8 | V | | V _{IH2} | CMOS High Level Input Voltage | $2.5 \text{ V} \leq \text{V}_{CC} \leq 6 \text{ V}$ | V _{CC} x 0.7 | - | V _{CC} + 0.3 | V | | V _{IL2} | CMOS Low Level Input Voltage | | -0.3 | - | V _{CC} x 0.2 | V | | POTENTIOMET | ER CHARACTERISTICS | | | | | | | R _{POT} | Potentiometer Resistance | -10 Device | | 10 | | kΩ | | | | -50 Device | | 50 | | | | | | -00 Device | | 100 | | | | | Pot. Resistance Tolerance | | | | ±20 | % | | V_{RH} | Voltage on R _H pin | | 0 | | V _{CC} | V | | V_{RL} | Voltage on R _L pin | | 0 | | V _{CC} | V | | | Resolution | | | 3.2 | | % | | INL | Integral Linearity Error | I _W ≤ 2 μA | | 0.5 | 1 | LSB | | DNL | Differential Linearity Error | $I_W \le 2 \mu A$ | | 0.25 | 0.5 | LSB | | R _{WI} | Wiper Resistance | V _{CC} = 5 V, I _W = 1 mA | | 70 | 200 | Ω | | | | V _{CC} = 2.5 V, I _W = 1 mA | | 150 | 400 | Ω | | I _W | Wiper Current | (1) | | | 1 | mA | | TC _{RPOT} | TC of Pot Resistance | | | ±50 | ±300 | ppm/°C | | TC _{RATIO} | Ratiometric TC | | | | 20 | ppm/°C | | V _N | Noise | 100 kHz / 1 kHz | | 8/24 | | nV/√Hz | | C _H /C _L /C _W | Potentiometer Capacitances | | | 8/8/25 | | pF | | fc | Frequency Response | Passive Attenuator, 10 kΩ | | 1.7 | | MHz | This parameter is tested initially and after a design or process change that affects the parameter. Latch-up protection is provided for stresses up to 100 mA on address and data pins from –1 V to V_{CC} + 1 V. I_W = source or sink. These parameters are periodically sampled and are not 100% tested. **Table 6. AC TEST CONDITIONS** | V _{CC} Range | $2.5 \text{ V} \le \text{V}_{CC} \le 6.0 \text{ V}$ | | |---------------------------|---|--| | Input Pulse Levels | 0.2 x V_{CC} to 0.7 x V_{CC} | | | Input Rise and Fall Times | 10 ns | | | Input Reference Levels | 0.5 x V _{CC} | | Table 7. AC OPERATING CHARACTERISTICS (V_{CC} = +2.5 V to +6.0 V, V_H = V_{CC} , V_L = 0 V, unless otherwise specified) | | The state of s | (00) | | | | |--|--|--------|--------------|-----|-------| | Symbol | Parameter | Min | Typ (Note 7) | Max | Units | | t _{CI} | CS to INC Setup | 100 | - | - | ns | | t _{DI} | U/D to INC Setup | 50 | - | - | ns | | t _{ID} | U/D to INC Hold | 100 | - | - | ns | | t _{IL} | ĪNC LOW Period | 250 | - | - | ns | | t _{IH} | INC HIGH Period | 250 | - | - | ns | | t _{IC} | INC Inactive to CS Inactive | 1 | - | - | μs | | t _{CPH} | CS Deselect Time | 100 | - | - | ns | | t _{IW} | INC to V _{OUT} Change | - | 1 | 5 | μs | | t _{CYC} | INC Cycle Time | 1 | _ | 1 | μs | | t _R , t _F (Note 8) | INC Input Rise and Fall Time | _ | _ | 500 | μs | | t _{PU} (Note 8) | Power-up to Wiper Stable | _ | _ | 1 | ms | - Typical values are for T_A = 25°C and nominal supply voltage. This parameter is periodically sampled and not 100% tested. MI in the A.C. Timing diagram refers to the minimum incremental change in the W output due to a change in the wiper position. Figure 5. A.C. Timing #### **APPLICATIONS INFORMATION** Figure 6. Potentiometer Configuration #### **Applications** Figure 7. Programmable Instrumentation Amplifier Figure 8. Programmable Sq. Wave Oscillator (555) Figure 9. Sensor Auto Referencing