ON Semiconductor # Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, **Preferred Device** # Power MOSFET 2.0 Amps, 60 Volts # N-Channel SOT-223 Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits. #### **Applications** - Power Supplies - Converters - Power Motor Controls - Bridge Circuits #### **MAXIMUM RATINGS** (T_C = 25°C unless otherwise noted) | Rating | Symbol | Value | Unit | |---|--|---------------------|----------------| | Drain-to-Source Voltage | VDSS | 60 | Vdc | | Drain-to-Gate Voltage (RGS = 1.0 M Ω) | VDGR | 60 | Vdc | | Gate–to–Source Voltage - Continuous - Non–repetitive (t _p ≤ 10 ms) | V _{GS} | ± 20
± 30 | Vdc
Vpk | | Drain Current - Continuous @ $T_A = 25^{\circ}C$ - Continuous @ $T_A = 100^{\circ}C$ - Single Pulse ($t_p \le 10 \ \mu s$) | I _D | 2.0
1.2
6.0 | Adc
Apk | | Total Power Dissipation @ T _A = 25°C (Note 1.) Total Power Dissipation @ T _A = 25°C (Note 2.) Derate above 25°C | PD | 2.1
1.3
0.014 | W
W
W/°C | | Operating and Storage Temperature Range | T _J , T _{stg} | -55 to
175 | °C | | Single Pulse Drain-to-Source Avalanche Energy – Starting T _J = 25°C (V _{DD} = 25 Vdc, V _{GS} = 10 Vdc, I _L (pk) = 6.0 Apk, L = 10 mH, V _{DS} = 60 Vdc) | E _{AS} | 65 | mJ | | Thermal Resistance – Junction to Ambient (Note 1.) – Junction to Ambient (Note 2.) | R _θ JA
R _θ JA | 72.3
114 | °C/W | | Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds | TL | 260 | °C | - When surface mounted to an FR4 board using 1" pad size, (Cu. Area 1.127 in²). - When surface mounted to an FR4 board using minimum recommended pad size, 2–2.4 oz. (Cu. Area 0.272 in²). # ON Semiconductor™ http://onsemi.com # 2.0 AMPERES 60 VOLTS RDS(on) = 160 m Ω #### N-Channel #### MARKING DIAGRAM SOT-223 CASE 318E STYLE 3 5160 = Device Code L = Location Code WW = Work Week #### **PIN ASSIGNMENT** #### **ORDERING INFORMATION** | Device | Package | Shipping | |-----------------|---------|------------------| | NTF3055-160T1 | SOT-223 | 1000 Tape & Reel | | NTF3055-160T3 | SOT-223 | 4000 Tape & Reel | | NTF3055-160T3LF | SOT-223 | 4000 Tape & Reel | # **ELECTRICAL CHARACTERISTICS** ($T_A = 25^{\circ}C$ unless otherwise noted) | Charac | teristic | Symbol | Min | Тур | Max | Unit | |---|---|---------------------|---------|----------------|-----------|--------------| | OFF CHARACTERISTICS | | | | | | | | Drain-to-Source Breakdown Voltage
(V _{GS} = 0 Vdc, I _D = 250 μAdc)
Temperature Coefficient (Positive) | (Note 3.) | V(BR)DSS | 60
- | 72
72 | -
- | Vdc
mV/°C | | Zero Gate Voltage Drain Current (VDS = 60 Vdc, VGS = 0 Vdc) (VDS = 60 Vdc, VGS = 0 Vdc, TJ = 150°C) | | IDSS | _
_ | _
_ | 1.0
10 | μAdc | | Gate-Body Leakage Current (VG | $S = \pm 20 \text{ Vdc}, V_{DS} = 0 \text{ Vdc}$ | IGSS | - | - | ± 100 | nAdc | | ON CHARACTERISTICS (Note 3.) | | | | | | | | Gate Threshold Voltage (Note 3.) (V _{DS} = V _{GS} , I _D = 250 μAdc) Threshold Temperature Coefficient (N | Negative) | VGS(th) | 2.0 | 3.1
6.6 | 4.0
- | Vdc
mV/°C | | Static Drain-to-Source On-Resistance (Note 3.) (VGS = 10 Vdc, I _D = 1.0 Adc) | | R _{DS(on)} | _ | 142 | 160 | mΩ | | Static Drain-to-Source On-Resistan
(VGS = 10 Vdc, I _D = 2.0 Adc)
(VGS = 10 Vdc, I _D = 1.0 Adc, T _J = | , | V _{DS(on)} | _ | 0.142
0.270 | 0.384 | Vdc | | Forward Transconductance (Note 3.) | $(V_{DS} = 8.0 \text{ Vdc}, I_{D} = 1.5 \text{ Adc})$ | 9fs | - | 1.8 | - | Mhos | | DYNAMIC CHARACTERISTICS | | | | • | | | | Input Capacitance | | C _{iss} | - | 200 | 280 | pF | | Output Capacitance | $(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0 \text{ V},$
f = 1.0 MHz) | C _{oss} | - | 68 | 100 | | | Transfer Capacitance | ·, | C _{rss} | _ | 26 | 40 | | | SWITCHING CHARACTERISTICS | S (Note 4.) | | | | | | | Turn-On Delay Time | | ^t d(on) | - | 9.2 | 20 | ns | | Rise Time | $(V_{DD} = 30 \text{ Vdc}, I_{D} = 2.0 \text{ Adc},$ | t _r | _ | 9.2 | 20 | | | Turn-Off Delay Time | $V_{GS} = 10 \text{ Vdc},$
$R_{G} = 9.1 \Omega) \text{ (Note 3.)}$ | td(off) | _ | 16 | 40 | | | Fall Time | | t _f | _ | 9.2 | 20 | | | Gate Charge | | QT | - | 6.9 | 14 | nC | | | (V _{DS} = 48 Vdc, I _D = 2.0 Adc,
V _{GS} = 10 Vdc) (Note 3.) | Q ₁ | - | 1.4 | - | | | | | Q ₂ | ı | 3.0 | _ | | | SOURCE-DRAIN DIODE CHARA | CTERISTICS | | | | | | | Forward On-Voltage | (I _S = 2.0 Adc, V _{GS} = 0 Vdc)
(I _S = 2.0 Adc, V _{GS} = 0 Vdc,
T _J = 150°C) (Note 3.) | V _{SD} | -
- | 0.86
0.70 | 1.0
- | Vdc | | Reverse Recovery Time | | t _{rr} | - | 28.9 | - | ns | | | (I _S = 2.0 Adc, V _{GS} = 0 Vdc,
dI _S /dt = 100 A/μs) (Note 3.) | ta | - | 19.1 | - | | | | | t _b | - | 9.8 | - | | | Reverse Recovery Stored Charge | | Q _{RR} | - | 0.030 | _ | μС | ^{3.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%. ^{4.} Switching characteristics are independent of operating junction temperatures. Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On-Resistance versus Gate-to-Source Voltage Figure 4. On-Resistance versus Drain Current and Gate Voltage **Temperature** Figure 6. Drain-to-Source Leakage Current versus Voltage Figure 7. Capacitance Variation Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge Figure 9. Resistive Switching Time Variation versus Gate Resistance Figure 10. Diode Forward Voltage versus Current Figure 11. Maximum Rated Forward Biased Safe Operating Area Figure 12. Maximum Avalanche Energy versus Starting Junction Temperature Figure 13. Thermal Response #### **PACKAGE DIMENSIONS** **SOT-223 (TO-261)** CASE 318E-04 ISSUE K #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. | | INCHES | | MILLIMETERS | | |-----|--------|--------|-------------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.249 | 0.263 | 6.30 | 6.70 | | В | 0.130 | 0.145 | 3.30 | 3.70 | | C | 0.060 | 0.068 | 1.50 | 1.75 | | D | 0.024 | 0.035 | 0.60 | 0.89 | | F | 0.115 | 0.126 | 2.90 | 3.20 | | G | 0.087 | 0.094 | 2.20 | 2.40 | | Н | 0.0008 | 0.0040 | 0.020 | 0.100 | | 7 | 0.009 | 0.014 | 0.24 | 0.35 | | K | 0.060 | 0.078 | 1.50 | 2.00 | | L | 0.033 | 0.041 | 0.85 | 1.05 | | M | 0 ° | 10 ° | 0 ° | 10 ° | | S | 0.264 | 0.287 | 6.70 | 7.30 | - STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN # **Notes** ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. #### PUBLICATION ORDERING INFORMATION #### Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada **JAPAN**: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com $\textbf{ON Semiconductor Website}: \ \ \text{http://onsemi.com}$ For additional information, please contact your local Sales Representative.