Circuit Figure 10. Programmable Voltage Regulator Figure 11. Programmable I to V Convertor Figure 12. Automatic Gain Control Figure 13. Programmable Bandpass Filter Figure 14. Programmable Current Source/Sink **Table 8. ORDERING INFORMATION** | Orderable Part Numbers | Reset Threshold Voltage | Package-Pin | Lead Finish | Shipping [†] | |------------------------|-------------------------|---------------|-------------|-----------------------| | CAT5115LI-10-G | 10 | | | 50 Units / Tube | | CAT5115LI-50-G | 50 | PDIP-8 | NiPdAu | 50 Units / Tube | | CAT5115LI-00-G | 100 | | | 50 Units / Tube | | CAT5115VI-10-GT3 | 10 | | | 3000 / Tape & Reel | | CAT5115VI-50-GT3 | 50 | SOIC-8 NiPdAu | NiPdAu | 3000 / Tape & Reel | | CAT5115VI-00-GT3 | 100 | | | 3000 / Tape & Reel | | CAT5115YI-10-GT3 | 10 | | | 3000 / Tape & Reel | | CAT5115YI-50-GT3 | 50 | TSSOP-8 | NiPdAu | 3000 / Tape & Reel | | CAT5115YI-00-GT3 | 100 | | | 3000 / Tape & Reel | | CAT5115ZI-10-GT3 | 10 | | | 3000 / Tape & Reel | | CAT5115ZI-50-GT3 | 50 | MSOP-8 | NiPdAu | 3000 / Tape & Reel | | CAT5115ZI-00-GT3 | 100 | | | 3000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{10.} For detailed information and a breakdown of device nomenclature and numbering systems, please see the ON Semiconductor Device Nomenclature document, TND310/D, available at www.onsemi.com. ^{11.} Contact factory for package availability. 12. All packages are RoHS-compliant (Lead-free, Halogen-free). 13. The standard lead finish is NiPdAu. ^{14.} For additional package and temperature options, please contact your nearest onsemi Sales office. #### **PACKAGE DIMENSIONS** PDIP-8, 300 mils CASE 646AA ISSUE A | SYMBOL | MIN | NOM | MAX | |--------|----------|------|-------| | Α | | | 5.33 | | A1 | 0.38 | | | | A2 | 2.92 | 3.30 | 4.95 | | b | 0.36 | 0.46 | 0.56 | | b2 | 1.14 | 1.52 | 1.78 | | С | 0.20 | 0.25 | 0.36 | | D | 9.02 | 9.27 | 10.16 | | Е | 7.62 | 7.87 | 8.25 | | E1 | 6.10 | 6.35 | 7.11 | | е | 2.54 BSC | | | | eB | 7.87 | | 10.92 | | L | 2.92 | 3.30 | 3.80 | #### **TOP VIEW** SIDE VIEW **END VIEW** #### Notes: - (1) All dimensions are in millimeters.(2) Complies with JEDEC MS-001. SOIC-8, 150 mils CASE 751BD ISSUE O **DATE 19 DEC 2008** | SYMBOL | MIN | NOM | MAX | |--------|------|----------|------| | Α | 1.35 | | 1.75 | | A1 | 0.10 | | 0.25 | | b | 0.33 | | 0.51 | | С | 0.19 | | 0.25 | | D | 4.80 | | 5.00 | | E | 5.80 | | 6.20 | | E1 | 3.80 | | 4.00 | | е | | 1.27 BSC | | | h | 0.25 | | 0.50 | | L | 0.40 | | 1.27 | | θ | 0° | | 8° | **TOP VIEW** **SIDE VIEW** **END VIEW** - (1) All dimensions are in millimeters. Angles in degrees. - (2) Complies with JEDEC MS-012. | DOCUMENT NUMBER: | 98AON34272E | Electronic versions are uncontrolled except when accessed directly from the Document Re
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|------------------|--|-------------|--| | DESCRIPTION: | SOIC 8, 150 MILS | | PAGE 1 OF 1 | | onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. MSOP8 3.0x3.0 CASE 846AQ ISSUE O **DATE 22 SEP 2020** END VIEW #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. - 2. CONTROLLING DIMENSION: MILLIMETERS - DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.10 mm IN EXCESS OF MAXIMUM MATERIAL CONDITION. - 4. DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER SIDE. DIMENSION E DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 mm PER SIDE. DIMENSIONS D AND E ARE DETERMINED AT DATUM F. - 5. DATUMS A AND B ARE TO BE DETERMINED AT DATUM F. - 6. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY. - PIN 1 INDICATOR IS LOCATED HERE. MAY APPEAR AS A LASER MARKED, OR A MOLDED (CIRCLE OR HALF MODN), INDENT. | | MI | LLIMETE | RS | | |-----|----------|----------|-------|--| | DIM | MIN. | N□M. | MAX. | | | Α | | | 1.10 | | | A1 | 0.03 | 0.08 | 0.18 | | | b | 0.22 | 0.30 | 0.38 | | | c | 0.105 | 0.125 | 0.195 | | | D | 2.90 | 3.00 | 3.10 | | | Ε | 4.65 | 4.90 | 5.15 | | | E1 | 2.90 | 3.00 | 3.10 | | | e | | 0.65 BSC | ; | | | L | 0.30 | | | | | L1 | 0.95 REF | | | | | L2 | 0.25 REF | | | | | М | 0* | | 10° | | ## RECOMMENDED MOUNTING FOOTPRINT For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D. ## GENERIC MARKING DIAGRAM* XXXX = Specific Device Code A = Assembly Location Y = Year W = Work Week Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98AON20537H | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|---------------|---|-------------|--| | DESCRIPTION: | MSOP8 3.0x3.0 | | PAGE 1 OF 1 | | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. В NOTE 7 △|0.15|C|B®| 29IT 8 2X **♦** 0.10**M** C BS AS 8X b NOTES 3 & 8 NDTES 5 & 6 E1 PIN 1 REFERENCE #### TSSOP8, 4.4x3.0, 0.65P CASE 948AL **ISSUE A** **DATE 20 MAY 2022** #### NOTES: - DIMENSIONING AND TOLERANCING PER ASME Y14.5, 2009.. CONTROLLING DIMENSION: MILLIMETERS DIMENSION IN DIMENSION: MILLIMETERS DIMENSION IN DIMENSION: MILLIMETERS DIMENSION IN DIMENSION IN EXCESS DE MAXIMUM MATERIAL CONDITION. DIMENSION DI DIES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION EI DIES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM. DIMENSIONS DIE AND EI ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AT DATUM PLANE H. DATUMS A AND B ARE TO BE DETERMINED AT DATUM H. DIMENSIONS DIE AND CAPPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 AND 0.25 FROM THE LEAD TIP.. AI IS DEFINED AS THE LOWEST VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.. TOP VIEW | | MILLIMETERS | | | | |-----|-------------|------|------|--| | DIM | MIN. | N□M. | MAX. | | | Α | | | 1.20 | | | A1 | 0.05 | | 0.15 | | | A2 | 0.80 | 0.90 | 1.05 | | | b | 0.19 | | 0.30 | | | С | 0.09 | | 0.20 | | | D | 2.90 | 3.00 | 3.10 | | | E | 6.30 | 6.40 | 6.50 | | | E1 | 4.30 | 4.40 | 4.50 | | | e | 0.65 BSC | | | | | L | 1.00 REF | | | | | L1 | 0.50 | 0.60 | 0.70 | | | θ | 0* | | 8* | | #### **GENERIC MARKING DIAGRAM*** XXX = Specific Device Code = Year WW = Work Week Α = Assembly Location = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking. RECOMMENDED MOUNTING FOOTPRINT* For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D. | DOCUMENT NUMBER: | 98AON34428E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|------------------------|---|-------------|--| | DESCRIPTION: | TSSOP8, 4.4X3.0, 0.65P | | PAGE 1 OF 1 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative