Freescale Semiconductor

Data Sheet: Technical Data

Document Number: MPC5606B Rev. 4, 02/2016

MPC5606BK

MPC5606BK Microcontroller Data Sheet

1 Introduction

1.1 Document overview

This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device.

1.2 Description

This family of 32-bit system-on-chip (SoC) microcontrollers is the latest achievement in integrated automotive application controllers. It belongs to an expanding family of automotive-focused products designed to address the next wave of body electronics applications within the vehicle.

The advanced and cost-efficient e200z0 host processor core of this automotive controller family complies with the Power Architecture[®] technology and only implements the VLE (variable-length encoding) APU (Auxiliary Processor Unit), providing improved code density. It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations.

1

2

3

4

5 6

176 LQFP 24 mm x 24 mm

144 LQFP 20 mm x 20 mm

Introduction 1 1.1 Document overview 1 1.2 Description 1 1.3 Device comparison 2 1.4 Block diagram 3 Package pinouts and signal descriptions 4 2.1 Package pinouts 4 2.2 Pin muxing 7 Electrical characteristics 25 3.1 Parameter classification 25 3.2 NVUSRO register 26 3.3 Absolute maximum ratings 27 3.4 Recommended operating conditions 28 3.5 Thermal characteristics 31 3.6 I/O pad electrical characteristics 33 3.7 RESET electrical characteristics 48 3.9 Power consumption in different application modes 53 3.10 Flash memory electrical characteristics 56 3.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics 58 3.13 Slow external crystal oscillator (32 kHz) electrical characteristics 58 3.14 FMPLL electrical characteristics <	
1.2 Description 1 1.3 Device comparison 2 1.4 Block diagram 3 Package pinouts and signal descriptions 4 2.1 Package pinouts 4 2.2 Pin muxing 7 Electrical characteristics 25 3.1 Parameter classification 25 3.2 NVUSRO register 26 3.3 Absolute maximum ratings 27 3.4 Recommended operating conditions 28 3.5 Thermal characteristics 31 3.6 I/O pad electrical characteristics 33 3.7 RESET electrical characteristics 48 3.9 Power management electrical characteristics 48 3.9 Power consumption in different application modes 53 3.10 Flash memory electrical characteristics 56 3.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics 58 3.13 Slow external crystal oscillator (32 kHz) electrical characteristics 61 3.14 FMPLL electrical characteristics 64 <	Introduction
1.3 Device comparison 2 1.4 Block diagram. 3 Package pinouts and signal descriptions 4 2.1 Package pinouts 4 2.2 Pin muxing 7 Electrical characteristics 25 3.1 Parameter classification 25 3.2 NVUSRO register 26 3.3 Absolute maximum ratings 27 3.4 Recommended operating conditions 28 3.5 Thermal characteristics 31 3.6 I/O pad electrical characteristics 33 3.7 RESET electrical characteristics 48 3.9 Power management electrical characteristics 48 3.9 Power consumption in different application modes 53 3.10 Flash memory electrical characteristics 54 3.11 Electromagnetic compatibility (EMC) characteristics 56 3.12 Fast external crystal oscillator (32 kHz) electrical characteristics 58 3.13 Slow external crystal oscillator (32 kHz) electrical characteristics 61 3.14 FMPLL electrical characteristics	1.1 Document overview
1.4 Block diagram. 3 Package pinouts and signal descriptions. 4 2.1 Package pinouts. 4 2.2 Pin muxing 7 Electrical characteristics. 25 3.1 Parameter classification 25 3.2 NVUSRO register 26 3.3 Absolute maximum ratings 27 3.4 Recommended operating conditions 28 3.5 Thermal characteristics 31 3.6 I/O pad electrical characteristics 33 3.7 RESET electrical characteristics 48 3.9 Power management electrical characteristics 48 3.9 Power consumption in different application modes 53 3.10 Flash memory electrical characteristics 54 3.11 Electromagnetic compatibility (EMC) characteristics 56 3.12 Fast external crystal oscillator (32 kHz) electrical characteristics 58 3.13 Slow external crystal oscillator (32 kHz) electrical characteristics 61 3.14 FMPLL electrical characteristics 64 3.15 Fast internal RC oscilla	1.2 Description
Package pinouts and signal descriptions42.1Package pinouts42.2Pin muxing7Electrical characteristics253.1Parameter classification253.2NVUSRO register263.3Absolute maximum ratings273.4Recommended operating conditions283.5Thermal characteristics313.6I/O pad electrical characteristics333.7RESET electrical characteristics453.8Power management electrical characteristics483.9Power consumption in different application modes533.10Flash memory electrical characteristics543.11Electromagnetic compatibility (EMC) characteristics563.12Fast external crystal oscillator (4 to 16 MHz) electrical characteristics613.14FMPLL electrical characteristics643.15Fast internal RC oscillator (128 kHz) electrical characteristics643.16Slow internal RC oscillator (128 kHz) electrical characteristics653.17ADC electrical characteristics663.18On-chip peripherals76Package characteristics854.1Package mechanical data85	1.3 Device comparison
2.1 Package pinouts 4 2.2 Pin muxing 7 Electrical characteristics 25 3.1 Parameter classification 25 3.2 NVUSRO register 26 3.3 Absolute maximum ratings 27 3.4 Recommended operating conditions 28 3.5 Thermal characteristics 31 3.6 I/O pad electrical characteristics 33 3.7 RESET electrical characteristics 45 3.8 Power management electrical characteristics 48 3.9 Power consumption in different application modes 53 3.10 Flash memory electrical characteristics 54 3.11 Electromagnetic compatibility (EMC) characteristics 56 3.12 Fast external crystal oscillator (32 kHz) electrical characteristics 58 3.13 Slow external crystal oscillator (32 kHz) electrical characteristics 61 3.14 FMPLL electrical characteristics 63 3.15 Fast internal RC oscillator (128 kHz) electrical characteristics 64 3.16 Slow internal RC oscillator (128 kHz) electrical characteristics </td <td>1.4 Block diagram</td>	1.4 Block diagram
2.2 Pin muxing 7 Electrical characteristics. 25 3.1 Parameter classification 25 3.2 NVUSRO register 26 3.3 Absolute maximum ratings 27 3.4 Recommended operating conditions 28 3.5 Thermal characteristics 31 3.6 I/O pad electrical characteristics 33 3.7 RESET electrical characteristics 48 3.9 Power management electrical characteristics 48 3.9 Power consumption in different application modes 53 3.10 Flash memory electrical characteristics 54 3.11 Electromagnetic compatibility (EMC) characteristics 56 3.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics 58 3.13 Slow external crystal oscillator (32 kHz) electrical characteristics 63 3.14 FMPLL electrical characteristics 63 3.15 Fast internal RC oscillator (16 MHz) electrical characteristics 64 3.16 Slow internal RC oscillator (128 kHz) electrical characteristics 65 3.17 ADC electr	Package pinouts and signal descriptions
Electrical characteristics. 25 3.1 Parameter classification 25 3.2 NVUSRO register 26 3.3 Absolute maximum ratings 27 3.4 Recommended operating conditions 28 3.5 Thermal characteristics 31 3.6 I/O pad electrical characteristics 33 3.7 RESET electrical characteristics 48 3.9 Power management electrical characteristics 48 3.9 Power consumption in different application modes 53 3.10 Flash memory electrical characteristics 54 3.11 Electromagnetic compatibility (EMC) characteristics 56 3.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics 58 3.13 Slow external crystal oscillator (32 kHz) electrical characteristics 63 3.14 FMPLL electrical characteristics 63 3.15 Fast internal RC oscillator (16 MHz) electrical characteristics 64 3.16 Slow internal RC oscillator (128 kHz) electrical characteristics 65 3.17 ADC electrical characteristics 66 3.18 <td></td>	
3.1 Parameter classification 25 3.2 NVUSRO register 26 3.3 Absolute maximum ratings 27 3.4 Recommended operating conditions 28 3.5 Thermal characteristics 31 3.6 I/O pad electrical characteristics 33 3.7 RESET electrical characteristics 45 3.8 Power management electrical characteristics 48 3.9 Power consumption in different application modes 53 3.10 Flash memory electrical characteristics 54 3.11 Electromagnetic compatibility (EMC) characteristics 56 3.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics 58 3.13 Slow external crystal oscillator (32 kHz) electrical characteristics 63 3.14 FMPLL electrical characteristics 63 3.15 Fast internal RC oscillator (16 MHz) electrical characteristics 64 3.16 Slow internal RC oscillator (128 kHz) electrical characteristics 65 3.17 ADC electrical characteristics 66 3.18 On-chip peripherals 76	
3.2 NVUSRO register. 26 3.3 Absolute maximum ratings. 27 3.4 Recommended operating conditions 28 3.5 Thermal characteristics 31 3.6 I/O pad electrical characteristics 33 3.7 RESET electrical characteristics 45 3.8 Power management electrical characteristics 48 3.9 Power consumption in different application modes 53 3.10 Flash memory electrical characteristics 54 3.11 Electromagnetic compatibility (EMC) characteristics 56 3.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics 58 3.13 Slow external crystal oscillator (32 kHz) electrical characteristics 63 3.14 FMPLL electrical characteristics 63 3.15 Fast internal RC oscillator (16 MHz) electrical characteristics 64 3.16 Slow internal RC oscillator (128 kHz) electrical characteristics 65 3.17 ADC electrical characteristics 66 3.18 On-chip peripherals 76 Package characteristics 85	
3.3 Absolute maximum ratings 27 3.4 Recommended operating conditions 28 3.5 Thermal characteristics 31 3.6 I/O pad electrical characteristics 33 3.7 RESET electrical characteristics 45 3.8 Power management electrical characteristics 48 3.9 Power consumption in different application modes 53 3.10 Flash memory electrical characteristics 54 3.11 Electromagnetic compatibility (EMC) characteristics 56 3.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics 58 3.13 Slow external crystal oscillator (32 kHz) electrical characteristics 61 3.14 FMPLL electrical characteristics 63 3.15 Fast internal RC oscillator (16 MHz) electrical characteristics 64 3.16 Slow internal RC oscillator (128 kHz) electrical characteristics 65 3.17 ADC electrical characteristics 66 3.18 On-chip peripherals 76 Package characteristics 85 4.1	
3.4 Recommended operating conditions 28 3.5 Thermal characteristics 31 3.6 I/O pad electrical characteristics 33 3.7 RESET electrical characteristics 45 3.8 Power management electrical characteristics 48 3.9 Power consumption in different application modes 53 3.10 Flash memory electrical characteristics 54 3.11 Electromagnetic compatibility (EMC) characteristics 56 3.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics 58 3.13 Slow external crystal oscillator (32 kHz) electrical characteristics 61 3.14 FMPLL electrical characteristics 63 3.15 Fast internal RC oscillator (16 MHz) electrical characteristics 64 3.16 Slow internal RC oscillator (128 kHz) electrical characteristics 65 3.17 ADC electrical characteristics 66 3.18 On-chip peripherals 76 Package characteristics 85 4.1	
3.5 Thermal characteristics 31 3.6 I/O pad electrical characteristics 33 3.7 RESET electrical characteristics 45 3.8 Power management electrical characteristics 48 3.9 Power consumption in different application modes 53 3.10 Flash memory electrical characteristics 54 3.11 Electromagnetic compatibility (EMC) characteristics 56 3.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics 58 3.13 Slow external crystal oscillator (32 kHz) electrical characteristics 61 3.14 FMPLL electrical characteristics 63 3.15 Fast internal RC oscillator (16 MHz) electrical characteristics 64 3.16 Slow internal RC oscillator (128 kHz) electrical characteristics 65 3.17 ADC electrical characteristics 66 3.18 On-chip peripherals 76 Package characteristics 85 4.1	
3.6 I/O pad electrical characteristics 33 3.7 RESET electrical characteristics 45 3.8 Power management electrical characteristics 48 3.9 Power consumption in different application modes 53 3.10 Flash memory electrical characteristics 54 3.11 Electromagnetic compatibility (EMC) characteristics 56 3.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics 58 3.13 Slow external crystal oscillator (32 kHz) electrical characteristics 61 3.14 FMPLL electrical characteristics 63 3.15 Fast internal RC oscillator (16 MHz) electrical characteristics 64 3.16 Slow internal RC oscillator (128 kHz) electrical characteristics 65 3.17 ADC electrical characteristics 66 3.18 On-chip peripherals 76 Package characteristics 85 4.1	
3.7 RESET electrical characteristics 45 3.8 Power management electrical characteristics 48 3.9 Power consumption in different application modes 53 3.10 Flash memory electrical characteristics 54 3.11 Electromagnetic compatibility (EMC) characteristics 56 3.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics 58 3.13 Slow external crystal oscillator (32 kHz) electrical characteristics 61 3.14 FMPLL electrical characteristics 63 3.15 Fast internal RC oscillator (16 MHz) electrical characteristics 64 3.16 Slow internal RC oscillator (128 kHz) electrical characteristics 65 3.17 ADC electrical characteristics 66 3.18 On-chip peripherals 76 Package characteristics 85 4.1	
3.8 Power management electrical characteristics 48 3.9 Power consumption in different application modes 53 3.10 Flash memory electrical characteristics 54 3.11 Electromagnetic compatibility (EMC) characteristics 56 3.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics 58 3.13 Slow external crystal oscillator (32 kHz) electrical characteristics 61 3.14 FMPLL electrical characteristics 63 3.15 Fast internal RC oscillator (16 MHz) electrical characteristics 63 3.16 Slow internal RC oscillator (128 kHz) electrical characteristics 64 3.16 Slow internal RC oscillator (128 kHz) electrical characteristics 65 3.17 ADC electrical characteristics 66 3.18 On-chip peripherals 76 Package characteristics 85 4.1	
3.9 Power consumption in different application modes 53 3.10 Flash memory electrical characteristics 54 3.11 Electromagnetic compatibility (EMC) characteristics 56 3.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics 58 3.13 Slow external crystal oscillator (32 kHz) electrical characteristics 61 3.14 FMPLL electrical characteristics 63 3.15 Fast internal RC oscillator (16 MHz) electrical characteristics 64 3.16 Slow internal RC oscillator (128 kHz) electrical characteristics 65 3.17 ADC electrical characteristics 66 3.18 On-chip peripherals 76 Package characteristics 85 4.1	
3.10Flash memory electrical characteristics543.11Electromagnetic compatibility (EMC) characteristics563.12Fast external crystal oscillator (4 to 16 MHz) electrical characteristics583.13Slow external crystal oscillator (32 kHz) electrical characteristics613.14FMPLL electrical characteristics633.15Fast internal RC oscillator (16 MHz) electrical characteristics643.16Slow internal RC oscillator (128 kHz) electrical characteristics653.17ADC electrical characteristics663.18On-chip peripherals76Package characteristics854.14.1Package mechanical data85	5
3.11 Electromagnetic compatibility (EMC) characteristics 56 3.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics 58 3.13 Slow external crystal oscillator (32 kHz) electrical characteristics 61 3.14 FMPLL electrical characteristics 63 3.15 Fast internal RC oscillator (16 MHz) electrical characteristics 64 3.16 Slow internal RC oscillator (128 kHz) electrical characteristics 65 3.17 ADC electrical characteristics 66 3.18 On-chip peripherals 76 Package characteristics 85 4.1	
3.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics. 58 3.13 Slow external crystal oscillator (32 kHz) electrical characteristics. 61 3.14 FMPLL electrical characteristics. 63 3.15 Fast internal RC oscillator (16 MHz) electrical characteristics. 64 3.16 Slow internal RC oscillator (128 kHz) electrical characteristics. 65 3.17 ADC electrical characteristics. 66 3.18 On-chip peripherals 76 Package characteristics. 85 4.1	
characteristics.583.13Slow external crystal oscillator (32 kHz) electrical characteristics.613.14FMPLL electrical characteristics.633.15Fast internal RC oscillator (16 MHz) electrical characteristics.643.16Slow internal RC oscillator (128 kHz) electrical characteristics.653.17ADC electrical characteristics.663.18On-chip peripherals76Package characteristics.854.1Package mechanical data85	
3.13 Slow external crystal oscillator (32 kHz) electrical characteristics 61 3.14 FMPLL electrical characteristics 63 3.15 Fast internal RC oscillator (16 MHz) electrical 64 3.16 Slow internal RC oscillator (128 kHz) electrical 64 3.16 Slow internal RC oscillator (128 kHz) electrical 65 3.17 ADC electrical characteristics 66 3.18 On-chip peripherals 76 Package characteristics 85 4.1	
characteristics.613.14FMPLL electrical characteristics.633.15Fast internal RC oscillator (16 MHz) electrical characteristics.643.16Slow internal RC oscillator (128 kHz) electrical characteristics.653.17ADC electrical characteristics.663.18On-chip peripherals76Package characteristics.854.1Package mechanical data85	
3.14 FMPLL electrical characteristics. 63 3.15 Fast internal RC oscillator (16 MHz) electrical characteristics. 64 3.16 Slow internal RC oscillator (128 kHz) electrical characteristics. 65 3.17 ADC electrical characteristics. 66 3.18 On-chip peripherals 76 Package characteristics. 85 4.1 Package mechanical data 85	
3.15 Fast internal RC oscillator (16 MHz) electrical characteristics. 64 3.16 Slow internal RC oscillator (128 kHz) electrical characteristics. 65 3.17 ADC electrical characteristics. 66 3.18 On-chip peripherals 76 Package characteristics. 85 4.1 Package mechanical data 85	
characteristics.643.16Slow internal RC oscillator (128 kHz) electrical characteristics.653.17ADC electrical characteristics.663.18On-chip peripherals76Package characteristics.854.1Package mechanical data85	
3.16Slow internal RC oscillator (128 kHz) electrical characteristics.653.17ADC electrical characteristics.663.18On-chip peripherals76Package characteristics.854.1Package mechanical data85	
characteristics.653.17ADC electrical characteristics.663.18On-chip peripherals76Package characteristics.854.1Package mechanical data85	
3.17ADC electrical characteristics663.18On-chip peripherals76Package characteristics854.1Package mechanical data85	
3.18On-chip peripherals76Package characteristics854.1Package mechanical data85	
Package characteristics854.1Package mechanical data85	
4.1 Package mechanical data	
	•
Revision history	0

Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

© Freescale Semiconductor, Inc., 2015-2016. All rights reserved.

1.3 Device comparison

Table 1 summarizes the functions of the blocks present on the MPC5606BK.

Table 1. MPC5606BK family comparison ¹

Feature		MPC5605BK			MPC5606BK			
Package	100 LQFP	144 LQFP	176 LQFP	100 LQFP	144 LQFP	176 LQFP		
CPU			e200	Oz0h				
Execution speed ²			Up to 6	64 MHz				
Code flash memory		768 KB			1 MB			
Data flash memory			64 (4 x	16) KB				
SRAM		64 KB			80 KB			
MPU			8-e	ntry				
eDMA			16	ch				
10-bit ADC			Ye	es				
dedicated ³	7 ch	15 ch	29 ch	7 ch	15 ch	29 ch		
shared with 12-bit ADC			19	ch				
12-bit ADC			Ye	es				
dedicated ⁴			5	ch				
shared with 10-bit ADC			19	ch				
Total timer I/O ⁵ eMIOS	37 ch, 16-bit		ch, -bit	37 ch, 64 ch, 16-bit 16-bit				
Counter / OPWM / ICOC ⁶	10 ch							
O(I)PWM / OPWFMB / OPWMCB / ICOC ⁷								
O(I)PWM / ICOC ⁸	7 ch			14 ch				
OPWM / ICOC ⁹	13 ch			33 ch				
SCI (LINFlex)	4	6	8	4	6	8		
SPI (DSPI)	3	5	6	3	5	6		
CAN (FlexCAN)			6	6		L		
I ² C				1				
32 KHz oscillator	Yes							
GPIO ¹⁰	77	121	149	77	121	149		
Debug		-	JT	AG	-			

¹ Feature set dependent on selected peripheral multiplexing; table shows example.

² Based on 125 °C ambient operating temperature.

³ Not shared with 12-bit ADC, but possibly shared with other alternate functions.

⁴ Not shared with 10-bit ADC, but possibly shared with other alternate functions.

⁵ Refer to eMIOS section of device reference manual for information on the channel configuration and functions.

⁶ Each channel supports a range of modes including Modulus counters, PWM generation, Input Capture, Output Compare.

⁷ Each channel supports a range of modes including PWM generation with dead time, Input Capture, Output Compare.

⁸ Each channel supports a range of modes including PWM generation, Input Capture, Output Compare, Period and Pulse width measurement.

⁹ Each channel supports a range of modes including PWM generation, Input Capture, and Output Compare.

¹⁰ Maximum I/O count based on multiplexing with peripherals.

1.4 Block diagram

Figure 1 shows a top-level block diagram of the MPC5606BK.

Figure 1. MPC5606BK block diagram

2 Package pinouts and signal descriptions

2.1 Package pinouts

The available LQFP pinouts are provided in the following figures. For pin signal descriptions, please see Table 2.

Figure 2 shows the MPC5606BK in the 176 LQFP package.

Figure 2. 176 LQFP pinout

Figure 3 shows the MPC5606BK in the 144 LQFP package.

Figure 3. 144 LQFP pinout

Figure 4 shows the MPC5606BK in the 100 LQFP package.

Figure 4. 100 LQFP pinout

2.2 Pin muxing

Table 2 defines the pin list and muxing for this device.

Each entry of Table 2 shows all the possible configurations for each pin, via the alternate functions. The default function assigned to each pin after reset is indicated by AF0.

Port	PCR	Alternate	Alternate	eral	ion	pe ²	н [°] а	Ρ	in numb	er
pin	register	function ¹	Function	Peripheral	I/O direction	Pad type ²	RESET config. ³	100 LQFP	144 LQFP	176 LQFP
				Port A						
PA[0]	PCR[0]	AF0 AF1 AF2 AF3 —	GPIO[0] E0UC[0] CLKOUT E0UC[13] WKUP[19] ⁴	SIUL eMIOS_0 MC_CGM eMIOS_0 WKUP	I/O I/O I/O I	M	Tristate	12	16	24
PA[1]	PCR[1]	AF0 AF1 AF2 AF3 —	GPIO[1] E0UC[1] MI ⁵ — WKUP[2] ⁴	SIUL eMIOS_0 WKUP WKUP	I/O I/O I I	S	Tristate	7	11	19
PA[2]	PCR[2]	AF0 AF1 AF2 AF3 —	GPIO[2] E0UC[2] — MA[2] WKUP[3] ⁴	SIUL eMIOS_0 — ADC_0 WKUP	I/O I/O — 0 I	S	Tristate	5	9	17
PA[3]	PCR[3]	AF0 AF1 AF2 AF3 —	GPIO[3] E0UC[3] LIN5TX CS4_1 EIRQ[0] ADC1_S[0]	SIUL eMIOS_0 LINFlex_5 DSPI_1 SIUL ADC_1	I/O I/O O I I	J	Tristate	68	90	114
PA[4]	PCR[4]	AF0 AF1 AF2 AF3 — —	GPIO[4] E0UC[4] — CS0_1 LIN5RX WKUP[9] ⁴	SIUL eMIOS_0 DSPI_1 LINFlex_5 WKUP	I/O I/O I/O I I	S	Tristate	29	43	51
PA[5]	PCR[5]	AF0 AF1 AF2 AF3	GPIO[5] E0UC[5] LIN4TX —	SIUL eMIOS_0 LINFlex_4 —	I/O I/O O	М	Tristate	79	118	146
PA[6]	PCR[6]	AF0 AF1 AF2 AF3 — —	GPIO[6] E0UC[6] — CS1_1 EIRQ[1] LIN4RX	SIUL eMIOS_0 DSPI_1 SIUL LINFlex_4	I/O I/O — 0 I	S	Tristate	80	119	147

Table 2. Functional port pins

Port	PCR	Alternate		eral	uo	pe ²	н. ₆ 4	Р	in numb	er
pin		function ¹	Function	Peripheral	I/O direction	Pad type ²	RESET config. ³	100 LQFP	144 LQFP	176 LQFP
PA[7]	PCR[7]	AF0 AF1 AF2 AF3	GPIO[7] E0UC[7] LIN3TX —	SIUL eMIOS_0 LINFlex_3 —	I/O I/O O	J	Tristate	71	104	128
		_	EIRQ[2] ADC1_S[1]	SIUL ADC_1	 					
PA[8]	PCR[8]	AF0 AF1 AF2 AF3	GPIO[8] E0UC[8] E0UC[14] —	SIUL eMIOS_0 eMIOS_0 	I/O I/O I/O	S	Input, weak pull-up	72	105	129
		 N/A ⁶	EIRQ[3] ABS[0] LIN3RX	SIUL BAM LINFlex_3	 					
PA[9]	PCR[9]	AF0 AF1 AF2 AF3 N/A ⁶	GPIO[9] E0UC[9] — CS2_1 FAB	SIUL eMIOS_0 — DSPI_1 BAM	I/O I/O — 0 I	S	Pull- down	73	106	130
PA[10]	PCR[10]	AF0 AF1 AF2 AF3 —	GPIO[10] E0UC[10] SDA LIN2TX ADC1_S[2]	SIUL eMIOS_0 I ² C_0 LINFlex_2 ADC_1	I/O I/O I/O O I	J	Tristate	74	107	131
PA[11]	PCR[11]	AF0 AF1 AF2 AF3	GPIO[11] E0UC[11] SCL	SIUL eMIOS_0 I ² C_0 	I/O I/O I/O	J	Tristate	75	108	132
			EIRQ[16] LIN2RX ADC1_S[3]	SIUL LINFlex_2 ADC_1	 					
PA[12]	PCR[12]	AF0 AF1 AF2 AF3 —	GPIO[12] 	SIUL eMIOS_0 DSPI_1 SIUL DSPI_0	I/O — I/O I I	S	Tristate	31	45	53
PA[13]	PCR[13]	AF0 AF1 AF2 AF3	GPIO[13] SOUT_0 E0UC[29] —	SIUL DSPI_0 eMIOS_0 —	I/O O I/O —	М	Tristate	30	44	52
PA[14]	PCR[14]	AF0 AF1 AF2 AF3 —	GPIO[14] SCK_0 CS0_0 E0UC[0] EIRQ[4]	SIUL DSPI_0 DSPI_0 eMIOS_0 SIUL	I/O I/O I/O I	М	Tristate	28	42	50

Port	PCR	Alternate		eral	noi	pe ²	н. В. ³	Pi	in numb	er
pin		function ¹	Function	Peripheral	I/O direction	Pad type ²	RESET config. ³	100 LQFP	144 LQFP	176 LQFP
PA[15]	PCR[15]	AF0 AF1 AF2 AF3 —	GPIO[15] CS0_0 SCK_0 E0UC[1] WKUP[10] ⁴	SIUL DSPI_0 DSPI_0 eMIOS_0 WKUP	I/O I/O I/O I	М	Tristate	27	40	48
	Port B									
PB[0]	PCR[16]	AF0 AF1 AF2 AF3	GPIO[16] CAN0TX E0UC[30] LIN0TX	SIUL FlexCAN_0 eMIOS_0 LINFlex_0	I/O O I/O O	М	Tristate	23	31	39
PB[1]	PCR[17]	AF0 AF1 AF2 AF3 — — —	GPIO[17] — E0UC[31] — WKUP[4] ⁴ CAN0RX LIN0RX	SIUL — eMIOS_0 — WKUP FlexCAN_0 LINFlex_0	/0 /0 	S	Tristate	24	32	40
PB[2]	PCR[18]	AF0 AF1 AF2 AF3	GPIO[18] LIN0TX SDA E0UC[30]	SIUL LINFlex_0 I ² C_0 eMIOS_0	I/O O I/O I/O	М	Tristate	100	144	176
PB[3]	PCR[19]	AF0 AF1 AF2 AF3 —	GPIO[19] E0UC[31] SCL WKUP[11] ⁴ LIN0RX	SIUL eMIOS_0 I ² C_0 WKUP LINFlex_0	/O /O /O 	S	Tristate	1	1	1
PB[4]	PCR[20]	AF0 AF1 AF2 AF3 — — —	 ADC0_P[0] ADC1_P[0] GPI0[20]		- - - - - - - - - - - - - - - - - - -	I	Tristate	50	72	88
PB[5]	PCR[21]	AF0 AF1 AF2 AF3 — — —	 ADC0_P[1] ADC1_P[1] GPI0[21]		 	I	Tristate	53	75	91

Table 2. Func	tional port i	pins (continued)
	nonai port p	pinis (continucu)

Port	PCR	Alternate		eral	uo	pe ²	н. 	Pin number		er
pin		function ¹	Function	Peripheral	I/O direction	Pad type ²	RESET config. ³	100 LQFP	144 LQFP	176 LQFP
PB[6]	PCR[22]	AF0 AF1 AF2 AF3 — —				I	Tristate	54	76	92
PB[7]	PCR[23]	AF0 AF1 AF2 AF3 — — —	 ADC0_P[3] ADC1_P[3] GPIO[23]	 ADC_0 ADC_1 SIUL	 	Ι	Tristate	55	77	93
PB[8]	PCR[24]	AF0 AF1 AF2 AF3 — — — —	GPIO[24] — — OSC32K_XTAL ⁷ WKUP[25] ADC0_S[0] ADC1_S[4]	SIUL — — OSC32K WKUP ADC_0 ADC_1	- 	I	_	39	53	61
PB[9]	PCR[25]	AF0 AF1 AF2 AF3 — — — —	GPIO[25] — — OSC32K_EXTAL ⁷ WKUP[26] ADC0_S[1] ADC1_S[5]	SIUL — OSC32K WKUP ADC_0 ADC_1	 - 	I	_	38	52	60
PB[10]	PCR[26]	AF0 AF1 AF2 AF3 — — —	GPIO[26] — — WKUP[8] ⁴ ADC0_S[2] ADC1_S[6]	SIUL — — WKUP ADC_0 ADC_1	I/O — — — — — — — —	J	Tristate	40	54	62
PB[11]	PCR[27]	AF0 AF1 AF2 AF3 —	GPIO[27] E0UC[3] — CS0_0 ADC0_S[3]	SIUL eMIOS_0 — DSPI_0 ADC_0	I/O I/O I/O I	J	Tristate		_	97
PB[12]	PCR[28]	AF0 AF1 AF2 AF3 —	GPIO[28] E0UC[4] — CS1_0 ADC0_X[0]	SIUL eMIOS_0 DSPI_0 ADC_0	I/O I/O — 0 I	J	Tristate	61	83	101

Table 2. Functional port pins (continued)

Port	PCR	Alternate		eral	uo	pe ²	ب _°	Pi	in numb	er		
pin	register	function ¹	Function	Peripheral	I/O direction	Pad type ²	RESET config. ³	100 LQFP	144 LQFP	176 LQFP		
PB[13]	PCR[29]	AF0 AF1 AF2	GPIO[29] E0UC[5] —	SIUL eMIOS_0	I/O I/O	J	Tristate	63	85	103		
		AF3 —	CS2_0 ADC0_X[1]	DSPI_0 ADC_0	0 1							
PB[14]	PCR[30]	AF0 AF1 AF2	GPIO[30] E0UC[6] —	SIUL eMIOS_0	I/O I/O	J	Tristate	65	87	105		
		AF3	CS3_0 ADC0_X[2]	DSPI_0 ADC_0	0 							
PB[15]	PCR[31]	AF0 AF1 AF2	GPIO[31] E0UC[7]	SIUL eMIOS_0	I/O I/O	J	Tristate	67	89	107		
		AF2 AF3 —	 CS4_0 ADC0_X[3]	DSPI_0 ADC_0	0 							
	Port C											
PC[0] ⁸	PCR[32]	AF0 AF1 AF2 AF3	GPIO[32] — TDI —	SIUL — JTAGC —	I/O — I	M	Input, weak pull-up	87	126	154		
PC[1] ⁸	PCR[33]	AF0 AF1 AF2 AF3	GPIO[33] TDO 	SIUL — JTAGC —	I/O 	F ⁹	Tristate	82	121	149		
PC[2]	PCR[34]	AF0 AF1 AF2 AF3 —	GPIO[34] SCK_1 CAN4TX DEBUG[0] EIRQ[5]	SIUL DSPI_1 FlexCAN_4 SSCM SIUL	I/O I/O O I	М	Tristate	78	117	145		
PC[3]	PCR[35]	AF0 AF1 AF2 AF3 — — —	GPIO[35] CS0_1 MA[0] DEBUG[1] EIRQ[6] CAN1RX CAN4RX	SIUL DSPI_1 ADC_0 SSCM SIUL FlexCAN_1 FlexCAN_4	/O /O 0 	S	Tristate	77	116	144		
PC[4]	PCR[36]	AF0 AF1 AF2 AF3 — — —	GPIO[36] E1UC[31] DEBUG[2] EIRQ[18] SIN_1 CAN3RX	SIUL eMIOS_1 SSCM SIUL DSPI_1 FlexCAN_3	/O /O 	М	Tristate	92	131	159		

Table 2. Functional port pins (continued)

Port	PCR	Alternate		eral	uo	pe ²	н. Э.	Pi	in numb	er
pin	register	function ¹	Function	Peripheral	I/O direction	Pad type ²	RESET config. ³	100 LQFP	144 LQFP	176 LQFP
PC[5]	PCR[37]	AF0 AF1 AF2 AF3 —	GPIO[37] SOUT_1 CAN3TX DEBUG[3] EIRQ[7]	SIUL DSPI_1 FlexCAN_3 SSCM SIUL	I/O O O I	М	Tristate	91	130	158
PC[6]	PCR[38]	AF0 AF1 AF2 AF3	GPIO[38] LIN1TX E1UC[28] DEBUG[4]	SIUL LINFlex_1 eMIOS_1 SSCM	I/O O I/O O	S	Tristate	25	36	44
PC[7]	PCR[39]	AF0 AF1 AF2 AF3 — —	GPIO[39] — E1UC[29] DEBUG[5] LIN1RX WKUP[12] ⁴	SIUL eMIOS_1 SSCM LINFlex_1 WKUP	I/O — I/O O I I	S	Tristate	26	37	45
PC[8]	PCR[40]	AF0 AF1 AF2 AF3	GPIO[40] LIN2TX E0UC[3] DEBUG[6]	SIUL LINFlex_2 eMIOS_0 SSCM	I/O O I/O O	S	Tristate	99	143	175
PC[9]	PCR[41]	AF0 AF1 AF2 AF3 —	GPIO[41] — E0UC[7] DEBUG[7] WKUP[13] ⁴ LIN2RX	SIUL — eMIOS_0 SSCM WKUP LINFlex_2	I/O — I/O O I I	S	Tristate	2	2	2
PC[10]	PCR[42]	AF0 AF1 AF2 AF3	GPIO[42] CAN1TX CAN4TX MA[1]	SIUL FlexCAN_1 FlexCAN_4 ADC_0	I/O O O O	М	Tristate	22	28	36
PC[11]	PCR[43]	AF0 AF1 AF2 AF3 — — —	GPIO[43] — MA[2] WKUP[5] ⁴ CAN1RX CAN4RX	SIUL ADC_0 WKUP FlexCAN_1 FlexCAN_4	I/O — — 0 I I I	S	Tristate	21	27	35
PC[12]	PCR[44]	AF0 AF1 AF2 AF3 —	GPIO[44] E0UC[12] — EIRQ[19] SIN_2	SIUL eMIOS_0 — SIUL DSPI_2	I/O I/O — I I	М	Tristate	97	141	173
PC[13]	PCR[45]	AF0 AF1 AF2 AF3	GPIO[45] E0UC[13] SOUT_2 —	SIUL eMIOS_0 DSPI_2 —	I/O I/O O	S	Tristate	98	142	174

 Table 2. Functional port pins (continued)

Port	PCR	Alternate		eral	uo	pe ²	н [°] :	Pi	in numb	er
pin	register	function ¹	Function	Peripheral	I/O direction	Pad type ²	RESET config. ³	100 LQFP	144 LQFP	176 LQFP
PC[14]	PCR[46]	AF0 AF1 AF2 AF3	GPIO[46] E0UC[14] SCK_2 — EIRQ[8]	SIUL eMIOS_0 DSPI_2 — SIUL	I/O I/O I/O I	S	Tristate	3	3	3
PC[15]	PCR[47]	AF0 AF1 AF2 AF3 —	GPIO[47] E0UC[15] CS0_2 — EIRQ[20]	SIUL eMIOS_0 DSPI_2 — SIUL	I/O I/O I/O — I	М	Tristate	4	4	4
				Port D		1			<u> </u>	
PD[0]	PCR[48]	AF0 AF1 AF2 AF3 — —	GPIO[48] — — WKUP[27] ADC0_P[4] ADC1_P[4]	SIUL — — WKUP ADC_0 ADC_1	 	I	Tristate	41	63	77
PD[1]	PCR[49]	AF0 AF1 AF2 AF3 — —	GPIO[49] — — WKUP[28] ADC0_P[5] ADC1_P[5]	SIUL — — WKUP ADC_0 ADC_1	 - 	I	Tristate	42	64	78
PD[2]	PCR[50]	AF0 AF1 AF2 AF3 —	GPIO[50] — — ADC0_P[6] ADC1_P[6]	SIUL — — ADC_0 ADC_1	-	I	Tristate	43	65	79
PD[3]	PCR[51]	AF0 AF1 AF2 AF3 — —	GPIO[51] — — ADC0_P[7] ADC1_P[7]	SIUL — — ADC_0 ADC_1	 - 	I	Tristate	44	66	80
PD[4]	PCR[52]	AF0 AF1 AF2 AF3 —	GPIO[52] — — ADC0_P[8] ADC1_P[8]	SIUL — — ADC_0 ADC_1	 - 	I	Tristate	45	67	81

 Table 2. Functional port pins (continued)

Port	PCR	Alternate		eral	uo	pe ²	ب ۳	Pi	in numb	er
pin		function ¹	Function	Peripheral	I/O direction	Pad type ²	RESET config. ³	100 LQFP	144 LQFP	176 LQFP
PD[5]	PCR[53]	AF0 AF1 AF2 AF3 — —	GPIO[53] — — ADC0_P[9] ADC1_P[9]	SIUL — — ADC_0 ADC_1	 _ 	Ι	Tristate	46	68	82
PD[6]	PCR[54]	AF0 AF1 AF2 AF3 —	GPIO[54] — — ADC0_P[10] ADC1_P[10]	SIUL — — ADC_0 ADC_1	 	I	Tristate	47	69	83
PD[7]	PCR[55]	AF0 AF1 AF2 AF3 —	GPIO[55] — — — ADC0_P[11] ADC1_P[11]	SIUL — — ADC_0 ADC_1	 	Ι	Tristate	48	70	84
PD[8]	PCR[56]	AF0 AF1 AF2 AF3 —	GPIO[56] — — — ADC0_P[12] ADC1_P[12]	SIUL — — ADC_0 ADC_1	 _ 	Ι	Tristate	49	71	87
PD[9]	PCR[57]	AF0 AF1 AF2 AF3 — —	GPIO[57] — — ADC0_P[13] ADC1_P[13]	SIUL — — ADC_0 ADC_1	 	Ι	Tristate	56	78	94
PD[10]	PCR[58]	AF0 AF1 AF2 AF3 — —	GPIO[58] — — ADC0_P[14] ADC1_P[14]	SIUL — — ADC_0 ADC_1	 	Ι	Tristate	57	79	95
PD[11]	PCR[59]	AF0 AF1 AF2 AF3 —	GPIO[59] — — — ADC0_P[15] ADC1_P[15]	SIUL — — ADC_0 ADC_1	 	Ι	Tristate	58	80	96
PD[12]	PCR[60]	AF0 AF1 AF2 AF3 —	GPIO[60] CS5_0 E0UC[24] — ADC0_S[4]	SIUL DSPI_0 eMIOS_0 — ADC_0	I/O O I/O I	J	Tristate		_	100

Table 2.	Functional	port	pins ((continued)	
10.010 =		P • · · ·	P		

Port	PCR	Alternate		eral	uo	pe ²	н [°] :	Pi	in numb	er
pin		function ¹	Function	Peripheral	I/O direction	Pad type ²	RESET config. ³	100 LQFP	144 LQFP	176 LQFP
PD[13]	PCR[61]	AF0 AF1 AF2 AF3	GPIO[61] CS0_1 E0UC[25]	SIUL DSPI_1 eMIOS_0	I/O I/O I/O	J	Tristate	62	84	102
		AF3 —	 ADC0_S[5]	ADC_0	-					
PD[14]	PCR[62]	AF0 AF1 AF2 AF3	GPIO[62] CS1_1 E0UC[26] —	SIUL DSPI_1 eMIOS_0 —	I/O O I/O —	J	Tristate	64	86	104
		—	ADC0_S[6]	ADC_0	I					
PD[15]	PCR[63]	AF0 AF1 AF2 AF3	GPIO[63] CS2_1 E0UC[27]	SIUL DSPI_1 eMIOS_0	I/O O I/O	J	Tristate	66	88	106
		—	ADC0_S[7]	ADC_0	I					
				Port E						
PE[0]	PCR[64]	AF0 AF1 AF2 AF3 — —	GPIO[64] E0UC[16] WKUP[6] ⁴ CAN5RX	SIUL eMIOS_0 WKUP FlexCAN_5	/O /O 	S	Tristate	6	10	18
PE[1]	PCR[65]	AF0 AF1 AF2 AF3	GPIO[65] E0UC[17] CAN5TX —	SIUL eMIOS_0 FlexCAN_5 —	I/O I/O O	М	Tristate	8	12	20
PE[2]	PCR[66]	AF0 AF1 AF2 AF3 —	GPIO[66] E0UC[18] — EIRQ[21] SIN_1	SIUL eMIOS_0 	I/O I/O — I I	М	Tristate	89	128	156
PE[3]	PCR[67]	AF0 AF1 AF2 AF3	GPIO[67] E0UC[19] SOUT_1 	SIUL eMIOS_0 DSPI_1 —	I/O I/O O	M	Tristate	90	129	157
PE[4]	PCR[68]	AF0 AF1 AF2 AF3	GPIO[68] E0UC[20] SCK_1 —	SIUL eMIOS_0 DSPI_1 —	I/O I/O I/O	М	Tristate	93	132	160
		—	EIRQ[9]	SIUL	Ι					
PE[5]	PCR[69]	AF0 AF1 AF2 AF3	GPIO[69] E0UC[21] CS0_1 MA[2]	SIUL eMIOS_0 DSPI_1 ADC_0	I/O I/O I/O O	М	Tristate	94	133	161

Table 2. Functional port pins (continued)

Port	PCR	Alternate		eral	uo	pe ²	н°:	Ρ	in numb	er
pin		function ¹	Function	Peripheral	I/O direction	Pad type ²	RESET config. ³	100 LQFP	144 LQFP	176 LQFP
PE[6]	PCR[70]	AF0 AF1 AF2 AF3 —	GPIO[70] E0UC[22] CS3_0 MA[1] EIRQ[22]	SIUL eMIOS_0 DSPI_0 ADC_0 SIUL	I/O I/O O I	М	Tristate	95	139	167
PE[7]	PCR[71]	AF0 AF1 AF2 AF3 —	GPIO[71] E0UC[23] CS2_0 MA[0] EIRQ[23]	SIUL eMIOS_0 DSPI_0 ADC_0 SIUL	I/O I/O O I	М	Tristate	96	140	168
PE[8]	PCR[72]	AF0 AF1 AF2 AF3	GPIO[72] CAN2TX E0UC[22] CAN3TX	SIUL FlexCAN_2 eMIOS_0 FlexCAN_3	I/O O I/O O	М	Tristate	9	13	21
PE[9]	PCR[73]	AF0 AF1 AF2 AF3 — —	GPIO[73] — E0UC[23] — WKUP[7] ⁴ CAN2RX CAN3RX	SIUL eMIOS_0 WKUP FlexCAN_2 FlexCAN_3	I/O - /O 	S	Tristate	10	14	22
PE[10]	PCR[74]	AF0 AF1 AF2 AF3 —	GPIO[74] LIN3TX CS3_1 E1UC[30] EIRQ[10]	SIUL LINFlex_3 DSPI_1 eMIOS_1 SIUL	I/O O I/O I	S	Tristate	11	15	23
PE[11]	PCR[75]	AF0 AF1 AF2 AF3 — —	GPIO[75] E0UC[24] CS4_1 — LIN3RX WKUP[14] ⁴	SIUL eMIOS_0 DSPI_1 LINFlex_3 WKUP	I/O I/O O I I	S	Tristate	13	17	25
PE[12]	PCR[76]	AF0 AF1 AF2 AF3 — — —	GPIO[76] E1UC[19] ¹⁰ EIRQ[11] SIN_2 ADC1_S[7]	SIUL 	/0 - /0 	J	Tristate	76	109	133
PE[13]	PCR[77]	AF0 AF1 AF2 AF3	GPIO[77] SOUT_2 E1UC[20] —	SIUL DSPI_2 eMIOS_1 —	I/O O I/O —	S	Tristate		103	127

Table 2. Functional port pins (continued)

Port	PCR	Alternate		eral	uo	pe ²	н°;	Pi	in numb	er
pin	register	function ¹	Function	Peripheral	I/O direction	Pad type ²	RESET config. ³	100 LQFP	144 LQFP	176 LQFP
PE[14]	PCR[78]	AF0 AF1 AF2 AF3	GPIO[78] SCK_2 E1UC[21]	SIUL DSPI_2 eMIOS_1	I/O I/O I/O	S	Tristate	_	112	136
		—	EIRQ[12]	SIUL	Ι					
PE[15]	PCR[79]	AF0 AF1 AF2 AF3	GPIO[79] CS0_2 E1UC[22] —	SIUL DSPI_2 eMIOS_1 —	I/O I/O I/O	М	Tristate	_	113	137
	1			Port F		<u> </u>			1	1
PF[0]	PCR[80]	AF0 AF1 AF2 AF3	GPIO[80] E0UC[10] CS3_1 —	SIUL eMIOS_0 DSPI_1 —	I/O I/O O	J	Tristate	_	55	63
		—	ADC0_S[8]	ADC_0	Ι					
PF[1]	PCR[81]	AF0 AF1 AF2 AF3 —	GPIO[81] E0UC[11] CS4_1 ADC0_S[9]	SIUL eMIOS_0 DSPI_1 — ADC_0	I/O I/O O I	J	Tristate	_	56	64
PF[2]	PCR[82]	AF0 AF1 AF2 AF3 —	GPIO[82] E0UC[12] CS0_2 — ADC0_S[10]	SIUL eMIOS_0 DSPI_2 — ADC_0	I/O I/O O I	J	Tristate		57	65
PF[3]	PCR[83]	AF0 AF1 AF2 AF3	GPIO[83] E0UC[13] CS1_2 —	SIUL eMIOS_0 DSPI_2 —	I/O I/O O	J	Tristate		58	66
		_	ADC0_S[11]	ADC_0	I					
PF[4]	PCR[84]	AF0 AF1 AF2 AF3 —	GPIO[84] E0UC[14] CS2_2 — ADC0_S[12]	SIUL eMIOS_0 DSPI_2 — ADC_0	I/O I/O — I	J	Tristate		59	67
PF[5]	PCR[85]	AF0 AF1 AF2 AF3 —	GPIO[85] E0UC[22] CS3_2 — ADC0_S[13]	SIUL eMIOS_0 DSPI_2 — ADC_0	I/O I/O O I	J	Tristate		60	68
PF[6]	PCR[86]	AF0 AF1 AF2 AF3	GPIO[86] E0UC[23] CS1_1	SIUL eMIOS_0 DSPI_1 —	I/O I/O O	J	Tristate		61	69
		_	ADC0_S[14]	ADC_0	Ι					

 Table 2. Functional port pins (continued)

Dout	DOD	Altownsta		eral	uo	oe ²	÷	Pi	n numb	er
Port pin	PCR register	Alternate function ¹	Function	Peripheral	I/O direction	Pad type ²	RESET config. ³	100 LQFP	144 LQFP	176 LQFP
PF[7]	PCR[87]	AF0 AF1	GPIO[87]	SIUL	I/O	J	Tristate	—	62	70
		AF1 AF2 AF3	 CS2_1 	 DSPI_1 	0					
		—	ADC0_S[15]	ADC_0	Ι					
PF[8]	PCR[88]	AF0 AF1 AF2 AF3	GPIO[88] CAN3TX CS4_0 CAN2TX	SIUL FlexCAN_3 DSPI_0 FlexCAN_2	I/O O O	М	Tristate	_	34	42
PF[9]	PCR[89]	AF0 AF1 AF2 AF3 — — —	GPIO[89] E1UC[1] CS5_0 — WKUP[22] ⁴ CAN2RX CAN3RX	SIUL eMIOS_1 DSPI_0 — WKUP FlexCAN_2 FlexCAN_3	I/O I/O O I I I I	S	Tristate	_	33	41
PF[10]	PCR[90]	AF0 AF1 AF2 AF3	GPIO[90] CS1_0 LIN4TX E1UC[2]	SIUL DSPI_0 LINFlex_4 eMIOS_1	I/O O I/O	М	Tristate	_	38	46
PF[11]	PCR[91]	AF0 AF1 AF2 AF3	GPIO[91] CS2_0 E1UC[3] —	SIUL DSPI_0 eMIOS_1 —	I/O O I/O —	S	Tristate	_	39	47
		_	WKUP[15] ⁴ LIN4RX	WKUP LINFlex_4	 					
PF[12]	PCR[92]	AF0 AF1 AF2 AF3	GPIO[92] E1UC[25] LIN5TX —	SIUL eMIOS_1 LINFlex_5 —	I/O I/O O	М	Tristate		35	43
PF[13]	PCR[93]	AF0 AF1 AF2 AF3 —	GPIO[93] E1UC[26] — WKUP[16] ⁴ LIN5RX	SIUL eMIOS_1 WKUP LINFlex_5	/O /O 	S	Tristate		41	49
PF[14]	PCR[94]	AF0 AF1 AF2 AF3	GPIO[94] CAN4TX E1UC[27] CAN1TX	SIUL FlexCAN_4 eMIOS_1 FlexCAN_1	I/O O I/O O	М	Tristate		102	126

 Table 2. Functional port pins (continued)

Port	PCR	Alternate		eral	uo	pe ²	н [°] :	Pi	in numb	er
pin	register	function ¹	Function	Peripheral	I/O direction	Pad type ²	RESET config. ³	100 LQFP	144 LQFP	176 LQFP
PF[15]	PCR[95]	AF0 AF1 AF2 AF3	GPIO[95] E1UC[4] —	SIUL eMIOS_1 	I/O I/O 	S	Tristate	_	101	125
			EIRQ[13] CAN1RX CAN4RX	SIUL FlexCAN_1 FlexCAN_4	 					
				Port G						
PG[0]	PCR[96]	AF0 AF1 AF2 AF3	GPIO[96] CAN5TX E1UC[23] —	SIUL FlexCAN_5 eMIOS_1 —	I/O O I/O —	М	Tristate	_	98	122
PG[1]	PCR[97]	AF0 AF1 AF2 AF3 —	GPIO[97] — E1UC[24] — EIRQ[14] CAN5RX	SIUL 	I/O — I/O — I I	S	Tristate		97	121
PG[2]	PCR[98]	AF0 AF1 AF2 AF3	GPIO[98] E1UC[11] SOUT_3 —	SIUL eMIOS_1 DSPI_3 —	I/O I/O O	М	Tristate		8	16
PG[3]	PCR[99]	AF0 AF1 AF2 AF3 —	GPIO[99] E1UC[12] CS0_3 — WKUP[17] ⁴	SIUL eMIOS_1 DSPI_3 — WKUP	I/O I/O O I	S	Tristate		7	15
PG[4]	PCR[100]	AF0 AF1 AF2 AF3	GPIO[100] E1UC[13] SCK_3 —	SIUL eMIOS_1 DSPI_3 —	I/O I/O I/O	М	Tristate		6	14
PG[5]	PCR[101]	AF0 AF1 AF2 AF3 —	GPIO[101] E1UC[14] — WKUP[18] ⁴ SIN_3	SIUL eMIOS_1 — WKUP DSPI_3	I/O I/O — I I	S	Tristate		5	13
PG[6]	PCR[102]	AF0 AF1 AF2 AF3	GPIO[102] E1UC[15] LIN6TX —	SIUL eMIOS_1 LINFlex_6 —	I/O I/O O	М	Tristate		30	38

Port	PCR	Alternate		eral	uo	pe ²	н. Э.	Pi	in numb	er
pin		function ¹	Function	Peripheral	I/O direction	Pad type ²	RESET config. ³	100 LQFP	144 LQFP	176 LQFP
PG[7]	PCR[103]	AF0 AF1 AF2 AF3	GPIO[103] E1UC[16] E1UC[30] —	SIUL eMIOS_1 eMIOS_1 —	I/O I/O I/O	S	Tristate	_	29	37
		—	WKUP[20] ⁴ LIN6RX	WKUP LINFlex_6						
PG[8]	PCR[104]	AF0 AF1 AF2 AF3 —	GPIO[104] E1UC[17] LIN7TX CS0_2 EIRQ[15]	SIUL eMIOS_1 LINFlex_7 DSPI_2 SIUL	I/O I/O I/O I	S	Tristate	_	26	34
PG[9]	PCR[105]	AF0 AF1 AF2 AF3 —	GPIO[105] E1UC[18] — SCK_2 WKUP[21] ⁴ LIN7RX	SIUL eMIOS_1 DSPI_2 WKUP LINFlex_7	I/O I/O I/O I I	S	Tristate		25	33
PG[10]	PCR[106]	AF0 AF1 AF2 AF3 —	GPIO[106] E0UC[24] E1UC[31] SIN_4	SIUL eMIOS_0 eMIOS_1 DSPI_4	I/O I/O I/O I	S	Tristate		114	138
PG[11]	PCR[107]	AF0 AF1 AF2 AF3	GPIO[107] E0UC[25] CS0_4 —	SIUL eMIOS_0 DSPI_4 —	I/O I/O O	М	Tristate		115	139
PG[12]	PCR[108]	AF0 AF1 AF2 AF3	GPIO[108] E0UC[26] SOUT_4 —	SIUL eMIOS_0 DSPI_4 —	I/O I/O O	М	Tristate		92	116
	PCR[109]	AF0 AF1 AF2 AF3	GPIO[109] E0UC[27] SCK_4 —	SIUL eMIOS_0 DSPI_4 —	I/O I/O I/O	М	Tristate	_	91	115
PG[14]	PCR[110]	AF0 AF1 AF2 AF3	GPIO[110] E1UC[0] — —	SIUL eMIOS_1 —	1/0 1/0	S	Tristate	_	110	134
PG[15]	PCR[111]	AF0 AF1 AF2 AF3 —	GPIO[111] E1UC[1] — — —	SIUL eMIOS_1 — —	I/O I/O —	М	Tristate		111	135
				Port H		1	I		I	

Table 2. Functional port pins (continued)

Port	PCR	Alternate		eral	ion	pe ²	н. 9.3	Pi	Pin number	
pin		function ¹	Function	Peripheral	I/O direction	Pad type ²	RESET config. ³	100 LQFP	144 LQFP	176 LQFP
PH[0]	PCR[112]	AF0 AF1 AF2 AF3	GPIO[112] E1UC[2] — —	SIUL eMIOS_1 —	I/O I/O 	М	Tristate	_	93	117
		—	SIN_1	DSPI_1	Ι					
PH[1]	PCR[113]	AF0 AF1 AF2 AF3	GPIO[113] E1UC[3] SOUT_1 —	SIUL eMIOS_1 DSPI_1 —	I/O I/O O	М	Tristate	_	94	118
PH[2]	PCR[114]	AF0 AF1 AF2 AF3	GPIO[114] E1UC[4] SCK_1 —	SIUL eMIOS_1 DSPI_1 —	I/O I/O I/O	М	Tristate		95	119
PH[3]	PCR[115]	AF0 AF1 AF2 AF3	GPIO[115] E1UC[5] CS0_1 —	SIUL eMIOS_1 DSPI_1 —	I/O I/O I/O	М	Tristate		96	120
PH[4]	PCR[116]	AF0 AF1 AF2 AF3	GPIO[116] E1UC[6] — —	SIUL eMIOS_1 —	I/O I/O 	М	Tristate	_	134	162
PH[5]	PCR[117]	AF0 AF1 AF2 AF3	GPIO[117] E1UC[7] — —	SIUL eMIOS_1 —	I/O I/O 	S	Tristate		135	163
PH[6]	PCR[118]	AF0 AF1 AF2 AF3	GPIO[118] E1UC[8] — MA[2]	SIUL eMIOS_1 ADC_0	I/O I/O — O	М	Tristate	_	136	164
PH[7]	PCR[119]	AF0 AF1 AF2 AF3	GPIO[119] E1UC[9] CS3_2 MA[1]	SIUL eMIOS_1 DSPI_2 ADC_0	I/O I/O O	М	Tristate	_	137	165
PH[8]	PCR[120]	AF0 AF1 AF2 AF3	GPIO[120] E1UC[10] CS2_2 MA[0]	SIUL eMIOS_1 DSPI_2 ADC_0	I/O I/O O O	М	Tristate	_	138	166
PH[9] ⁸	PCR[121]	AF0 AF1 AF2 AF3	GPIO[121] — TCK —	SIUL — JTAGC —	I/O 	S	Input, weak pull-up	88	127	155
PH[10] ⁸	PCR[122]	AF0 AF1 AF2 AF3	GPIO[122] — TMS —	SIUL — JTAGC —	I/O I	М	Input, weak pull-up	81	120	148

Port	PCR	Alternate		eral	ion	pe ²	н [°] я	P	in numb	er
pin		function ¹	Function	Peripheral	I/O direction	Pad type ²	RESET config. ³	100 LQFP	144 LQFP	176 LQFP
PH[11]	PCR[123]	AF0 AF1 AF2 AF3	GPIO[123] SOUT_3 CS0_4 E1UC[5]	SIUL DSPI_3 DSPI_4 eMIOS_1	I/O O I/O I/O	М	Tristate		_	140
PH[12]	PCR[124]	AF0 AF1 AF2 AF3	GPIO[124] SCK_3 CS1_4 E1UC[25]	SIUL DSPI_3 DSPI_4 eMIOS_1	I/O I/O I/O	М	Tristate	_	_	141
PH[13]	PCR[125]	AF0 AF1 AF2 AF3	GPIO[125] SOUT_4 CS0_3 E1UC[26]	SIUL DSPI_4 DSPI_3 eMIOS_1	I/O O I/O —	М	Tristate	_	_	9
PH[14]	PCR[126]	AF0 AF1 AF2 AF3	GPIO[126] SCK_4 CS1_3 E1UC[27]	SIUL DSPI_4 DSPI_3 eMIOS_1	I/O I/O I/O	М	Tristate	_	_	10
PH[15]	PCR[127]	AF0 AF1 AF2 AF3	GPIO[127] SOUT_5 — E1UC[17]	SIUL DSPI_5 — eMIOS_1	I/O O 	М	Tristate		_	8
		AFS		Port I						
PI[0]	PCR[128]	AF0 AF1 AF2 AF3	GPIO[128] E0UC[28] —	SIUL eMIOS_0 —	I/O I/O 	S	Tristate	_	-	172
PI[1]	PCR[129]	AF0 AF1 AF2 AF3 —	GPIO[129] E0UC[29] WKUP[24] ⁴ 	SIUL eMIOS_0 — WKUP —	I/O I/O I	S	Tristate			171
PI[2]	PCR[130]	AF0 AF1 AF2 AF3	GPIO[130] E0UC[30] —	SIUL eMIOS_0 —	I/O I/O 	S	Tristate	_	_	170
PI[3]	PCR[131]	AF0 AF1 AF2 AF3 —	GPIO[131] E0UC[31] — WKUP[23] ⁴ —	SIUL eMIOS_0 — WKUP —	I/O I/O I	S	Tristate			169
PI[4]	PCR[132]	AF0 AF1 AF2 AF3	GPIO[132] E1UC[28] SOUT_4 —	SIUL eMIOS_1 DSPI_4 —	I/O I/O O	S	Tristate	_	_	143

Table 2. Functional port pins (continued)

Port	PCR	Alternate		eral	uo	pe ²	н. ₆ .	Pi	in numb	er
pin	register	function ¹	Function	Peripheral	I/O direction	Pad type ²	RESET config. ³	100 LQFP	144 LQFP	176 LQFP
PI[5]	PCR[133]	AF0 AF1 AF2 AF3	GPIO[133] E1UC[29] SCK_4 —	SIUL eMIOS_1 DSPI_4 —	I/O I/O I/O	S	Tristate		_	142
PI[6]	PCR[134]	AF0 AF1 AF2 AF3	GPIO[134] E1UC[30] CS0_4 —	SIUL eMIOS_1 DSPI_4 —	I/O I/O I/O	S	Tristate	_	_	11
PI[7]	PCR[135]	AF0 AF1 AF2 AF3	GPIO[135] E1UC[31] CS1_4 —	SIUL eMIOS_1 DSPI_4 —	I/O I/O I/O	S	Tristate	_	_	12
PI[8]	PCR[136]	AF0 AF1 AF2 AF3 —	GPIO[136] — — — ADC0_S[16]	SIUL — — ADC_0	I/O — — — I	J	Tristate			108
PI[9]	PCR[137]	AF0 AF1 AF2 AF3 —	GPIO[137] — — — ADC0_S[17]	SIUL — — ADC_0	I/O — — — —	J	Tristate			109
PI[10]	PCR[138]	AF0 AF1 AF2 AF3 —	GPIO[138] — — — ADC0_S[18]	SIUL — — ADC_0	I/O — — — —	J	Tristate	_	_	110
PI[11]	PCR[139]	AF0 AF1 AF2 AF3 —	GPIO[139] — — ADC0_S[19] SIN_3	SIUL — — ADC_0 DSPI_3	I/O — — — — —	J	Tristate			111
PI[12]	PCR[140]	AF0 AF1 AF2 AF3 —	GPIO[140] CS0_3 — — ADC0_S[20]	SIUL DSPI_3 — ADC_0	I/O I/O — I	J	Tristate			112
PI[13]	PCR[141]	AF0 AF1 AF2 AF3 —	GPIO[141] CS1_3 — — ADC0_S[21]	SIUL DSPI_3 — ADC_0	I/O I/O — I	J	Tristate		_	113

Table 2. Functional	port	pins ((continued))
	P • · · ·	P		

Port	PCR	Alternate		eral	ion	pe ²	۳. ۳.	P	Pin numbe	er
pin		function ¹	Function	Peripheral	I/O direction	direction Pad type ²	RESET config. ³	100 LQFP	144 LQFP	176 LQFP
PI[14]	PCR[142]	AF0 AF1 AF2 AF3 —	GPIO[142] — — ADC0_S[22] SIN_4	SIUL — — ADC_0 DSPI_4	I/O — — — — —	J	Tristate	_	_	76
PI[15]	PCR[143]	AF0 AF1 AF2 AF3 —	GPIO[143] CS0_4 — ADC0_S[23]	SIUL DSPI_4 — ADC_0	I/O I/O — I	J	Tristate	_	_	75
				Port J						
PJ[0]	PCR[144]	AF0 AF1 AF2 AF3 —	GPIO[144] CS1_4 ADC0_S[24]	SIUL DSPI_4 — ADC_0	I/O I/O — I	J	Tristate			74
PJ[1]	PCR[145]	AF0 AF1 AF2 AF3 —	GPIO[145] — — — ADC0_S[25] SIN_5	SIUL — ADC_0 DSPI_5	/O - 	J	Tristate	_		73
PJ[2]	PCR[146]	AF0 AF1 AF2 AF3 —	GPIO[146] CS0_5 — ADC0_S[26]	SIUL DSPI_5 — ADC_0	I/O I/O — I	J	Tristate	_	_	72
PJ[3]	PCR[147]	AF0 AF1 AF2 AF3 —	GPIO[147] CS1_5 — ADC0_S[27]	SIUL DSPI_5 — ADC_0	I/O I/O — I	J	Tristate		—	71
PJ[4]	PCR[148]	AF0 AF1 AF2 AF3	GPIO[148] SCK_5 E1UC[18] —	SIUL DSPI_5 eMIOS_1 —	I/O I/O —	М	Tristate	_	_	5

 Table 2. Functional port pins (continued)

¹ Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 → AF0; PCR.PA = 01 → AF1; PCR.PA = 10 → AF2; PCR.PA = 11 → AF3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "—".

² See Table 3.

³ The RESET configuration applies during and after reset.

- ⁴ All WKUP pins also support external interrupt capability. See the WKPU chapter of the MPC5606BK Microcontroller Reference Manual for further details.
- ⁵ NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.
- ⁶ "Not applicable" because these functions are available only while the device is booting. See the BAM chapter of the *MPC5606BK Microcontroller Reference Manual* for details.
- ⁷ Value of PCR.IBE bit must be 0.
- ⁸ Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO. PC[0:1] are available as JTAG pins (TDI and TDO respectively).
 PH[9:10] are available as JTAG pins (TCK and TMS respectively).
 It is up to the user to configure these pins as GPIO when needed.
- ⁹ PC[1] is a fast/medium pad but is in medium configuration by default. This pad is in Alternate Function 2 mode after reset which has TDO functionality. The reset value of PCR.OBE is 1, but this setting has no impact as long as this pad stays in AF2 mode. After configuring this pad as GPIO (PCR.PA = 0), output buffer is enabled as reset value of PCR.OBE = 1.

¹⁰ Not available in 100LQFP package.

Туре	Description
F	Fast
I	Input only with analog feature
J	Input/output with analog feature
М	Medium
S	Slow

Table 3. Pad types

3 Electrical characteristics

This section contains electrical characteristics of the device as well as temperature and power considerations.

This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V_{DD} or V_{SS}). This could be done by the internal pull-up and pull-down, which is provided by the product for most general purpose pins.

The parameters listed in the following tables represent the characteristics of the device and its demands on the system.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

3.1 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 4 are used and the parameters are tagged accordingly in the tables where appropriate.

Table 4. Parameter classifications

Classification tag	Tag description
Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.2 NVUSRO register

Portions of the device configuration, such as high voltage supply, oscillator margin, and watchdog enable/disable after reset are controlled via bit values in the Non-Volatile User Options Register (NVUSRO) register.

For a detailed description of the NVUSRO register, please refer to the MPC5606BK Microcontroller Reference Manual.

3.2.1 NVUSRO[PAD3V5V] field description

Table 5 shows how NVUSRO[PAD3V5V] controls the device configuration.

Table 5. PAD3V5V field description¹

Value ²	Description
0	High voltage supply is 5.0 V
1	High voltage supply is 3.3 V
1 0 1 100	

¹ See the MPC5606BK Microcontroller Reference Manual for more information on the NVUSRO register.

² The default manufacturing value is '1'. This value can be programmed by the customer in Shadow Flash.

The DC electrical characteristics are dependent on the PAD3V5V bit value.

3.2.2 NVUSRO[OSCILLATOR_MARGIN] field description

Table 6 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.

Table 6. OSCILLATOR_MARGIN field description¹

Value ²	Description		
0	Low consumption configuration (4 MHz/8 MHz)		
1	High margin configuration (4 MHz/16 MHz)		

¹ See the *MPC5606BK Microcontroller Reference Manual* for more information on the NVUSRO register.

² The default manufacturing value is '1'. This value can be programmed by the customer in Shadow Flash.

The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value.

3.2.3 NVUSRO[WATCHDOG_EN] field description

The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value. Table 7 shows how NVUSRO[WATCHDOG_EN] controls the device configuration.

Value ²	Description
0	Disable after reset
1	Enable after reset

Table 7. WATCHDOG_EN field description¹

¹ See the MPC5606BK Microcontroller Reference Manual for more information on the NVUSRO register.

² The default manufacturing value is '1'. This value can be programmed by the customer in Shadow Flash.

3.3 Absolute maximum ratings

Table 8. Absolute maximum ratings

Curren ha		Devenueter	Conditions	Va	lue	Unit
Symbo		Parameter	Conditions	Min	Max	Unit
V _{SS}	SR	Digital ground on VSS_HV pins	_	0	0	V
V _{DD}	SR	Voltage on VDD_HV pins with respect to ground (V _{SS})	_	-0.3	6.0	V
V _{SS_LV}	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})	_	V _{SS} -0.1	V _{SS} + 0.1	V
V_{DD_BV}	SR	Voltage on VDD_BV pin (regulator supply) with	—	-0.3	6.0	V
		respect to ground (V _{SS})	Relative to V _{DD}	-0.3	V _{DD} + 0.3	
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC reference) pin with respect to ground (V _{SS})	_	V _{SS} – 0.1	V _{SS} + 0.1	V
V_{DD_ADC}	SR	Voltage on VDD_HV_ADC0, VDD_HV_ADC1	—	-0.3	6.0	V
		(ADC reference) with respect to ground (V _{SS})	Relative to V _{DD}	V _{DD} - 0.3	V _{DD} + 0.3	
V _{IN}	SR	Voltage on any GPIO pin with respect to	—	-0.3	6.0	V
		ground (V _{SS})	Relative to V _{DD}	_	V _{DD} + 0.3	
I _{INJPAD}	SR	Injected input current on any pin during overload condition	_	-10	10	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	_	-50	50	
I _{AVGSEG}	SR	Sum of all the static I/O current within a supply segment	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	—	70	mA
			V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	-	64	
T _{STORAGE}	SR	Storage temperature	—	-55	150	°C

NOTE

Stresses exceeding the recommended absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions ($V_{IN} > V_{DD}$ or $V_{IN} < V_{SS}$), the voltage on pins with respect to ground (V_{SS}) must not exceed the recommended values.

3.4 Recommended operating conditions

Cumb a		Devemator	Conditions	Va	Unit	
Symbo	1	Parameter	Conditions	Min	Max	Unit
V _{SS}	SR	Digital ground on VSS_HV pins	—	0	0	V
V _{DD} ¹	SR	Voltage on VDD_HV pins with respect to ground (V _{SS})	_	3.0	3.6	V
V _{SS_LV} ²	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})	_	V _{SS} – 0.1	V _{SS} + 0.1	V
V _{DD_BV} ³	SR		_	3.0	3.6	V
		supply) with respect to ground (V_{SS})	Relative to V _{DD}	$V_{DD} - 0.1$	V _{DD} + 0.1	
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC reference) pin with respect to ground (V _{SS})	_	V _{SS} – 0.1	V _{SS} + 0.1	V
V _{DD_ADC} ⁴	SR		_	3.0 ⁵	3.6	V
		VDD_HV_ADC1 (ADC reference) with respect to ground (V_{SS})	Relative to V _{DD}	V _{DD} - 0.1	V _{DD} + 0.1	
V _{IN}	SR		_	$V_{SS} - 0.1$	—	V
		to ground (V _{SS})	Relative to V _{DD}	—	V _{DD} + 0.1	1
I _{INJPAD}	SR	Injected input current on any pin during overload condition	_	-5	5	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	_	-50	50	
TV _{DD}	SR	V _{DD} slope to ensure correct power up ⁶	—	—	0.25	V/µs

Table 9. Recommended operating conditions (3.3 V)

Symbo		Parameter	Conditions	Va	lue	Unit
Cymbol		i urumeter	Conditions	Min	Мах	O
T _{A C-Grade} Part	SR	Ambient temperature under bias	f _{CPU} < 64 MHz ⁷	-40	85	°C
T _{J C-Grade} Part	SR	Junction temperature under bias	_	-40	110	
T _{A V-Grade} Part	SR	Ambient temperature under bias	f _{CPU} < 64 MHz ⁷	-40	105	
T _{J V-Grade} Part	SR	Junction temperature under bias	_	-40	130	
T _{A M} -Grade Part	SR	Ambient temperature under bias	f _{CPU} < 64 MHz ⁷	-40	125	
T _{J M} -Grade Part	SR	Junction temperature under bias	_	-40	150	

Table 9. Recommended	operating conditions	(3.3 V)	(continued)
	oporating contaitione	(0.0 1)	(0011111004)

¹ 100 nF capacitance needs to be provided between each V_{DD}/V_{SS} pair.

 $^2~$ 330 nF capacitance needs to be provided between each V_DD_LV/V_SS_LV supply pair.

³ 470 nF capacitance needs to be provided between V_{DD_BV} and the nearest V_{SS_LV} (higher value may be needed depending on external regulator characteristics). Supply ramp slope on VDD_BV should always be faster or equal to slope of VDD_HV. Otherwise, device may enter regulator bypass mode if slope on VDD_BV is slower.

 $^4\,$ 100 nF capacitance needs to be provided between V_DD_ADC/V_SS_ADC pair.

⁵ Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/O DC electrical specification may not be guaranteed. When voltage drops below V_{LVDHVL}, the device is reset.

⁶ Guaranteed by device validation

⁷ This frequency includes the 4% frequency modulation guard band.

Table 10.	Recommended	operating	conditions	(5.0 V)
-----------	-------------	-----------	------------	---------

Symbo	1	Parameter	Conditions	Va	lue	Unit
Cymbol		raiameter	Conditions	Min	Max	Unit
V _{SS}	SR	Digital ground on VSS_HV pins		0	0	V
V _{DD} ¹	${\rm DD}^{1}$ SR Voltage on VDD_HV pins with respect to ground $(V_{\rm SS})$		—	4.5	5.5	V
			Voltage drop ²	3.0	5.5	
V _{SS_LV} ³	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V_SS)	_	V _{SS} - 0.1	V _{SS} + 0.1	V
V _{DD_BV} ⁴	SR	Voltage on VDD_BV pin (regulator supply) with	—	4.5	5.5	V
		respect to ground (V _{SS})	Voltage drop ²	3.0	5.5	
			Relative to V _{DD}	3.0	V _{DD} + 0.1	
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC reference) pin with respect to ground (V_{SS})	—	V _{SS} - 0.1	V _{SS} + 0.1	V

Symbol		Baramatar	Condition -	Va	110:4	
		Parameter	Conditions	Min	Max	Unit
$V_{DD_ADC}^5$	SR	Voltage on VDD_HV_ADC0, VDD_HV_ADC1	_	4.5	5.5	V
		(ADC reference) with respect to ground (V_{SS})	Voltage drop ²	3.0	5.5	
		Relative to V_{DD}	$V_{DD} - 0.1$	V _{DD} + 0.1		
V _{IN}	SR	Voltage on any GPIO pin with respect to ground	—	$V_{SS} - 0.1$	—	V
		(V _{SS})	Relative to V_{DD}	—	V _{DD} + 0.1	
I _{INJPAD}	SR	Injected input current on any pin during overload condition	-	-5	5	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	-	-50	50	
TV_DD	SR	V _{DD} slope to ensure correct power up ⁶	—	—	0.25	V/µs
T _{A C} -Grade Part	SR	Ambient temperature under bias	f _{CPU} < 64 MHz ⁷	-40	85	°C
T _{J C-Grade} Part	SR	Junction temperature under bias	-	-40	110	
T _{A V-Grade} Part	SR	Ambient temperature under bias	f _{CPU} < 64 MHz ⁷	-40	105	
T _{J V-Grade} Part	SR	Junction temperature under bias	-	-40	130	
T _{A M-Grade} Part	SR	Ambient temperature under bias	f _{CPU} < 64 MHz ⁷	-40	125	
T _{J M-Grade} Part	SR	Junction temperature under bias	_	-40	150	

¹ 100 nF capacitance needs to be provided between each V_{DD}/V_{SS} pair.

² Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.0 V. However, certain analog electrical characteristics will not be guaranteed to stay within the stated limits.

 $^3\,$ 330 nF capacitance needs to be provided between each V_{DD_LV}\!/V_{SS_LV} supply pair.

⁴ 470 nF capacitance needs to be provided between V_{DD_BV} and the nearest V_{SS_LV} (higher value may be needed depending on external regulator characteristics). While the supply voltage ramps up, the slope on V_{DD_BV} should be less than 0.9V_{DD_HV} in order to ensure the device does not enter regulator bypass mode.

 $^5\,$ 100 nF capacitance needs to be provided between V_DD_ADC/V_SS_ADC pair.

⁶ Guaranteed by device validation. Please refer to Section 3.5.1, External ballast resistor recommendations for minimum V_{DD} slope to be guaranteed to ensure correct power up in case of external resistor usage.

⁷ This frequency includes the 4% frequency modulation guard band.

NOTE

RAM data retention is guaranteed with $V_{DD\ LV}$ not below 1.08 V.

3.5 Thermal characteristics

3.5.1 External ballast resistor recommendations

External ballast resistor on V_{DD_BV} pin helps in reducing the overall power dissipation inside the device. This resistor is required only when maximum power consumption exceeds the limit imposed by package thermal characteristics.

As stated in Table 11 LQFP thermal characteristics, considering a thermal resistance of 144 LQFP as 48.3 °C/W, at ambient temperature $T_A = 125$ °C, the junction temperature T_j will cross 150 °C if the total power dissipation is greater than (150 - 125)/48.3 = 517 mW. Therefore, the total device current I_{DDMAX} at 125 °C/5.5 V must not exceed 94.1 mA (i.e., PD/VDD). Assuming an average $I_{DD}(V_{DD_{-HV}})$ of 15–20 mA consumption typically during device RUN mode, the LV domain consumption $I_{DD}(V_{DD_{-BV}})$ is thus limited to $I_{DDMAX} - I_{DD}(V_{DD_{-HV}})$, i.e., 80 mA.

Therefore, respecting the maximum power allowed as explained in Section 3.5.2, Package thermal characteristics, it is recommended to use this resistor only in the 125 °C/5.5 V operating corner as per the following guidelines:

- If $I_{DD}(V_{DD BV}) < 80$ mA, then no resistor is required.
- If 80 mA < I_{DD}(V_{DD BV}) < 90 mA, then 4 Ω resistor can be used.
- If $I_{DD}(V_{DD BV}) > 90$ mA, then 8 Ω resistor can be used.

Using resistance in the range of 4–8 Ω , the gain will be around 10–20% of total consumption on V_{DD_BV}. For example, if 8 Ω resistor is used, then power consumption when I_{DD}(V_{DD_BV}) is 110 mA is equivalent to power consumption when I_{DD}(V_{DD_BV}) is 90 mA (approximately) when resistor not used.

In order to ensure correct power up, the minimum V_{DD_BV} to be guaranteed is 30 ms/V. If the supply ramp is slower than this value, then LVDHV3B monitoring ballast supply V_{DD_BV} pin gets triggered leading to device reset. Until the supply reaches certain threshold, this low voltage monitor generates destructive reset event in the system. This threshold depends on the maximum $I_{DD}(V_{DD_BV})$ possible across the external resistor.

3.5.2 Package thermal characteristics

Table 11. LQFP thermal characteristics¹

Symt	Symbol C		Parameter	Conditions ²	Pin count		Value)	Unit		
Cynn		Ŭ	i didilotor	Conditione		Min	Тур	Max	onic		
R_{\thetaJA}	СС	D	Thermal resistance,	Single-layer board — 1s	100			64	°C/W		
			junction-to-ambient natural convection ³		144			64			
			176			64					
				Four-layer board — 2s2p	100			49.7			
					144			48.3			
					176			47.3			
$R_{\theta JB}$	СС		Thermal resistance,	Single-layer board — 1s	100			36	°C/W		
			junction-to-board ⁴		144			38			
					176			38			
		Four-layer board —	100			33.6					
				2s2p	2s2p	2s2p	144	_	_	33.4	
					176			33.4			

Symt	Symbol C Parameter	C Parameter	Conditions ²	Pin count		Unit			
- Cynn		Conditions		Min	Тур	Max			
R_{\thetaJC}	R _{0JC} CC Thermal resistance, Single-layer boa	Single-layer board — 1s	100	_	_	23	°C/W		
			junction-to-case ⁵		144			23	
					176			23	
				Four-layer board —	100			19.8	
				2s2p	144	_	—	19.2	
			176	_	—	18.8			

Table 11. LQFP thermal characteristics ¹	(continued)
---	-------------

¹ Thermal characteristics are targets based on simulation.

² $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C.

- ³ Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. When Greek letters are not available, the symbols are typed as R_{thJA} and R_{thJMA}.
- ⁴ Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. When Greek letters are not available, the symbols are typed as R_{th.IB}.
- ⁵ Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. When Greek letters are not available, the symbols are typed as R_{thJC}.

3.5.3 Power considerations

The average chip-junction temperature, T_J, in degrees Celsius, may be calculated using Equation 1:

$$T_{J} = T_{A} + (P_{D} \times R_{\theta JA})$$
 Eqn. 1

Where:

 T_A is the ambient temperature in °C.

 $R_{\theta JA}$ is the package junction-to-ambient thermal resistance, in °C/W.

 P_D is the sum of P_{INT} and $P_{I/O} (P_D = P_{INT} + P_{I/O})$.

P_{INT} is the product of I_{DD} and V_{DD}, expressed in watts. This is the chip internal power.

 $P_{I/O}$ represents the power dissipation on input and output pins; user determined.

Most of the time for the applications, $P_{I/O} < P_{INT}$ and may be neglected. On the other hand, $P_{I/O}$ may be significant, if the device is configured to continuously drive external modules and/or memories.

An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is given by:

$$P_{D} = K / (T_{J} + 273 °C)$$
 Eqn. 2

Therefore, solving equations 1 and 2:

$$K = P_D x (T_A + 273 °C) + R_{\theta JA} x P_D^2$$
 Eqn. 3

Where:

K is a constant for the particular part, which may be determined from Equation 3 by measuring P_D (at equilibrium) for a known $T_{A.}$ Using this value of K, the values of P_D and T_J may be obtained by solving equations 1 and 2 iteratively for any value of T_A .

3.6 I/O pad electrical characteristics

3.6.1 I/O pad types

The device provides four main I/O pad types depending on the associated alternate functions:

- Slow pads are the most common pads, providing a good compromise between transition time and low electromagnetic emission.
- Medium pads provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission.
- Fast pads provide maximum speed. These are used for improved debugging capability.
- Input only pads are associated with ADC channels and 32 kHz low power external crystal oscillator providing low input leakage.

Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance.

3.6.2 I/O input DC characteristics

Table 12 provides input DC electrical characteristics as described in Figure 5.

Figure 5. I/O input DC electrical characteristics definition

Symb		С	Parameter	Conditions ¹			Value		Unit
Oynik		0	r arameter			Min	Тур	Мах	Onit
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	_		0.65V _{DD}	_	V _{DD} + 0.4	V
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	_		-0.4	_	0.35V _{DD}	
V _{HYS}	СС	С	Input hysteresis CMOS (Schmitt Trigger)	_		0.1V _{DD}	_	_	
I _{LKG}	СС	Ρ	Digital input leakage	No injection	$T_A = -40 \ ^\circ C$	—	2	_	nA
		Ρ		on adjacent pin	T _A = 25 °C	—	2	_	
		D			T _A = 85 °C	—	5	300	
		D			T _A = 105 °C		12	500	
		Ρ			T _A = 125 °C	—	70	1000	
W_{FI}^2	SR	Ρ	Wakeup input filtered pulse			—		40	ns
$W_{\rm NFI}^2$	SR	Ρ	Wakeup input not filtered pulse		_	1000		—	ns

Table 12. I/O input DC electrical characteristics

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

² In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and voltage.

3.6.3 I/O output DC characteristics

The following tables provide DC characteristics for bidirectional pads:

- Table 13 provides weak pull figures. Both pull-up and pull-down resistances are supported.
- Table 14 provides output driver characteristics for I/O pads when in SLOW configuration.
- Table 15 provides output driver characteristics for I/O pads when in MEDIUM configuration.
- Table 16 provides output driver characteristics for I/O pads when in FAST configuration.

Table 13. I/O pull-up/pull-down D	C electrical characteristics
-----------------------------------	------------------------------

Symbol		с	ol C	Parameter	Conditions ¹			Value		Unit
C ym	Symbol		i diameter	Conditions			Тур	Max	O	
I _{WPU}	CC			$V_{IN} = V_{IL}, V_{DD} = 5.0 \text{ V} \pm 10\%$	PAD3V5V = 0	10		150	μΑ	
		С	absolute value		$PAD3V5V = 1^2$	10	—	250		
		Ρ		$V_{IN} = V_{IL}, V_{DD} = 3.3 \text{ V} \pm 10\%$	PAD3V5V = 1	10		150		
I _{WPD}	CC			$V_{IN} = V_{IH}, V_{DD} = 5.0 \text{ V} \pm 10\%$	PAD3V5V = 0	10		150	μΑ	
		С	absolute value		PAD3V5V = 1	10	—	250		
		Ρ		$V_{IN} = V_{IH}, V_{DD} = 3.3 \text{ V} \pm 10\%$	PAD3V5V = 1	10	—	150		

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

Symt	Symbol		Parameter	Conditions ¹			Unit		
Synn			raiametei			Min	Тур	Мах	Unit
V _{OH}	CC	Ρ	Output high level SLOW configuration	Push Pull	$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 0 (recommended)	0.8V _{DD}	_		V
		С	_		$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ $PAD3V5V = 1^2$	0.8V _{DD}	_	_	
		С			$I_{OH} = -1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$ PAD3V5V = 1 (recommended)	V _{DD} - 0.8			
V _{OL}	СС	Ρ	Output low level SLOW configuration	Push Pull	$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 0 (recommended)	—	_	0.1V _{DD}	V
		С			$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ $PAD3V5V = 1^2$	—	_	0.1V _{DD}	
		С			$I_{OL} = 1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$ PAD3V5V = 1 (recommended)	—		0.5	

¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified
 ² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

Symbol		с	Parameter		V	Unit			
				Conditions ¹		Min	Тур	Max	0.110
V _{OH}	СС		Output high level MEDIUM configuration	Push Pull	I _{OH} = −3.8 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}		_	V
		Ρ			$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	0.8V _{DD}	-	_	
		С			$I_{OH} = -1 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^2$	0.8V _{DD}			
		С			$I_{OH} = -1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$ (recommended)	V _{DD} – 0.8		_	
		С			I _{OH} = −100 μA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}	_		

Symbol		с	Parameter	Conditions ¹		V	Unit		
						Min	Тур	Max	•
V _{OL}	СС		Output low level MEDIUM configuration	Push Pull	I _{OL} = 3.8 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	0.2V _{DD}	V
		Ρ			$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	_	—	0.1V _{DD}	
		С			I _{OL} = 1 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	_	—	0.1V _{DD}	
		С			$I_{OL} = 1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$ (recommended)	_	_	0.5	
		С			I _{OL} = 100 μA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—	—	0.1V _{DD}	

Table 15. MEDIUM configuration output buffer electrical characteristics (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

Sum	Symbol		Parameter	Conditions ¹			Value			
Synn			Farameter			Min	Тур	Max	Unit	
V _{OH}	СС	Ρ	Output high level FAST configuration	Push Pull	$I_{OH} = -14 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 0 (recommended)	0.8V _{DD}	_	_	V	
		С			$I_{OH} = -7 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ $PAD3V5V = 1^2$	0.8V _{DD}	—	-		
		С	-		$I_{OH} = -11 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$ PAD3V5V = 1 (recommended)	V _{DD} – 0.8	_	_		
V _{OL}	CC	Ρ	P Output low level FAST configuration	Push Pull	$I_{OL} = 14 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 0 (recommended)	_		0.1V _{DD}	V	
		С			$I_{OL} = 7 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ $PAD3V5V = 1^2$	-	_	0.1V _{DD}		
		С		$I_{OL} = 11 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$ PAD3V5V = 1 (recommended)	_		0.5			

Table 16. FAST configuration output buffer electrical characteristics

 $\overline{^{1}}$ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

3.6.4 Output pin transition times

Symt		С	Parameter	(co	nditions ¹		Value	•	Unit
J	501	C	Farameter		nutions	Min	Тур	Max	Onit
T _{tr}	CC	D	Output transition time output pin ²	C _L = 25 pF	$V_{DD} = 5.0 \text{ V} \pm 10\%$,	—		50	ns
		Т	SLOW configuration	C _L = 50 pF	PAD3V5V = 0	—	_	100	
		D		C _L = 100 pF		_		125	
		D		$C_{L} = 25 \text{ pF} \qquad V_{DD} = 3.3 \text{ V} \pm 10\%,$ $C_{L} = 50 \text{ pF} \qquad PAD3V5V = 1$		_		50	
		Т		$C_L = 25 \text{ pF}$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$		_		100	
		D		$\frac{C_{L}}{C_{L} = 100 \text{ pF}}$ $r^{2} C_{L} = 25 \text{ pF} \qquad V_{DD} = 5.0 \text{ V} \pm 10\%,$				125	
T _{tr}	СС	D	Output transition time output pin ²	$ \begin{array}{c} & \mbox{2} \\ \hline \mbox{2} \\ \hline \mbox{C_L} = 25 \mbox{pF} \\ \hline \mbox{C_L} = 50 \mbox{pF} \\ \hline \mbox{C_L} = 50 \mbox{pF} \\ \hline \mbox{$SIUL.PCRx.SRC$} = 1 \\ \end{array} $		—		10	ns
		Т	MEDIUM configuration	$n^2 \frac{C_L = 25 \text{ pF}}{C_L = 50 \text{ pF}} = \frac{V_{DD} = 5.0 \text{ V} \pm 10\%}{PAD3V5V = 0}$		—	_	20	
		D		$C_{L} = 50 \text{ pF}$ SIUL.PCRx.SRC = 1 $C_{L} = 100 \text{ pF}$		—		40	
		D		$C_{L} = 100 \text{ pF}$ $C_{L} = 25 \text{ pF}$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$ $PAD3/5V = 1$		—		12	
		Т		$C_L = 25 \text{ pF}$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$		_		25	
		D		$1C_{1} = 50 \text{ pE}$		_		40	
T _{tr}	CC	D	Output transition time output pin ²	$\frac{1}{C_{L}} = 100 \text{ pF}$ $n^{2} C_{L} = 25 \text{ pF} \qquad V_{DD} = 5.0 \text{ V} \pm 10\%,$		_		4	ns
			FAST configuration			—	—	6	
				$C_L = 100 \text{ pF}$		—	—	12	
				$C_L = 25 \text{ pF}$ $V_{DD} = 3.3 \text{ V} \pm 10\%$,		_	_	4	
				$C_L = 50 \text{ pF}$		—	7		
				C _L = 100 pF			_	12	

Table 17. Output pin transition times

 $1 V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C, unless otherwise specified

 $^2~$ C_L includes device and package capacitances (C_{PKG} < 5 pF).

3.6.5 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V_{DD}/V_{SS} supply pair as described in Table 18.

Table 19 provides I/O consumption figures.

In order to ensure device reliability, the average current of the I/O on a single segment should remain below the I_{AVGSEG} maximum value.

Package				Supply	segment			
rackaye	1	2	3	4	5	6	7	8
176 LQFP	pin7 – pin27	pin28 – pin57	pin59 – pin85	pin86 – pin123	pin124 – pin150	pin151 – pin6	_	_
144 LQFP	pin20 – pin49	pin51 – pin99	pin100 – pin122	pin 123 – pin19	—	—	—	—
100 LQFP	pin16 – pin35	pin37 – pin69	pin70 – pin83	pin84 – pin15	—	—	—	—

Table 18. I/O supply segments

Table 19. I/O consumption

Symbo		с	Parameter	Condi	itions ¹		Value)	Unit
Gymbo		Č	i arameter			Min	Тур	Max	Onit
I _{SWTSLW} ,2	СС	D	Dynamic I/O current for SLOW configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	-	—	20	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	—	16	
I _{SWTMED} ²	СС	D	Dynamic I/O current for MEDIUM configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	—	—	29	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	—	17	
I _{SWTFST} ²	СС	D	Dynamic I/O current for FAST configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	-	—	110	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	—	50	
I _{RMSSLW}	СС	D	Root medium square I/O	C _L = 25 pF, 2 MHz	$V_{DD} = 5.0 V \pm 10\%$,	—	—	2.3	mA
			current for SLOW configuration	C _L = 25 pF, 4 MHz	PAD3V5V = 0	_	—	3.2	
				C _L = 100 pF, 2 MHz		—	—	6.6	
				C _L = 25 pF, 2 MHz	$V_{DD} = 3.3 V \pm 10\%$,	—	—	1.6	
				C _L = 25 pF, 4 MHz	PAD3V5V = 1	_	—	2.3	
				C _L = 100 pF, 2 MHz		—	—	4.7	
I _{RMSMED}	СС	D	Root medium square I/O	C _L = 25 pF, 13 MHz	$V_{DD} = 5.0 V \pm 10\%$,	-	—	6.6	mA
			current for MEDIUM configuration	C _L = 25 pF, 40 MHz	PAD3V5V = 0	—	_	13.4	
				C _L = 100 pF, 13 MHz		_		18.3	
				C _L = 25 pF, 13 MHz	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—		5	
				C _L = 25 pF, 40 MHz	FAD3V3V = 1	—	—	8.5	
				C _L = 100 pF, 13 MHz		—	—	11	

MPC5606BK Microcontroller Data Sheet, Rev. 4

Svr	nbo	1	с	Parameter	Condi	tions ¹		Value	•	Unit
- Oyn	1150		Ŭ	i didineter			Min	Тур	Max	
IRMSF	ST	СС		Root medium square I/O	$\label{eq:classical_constraint} \frac{C_{L} = 25 \text{ pF}, 40 \text{ MHz}}{C_{L} = 25 \text{ pF}, 64 \text{ MHz}} \begin{array}{c} V_{DD} = 5.0 \text{ V} \pm 10\%, \\ PAD3V5V = 0 \end{array}$		—	—	22	mA
				current for FAST configuration	$\frac{C_{L}}{C_{L}} = 25 \text{ pF, } 64 \text{ MHz}$ $\frac{C_{L}}{C_{L}} = 100 \text{ pF, } 40 \text{ MHz}$		—	—	33	
							—	—	56	
					$C_L = 25 \text{ pF}, 40 \text{ MHz}$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$ PAD3V5V - 1		—	—	14	
					2		—	—	20	
					$C_L = 100 \text{ pF}, 40 \text{ MHz}$		—	—	35	
IAVGSI	EG	SR		Sum of all the static I/O	$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$		—		70	mA
				current within a supply segment	V _{DD} = 3.3 V ± 10%, PA	AD3V5V = 1		_	65	

Table 19. I/O consumption (continued)

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

 2 Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.

Table 20 provides the weight of concurrent switching I/Os.

In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on a single segment should remain below the 100%.

Su	pply segme	ant			176 L	QFP			144/10	0 LQFP	
	ppiy segin	5110	Pad	Weigh	nt 5 V	Weigh	t 3.3 V	Weig	ht 5 V	Weigh	t 3.3 V
176 LQFP	144 LQFP	100 LQFP		$SRC^2 = 0$	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1
6	4	4	PB[3]	5%	_	6%	—	13%	_	15%	
			PC[9]	4%		5%	—	13%		15%	_
			PC[14]	4%	_	4%	—	13%		15%	—
			PC[15]	3%	4%	4%	4%	12%	18%	15%	16%
			PJ[4]	3%	4%	3%	3%			—	—

Table 20. I/O weight¹

C					176 L	QFP			144/10	0 LQFP	
Su	pply segme	ent	Pad	Weigh	nt 5 V	Weigh	t 3.3 V	Weig	ht 5 V	Weigh	t 3.3 V
176 LQFP	144 LQFP	100 LQFP		SRC ² = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1
1	_	_	PH[15]	2%	3%	3%	3%	—		—	
			PH[13]	3%	4%	3%	4%	_		—	
	_	_	PH[14]	3%	4%	4%	4%	_	_		_
	_	_	PI[6]	4%		4%	_	—	_	_	_
	—	_	PI[7]	4%	_	4%	—	—	_	—	_
	4	_	PG[5]	4%	_	5%	—	10%	_	12%	_
		_	PG[4]	4%	6%	5%	5%	9%	13%	11%	12%
		_	PG[3]	4%	_	5%	—	9%	_	11%	_
		_	PG[2]	4%	6%	5%	5%	9%	12%	10%	11%
		4	PA[2]	4%	_	5%	—	8%	_	10%	_
			PE[0]	4%	_	5%	—	8%	_	9%	_
			PA[1]	4%		5%	_	8%	_	9%	_
			PE[1]	4%	6%	5%	6%	7%	10%	9%	9%
			PE[8]	4%	6%	5%	6%	7%	10%	8%	9%
			PE[9]	4%		5%	_	6%	_	8%	_
			PE[10]	4%		5%	_	6%		7%	—
			PA[0]	4%	6%	5%	5%	6%	8%	7%	7%
			PE[11]	4%	_	5%	_	5%	_	6%	_

C	pply segme				176 L	QFP			144/10	0 LQFP	
50	ppiy segme	ent	Pad	Weigh	nt 5 V	Weigh	t 3.3 V	Weig	ht 5 V	Weigh	t 3.3 V
176 LQFP	144 LQFP	100 LQFP		SRC ² = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1
2	1	—	PG[9]	9%		10%	_	9%	_	10%	—
			PG[8]	9%		11%	—	9%		11%	—
		1	PC[11]	9%	_	11%	—	9%	_	11%	—
			PC[10]	9%	13%	11%	12%	9%	13%	11%	12%
		—	PG[7]	9%	_	11%		9%	_	11%	_
		—	PG[6]	10%	14%	11%	12%	10%	14%	11%	12%
		1	PB[0]	10%	14%	12%	12%	10%	14%	12%	12%
			PB[1]	10%		12%	—	10%		12%	—
		_	PF[9]	10%	_	12%	—	10%	_	12%	—
		_	PF[8]	10%	14%	12%	13%	10%	14%	12%	13%
		_	PF[12]	10%	15%	12%	13%	10%	15%	12%	13%
		1	PC[6]	10%	_	12%	_	10%	_	12%	—
			PC[7]	10%	_	12%	—	10%	_	12%	—
		_	PF[10]	10%	14%	11%	12%	10%	14%	11%	12%
		—	PF[11]	9%	_	11%	_	9%	_	11%	—
		1	PA[15]	8%	12%	10%	10%	8%	12%	10%	10%
			PF[13]	8%		10%	—	8%		10%	—
		1	PA[14]	8%	11%	9%	10%	8%	11%	9%	10%
			PA[4]	7%		9%		7%	_	9%	—
			PA[13]	7%	10%	8%	9%	7%	10%	8%	9%
			PA[12]	7%		8%	_	7%	_	8%	—

	oply segment				176 L	QFP			144/10	0 LQFP	
Su	pply segme	ent	Pad	Weigh	nt 5 V	Weigh	t 3.3 V	Weig	ht 5 V	Weigh	t 3.3 V
176 LQFP	144 LQFP	100 LQFP		SRC ² = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1
3	2	2	PB[9]	1%	—	1%	—	1%	—	1%	—
			PB[8]	1%	—	1%	—	1%	_	1%	—
			PB[10]	5%	—	6%	—	6%	—	7%	
		_	PF[0]	5%	—	6%	—	6%	—	8%	—
		_	PF[1]	5%		6%	—	7%	_	8%	—
		_	PF[2]	6%	_	7%	—	7%	_	9%	—
			PF[3]	6%	_	7%	—	8%	_	9%	—
		_	PF[4]	6%		7%	—	8%	_	10%	—
			PF[5]	6%	—	7%	—	9%	—	10%	—
			PF[6]	6%	—	7%	—	9%	—	11%	—
		_	PF[7]	6%	—	7%	—	9%	—	11%	—
	_	_	PJ[3]	6%	—	7%	—	—	—	—	—
		_	PJ[2]	6%	_	7%	—	—	_	—	—
		_	PJ[1]	6%	_	7%	_	_		_	
		_	PJ[0]	6%	_	7%	—	—	_	—	—
		_	PI[15]	6%	_	7%	—	—	—	—	_
		_	PI[14]	6%	_	7%	_	_		_	
	2	2	PD[0]	1%	_	1%	—	1%	_	1%	—
			PD[1]	1%	_	1%	—	1%	—	1%	_
			PD[2]	1%		1%		1%		1%	
			PD[3]	1%		1%	—	1%		1%	
			PD[4]	1%	_	1%	_	1%		1%	—
			PD[5]	1%		1%		1%		1%	
			PD[6]	1%	_	1%	_	1%	_	2%	—
			PD[7]	1%	_	1%	_	1%		2%	

C					176 L	QFP			144/10	0 LQFP	
50	pply segme	ent	Pad	Weigh	nt 5 V	Weigh	t 3.3 V	Weig	ht 5 V	Weigh	t 3.3 V
176 LQFP	144 LQFP	100 LQFP		SRC ² = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1
4	2	2	PD[8]	1%	_	1%	_	1%		2%	
			PB[4]	1%	_	1%	_	1%	_	2%	_
			PB[5]	1%		1%	—	1%	—	2%	
			PB[6]	1%		1%	—	1%	—	2%	
			PB[7]	1%		1%	—	1%	—	2%	_
			PD[9]	1%	_	1%	—	1%	—	2%	
			PD[10]	1%		1%	—	1%		2%	
			PD[11]	1%		1%	—	1%	—	2%	_
4	—		PB[11]	1%		1%		—		—	_
	_		PD[12]	11%	_	13%	_	—	_	—	_
	2	2	PB[12]	11%	_	13%		15%		17%	_
			PD[13]	11%	_	13%	_	14%	_	17%	_
			PB[13]	11%	_	13%	_	14%		17%	_
			PD[14]	11%		13%	_	14%		17%	
			PB[14]	11%	_	13%	_	14%		16%	_
			PD[15]	11%	_	13%	—	13%	—	16%	_
			PB[15]	11%		13%	_	13%	_	15%	
	—	_	PI[8]	10%	_	12%	—	—	—	—	_
	—	—	PI[9]	10%	_	12%	—	—	—	—	_
	—	—	PI[10]	10%	_	12%	—	—	—	—	_
	_		PI[11]	10%		12%	—	—	—	—	
	_		PI[12]	10%		12%	—	—	—	—	
	—		PI[13]	10%		11%	—	—	—	—	
	2	2	PA[3]	9%		11%	—	11%	—	13%	
			PG[13]	9%	13%	11%	11%	10%	14%	12%	13%
			PG[12]	9%	13%	10%	11%	10%	14%	12%	12%
			PH[0]	6%	8%	7%	7%	6%	9%	7%	8%
			PH[1]	6%	8%	7%	7%	6%	8%	7%	7%
			PH[2]	5%	7%	6%	6%	5%	7%	6%	7%
			PH[3]	5%	7%	5%	6%	5%	7%	6%	6%
			PG[1]	4%		5%	_	4%	_	5%	_
		_	PG[0]	4%	5%	4%	5%	4%	5%	4%	5%

					176 L	QFP			144/10	0 LQFP	
Su	pply segme	ent	Pad	Weigh	nt 5 V	Weigh	t 3.3 V	Weig	ht 5 V	Weigh	t 3.3 V
176 LQFP	144 LQFP	100 LQFP		SRC ² = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1
5	3	—	PF[15]	4%	—	4%	—	4%		4%	_
		—	PF[14]	4%	6%	5%	5%	4%	6%	5%	5%
		—	PE[13]	4%		5%	—	4%		5%	
		3	PA[7]	5%		6%	—	5%		6%	_
			PA[8]	5%	_	6%	—	5%		6%	_
			PA[9]	6%	_	7%	—	6%	_	7%	
			PA[10]	6%		8%	—	6%	_	8%	_
			PA[11]	8%	_	9%	_	8%	_	9%	_
			PE[12]	8%		9%	—	8%		9%	
		—	PG[14]	8%	_	9%	_	8%	_	9%	_
		—	PG[15]	8%	11%	9%	10%	8%	11%	9%	10%
		—	PE[14]	8%		9%	—	8%		9%	
		_	PE[15]	8%	11%	9%	10%	8%	11%	9%	10%
		_	PG[10]	8%		9%	—	8%		9%	_
		—	PG[11]	7%	11%	9%	9%	7%	11%	9%	9%
		—	PH[11]	7%	10%	9%	9%	_	_	—	_
		—	PH[12]	7%	10%	8%	9%	_		—	_
		—	PI[5]	7%	_	8%	_	—	_	—	_
		—	PI[4]	7%	_	8%	_	—	_	—	_
	3	3	PC[3]	6%	_	8%	_	6%	_	8%	_
			PC[2]	6%	8%	7%	7%	6%	8%	7%	7%
			PA[5]	6%	8%	7%	7%	6%	8%	7%	7%
			PA[6]	5%		6%	—	5%		6%	—
			PH[10]	5%	7%	6%	6%	5%	7%	6%	6%
			PC[1]	5%	19%	5%	13%	5%	19%	5%	13%

0					176 L	QFP			144/10	0 LQFP	
Su	pply segme	ent	Pad	Weigh	nt 5 V	Weigh	t 3.3 V	Weig	ht 5 V	Weigh	t 3.3 V
176 LQFP	144 LQFP	100 LQFP		SRC ² = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1
6	4	4	PC[0]	6%	9%	7%	8%	7%	10%	8%	8%
			PH[9]	7%	—	8%	—	7%	—	9%	—
			PE[2]	7%	10%	8%	9%	8%	11%	9%	10%
			PE[3]	7%	10%	9%	9%	8%	12%	10%	10%
			PC[5]	7%	11%	9%	9%	8%	12%	10%	11%
			PC[4]	8%	11%	9%	10%	9%	13%	10%	11%
			PE[4]	8%	11%	9%	10%	9%	13%	11%	12%
			PE[5]	8%	11%	10%	10%	9%	14%	11%	12%
		_	PH[4]	8%	12%	10%	10%	10%	14%	12%	12%
		_	PH[5]	8%	_	10%	—	10%	—	12%	
		_	PH[6]	8%	12%	10%	11%	10%	15%	12%	13%
		_	PH[7]	9%	12%	10%	11%	11%	15%	13%	13%
		_	PH[8]	9%	12%	10%	11%	11%	16%	13%	14%
		4	PE[6]	9%	12%	10%	11%	11%	16%	13%	14%
			PE[7]	9%	12%	10%	11%	11%	16%	14%	14%
	_	_	PI[3]	9%		10%	—			—	
	—	_	PI[2]	9%	_	10%	—	_	—	—	_
		_	PI[1]	9%		10%	—			—	
	—	_	PI[0]	9%	_	10%	—	_	—	—	_
	4	4	PC[12]	8%	12%	10%	11%	12%	18%	15%	16%
			PC[13]	8%	_	10%	—	13%	—	15%	_
			PC[8]	8%	_	10%	—	13%	—	15%	_
			PB[2]	8%	11%	9%	10%	13%	18%	15%	16%

Table 20. I/O weight¹ (continued)

¹ $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C, unless otherwise specified ² SRC is the Slew Rate Control bit in SIU_PCR*x*

RESET electrical characteristics 3.7

The device implements a dedicated bidirectional $\overline{\text{RESET}}$ pin.

Figure 6. Start-up reset requirements

Figure 7. Noise filtering on reset signal

Table 21. Reset electrical characteristics

Symb	ol	с	Parameter	Conditions ¹		Valu	e	Unit
C y	•	Ĭ		Conditione	Min	Тур	Max	•
V _{IH}	SR	Ρ	Input High Level CMOS (Schmitt Trigger)	_	0.65V _{DD}		V _{DD} + 0.4	V

Cumh	-1	~	Deveneter	Conditions ¹		Value	9	1.1
Symb	01	С	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	SR	Ρ	Input low Level CMOS (Schmitt Trigger)	_	-0.4	—	$0.35V_{DD}$	V
V _{HYS}	СС	С	Input hysteresis CMOS (Schmitt Trigger)	_	$0.1 V_{DD}$	—	_	V
V _{OL}	СС	Ρ	Output low level	Push Pull, $I_{OL} = 2 \text{ mA}$, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0 (recommended)	_	—	0.1V _{DD}	V
				Push Pull, $I_{OL} = 1 \text{ mA}$, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	_	—	0.1V _{DD}	
				Push Pull, $I_{OL} = 1 \text{ mA}$, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	_		0.5	
T _{tr}	СС	D	Output transition time output pin ³ MEDIUM configuration	C _L = 25 pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	10	ns
				C _L = 50 pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	20	
				C _L = 100 pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	40	
				C _L = 25 pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	12	
				C _L = 50 pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	25	
				C _L = 100 pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	40	
W _{FRST}	SR	Ρ	RESET input filtered pulse	—	—	—	40	ns
W _{NFRST}	SR	Ρ	RESET input not filtered pulse	—	1000	—	—	ns
I _{WPU}	СС	Ρ	Weak pull-up current absolute	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	10	—	150	μA
			value	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	10	—	150	
				$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^4$	10	—	250	

Table 21.	Reset electrical	characteristics	(continued)

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

² This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to the MC_RGM chapter of the MPC5606BK Microcontroller Reference Manual).

³ C_L includes device and package capacitance (C_{PKG} < 5 pF). ⁴ The configuration PAD3V5 = 1 when V_{DD} = 5 V is only transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

3.8 Power management electrical characteristics

3.8.1 Voltage regulator electrical characteristics

The device implements an internal voltage regulator to generate the low voltage core supply V_{DD_LV} from the high voltage ballast supply V_{DD_BV} . The regulator itself is supplied by the common I/O supply V_{DD} . The following supplies are involved:

- HV: High voltage external power supply for voltage regulator module. This must be provided externally through V_{DD} power pin.
- BV: High voltage external power supply for internal ballast module. This must be provided externally through V_{DD_BV} power pin. Voltage values should be aligned with V_{DD} .
- LV: Low voltage internal power supply for core, FMPLL and Flash digital logic. This is generated by the internal voltage regulator but provided outside to connect stability capacitor. It is further split into four main domains to ensure noise isolation between critical LV modules within the device:
 - LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding.
 - LV_CFLA: Low voltage supply for code Flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding.
 - LV_DFLA: Low voltage supply for data Flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding.
 - LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.

Figure 8. Voltage regulator capacitance connection

The internal voltage regulator requires external capacitance (C_{REGn}) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 5 nH.

Each decoupling capacitor must be placed between each of the three V_{DD_LV}/V_{SS_LV} supply pairs to ensure stable voltage (see Section 3.4, Recommended operating conditions).

The internal voltage regulator requires controlled slew rate of V_{DD}/V_{DD_BV} as described in Figure 9.

Figure 9. V_{DD} and $V_{DD BV}$ maximum slope

When STANDBY mode is used, further constraints apply to the V_{DD}/V_{DD_BV} in order to guarantee correct regulator functionality during STANDBY exit. This is described in Figure 10.

STANDBY regulator constraints should normally be guaranteed by implementing equivalent of C_{STDBY} capacitance on application board (capacitance and ESR typical values), but would actually depend on the exact characteristics of the application's external regulator.

Figure 10. V_{DD} and V_{DD_BV} supply constraints during STANDBY mode exit

Symbol		c	Parameter Conditions ¹			Value		Unit
Symbol		C	Falameter	Conditions	Min	Тур	Max	Unit
C _{REGn} S	SR		Internal voltage regulator external capacitance	_	200	—	500	nF
R _{REG} S	SR		Stability capacitor equivalent serial resistance	—	_	—	0.2	Ω
C _{DEC1} S	SR		Decoupling capacitance ² ballast	V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 4.5 V to 5.5 V	100 ³	470 ⁴	—	nF
				V_{DD_BV}/V_{SS_LV} pair: V_{DD_BV} = 3 V to 3.6 V	400		—	
C _{DEC2} S	SR		Decoupling capacitance regulator supply	V _{DD} /V _{SS} pair	10	100	—	nF
V _{MREG} C	СС	Ρ	Main regulator output voltage	Before exiting from reset	_	1.32	_	V
				After trimming	1.15	1.28	1.32	
I _{MREG} S	SR		Main regulator current provided to V_{DD_LV} domain	—	—	—	150	mA

Table 22. Voltage regulator electrical characteristics

Symbol		с	Parameter	Conditions ¹		Value		Unit
Symbol		C	Parameter	Conditions	Min	Тур	Max	Unit
IMREGINT	CC	D	Main regulator module current	I _{MREG} = 200 mA		_	2	mA
			consumption	I _{MREG} = 0 mA	—	-	1	
V _{LPREG}	СС	Ρ	Low power regulator output voltage	After trimming	1.15	1.23	1.32	V
I _{LPREG}	SR		Low power regulator current provided to V_{DD_LV} domain	_	_		15	mA
I _{LPREGINT}	СС	D	Low power regulator module current consumption	I _{LPREG} = 15 mA; T _A = 55 °C	_	-	600	μA
		—		I _{LPREG} = 0 mA; T _A = 55 °C	—	5	—	
V _{ULPREG}	СС	Ρ	Ultra low power regulator output voltage	After trimming	1.15	1.23	1.32	V
I _{ULPREG}	SR	—	Ultra low power regulator current provided to V _{DD_LV} domain	_	_	-	5	mA
IULPREGINT	СС	D	Ultra low power regulator module current consumption	I _{ULPREG} = 5 mA; T _A = 55 °C	—		100	μA
				I _{ULPREG} = 0 mA; T _A = 55 °C	_	2	—	
I _{DD_BV}	СС	D	Inrush average current on V _{DD_BV} during power-up ⁵	_	—	_	300 ⁶	mA
$\frac{\mathrm{d}}{\mathrm{d}t}VDD$	SR		Maximum slope on VDD	_	_	_	250	mV/µs
$\Delta_{VDD(STDBY))}$	SR	—	Maximum instant variation on VDD during STANDBY exit	_	-	—	30	mV
$\frac{\mathrm{d}}{\mathrm{d}t}VDD(STDBY)$	SR	-	Maximum slope on VDD during STANDBY exit	_	-	—	15	mV/µs

Table 22. Voltage regulator electrical characteristics	(continued)	
lable 121 fellage legalater electrical ella acteriotice	(001101000)	

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

² This capacitance value is driven by the constraints of the external voltage regulator supplying the V_{DD_BV} voltage. A typical value is in the range of 470 nF.

- $^3\,$ This value is acceptable to guarantee operation from 4.5 V to 5.5 V
- ⁴ External regulator and capacitance circuitry must be capable of providing I_{DD_BV} while maintaining supply V_{DD_BV} in operating range.
- ⁵ Inrush current is seen only for short time during power-up and on standby exit (max 20 μs, depending on external capacitances to be load).
- ⁶ The duration of the inrush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized accordingly. Refer to I_{MREG} value for minimum amount of current to be provided in cc.

3.8.2 Voltage monitor electrical characteristics

The device implements a Power-on Reset module to ensure correct power-up initialization, as well as four low voltage detectors to monitor the V_{DD} and the V_{DD} LV voltage while device is supplied:

MPC5606BK Microcontroller Data Sheet, Rev. 4

- POR monitors V_{DD} during the power-up phase to ensure device is maintained in a safe reset state
- LVDHV3 monitors V_{DD} to ensure device reset below minimum functional supply
- LVDHV3B monitors VDD_BV to ensure device reset below minimum functional supply
- LVDHV5 monitors V_{DD} when application uses device in the 5.0 V \pm 10% range
- LVDLVCOR monitors power domain No. 1
- LVDLVBKP monitors power domain No. 0

NOTE

When enabled, power domain No. 2 is monitored through LVDLVBKP.

Figure 11. Low voltage monitor vs. reset

Symbol		с	Parameter	Conditions ¹			Unit	
Gymbol		Ŭ	i arameter	Conditions	Min	Тур	Max	Onic
V _{PORUP}	SR	D	Supply for functional POR module	T _A = 25 °C,	1.0	_	5.5	V
V _{PORH}	СС	Ρ	Power-on reset threshold	after trimming	1.5		2.6	
V _{LVDHV3H}	СС	Т	LVDHV3 low voltage detector high threshold		—		2.95	
V _{LVDHV3L}	СС	Ρ	LVDHV3 low voltage detector low threshold		2.6		2.9	
V _{LVDHV3BH}	СС	Т	LVDHV3B low voltage detector high threshold				2.95	
V _{LVDHV3BL}	СС	Ρ	LVDHV3BL low voltage detector low threshold		2.6		2.9	
V _{LVDHV5H}	СС	Т	LVDHV5 low voltage detector high threshold		—		4.5	
V _{LVDHV5L}	СС	Ρ	LVDHV5 low voltage detector low threshold		3.8		4.4	
V _{LVDLVCORL}	СС	Ρ	LVDLVCOR low voltage detector low threshold	1	1.08	—		
V _{LVDLVBKPL}	СС	Ρ	LVDLVBKP low voltage detector low threshold		1.08		1.14	

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

MPC5606BK Microcontroller Data Sheet, Rev. 4

3.9 Power consumption in different application modes

Table 24 provides DC electrical characteristics for significant application modes. These values are indicative values; actual consumption depends on the application.

Symbo	1	с	Parameter	Conditio	ns ²		Value		Unit
Symbo	1	C	Faiameter	Condition	15	Min	Тур	Max	Unit
I _{DDMAX} 3	СС	С	RUN mode maximum average current	_		—	81	130 ⁴	mA
I _{DDRUN} 5	СС	Т	RUN mode typical average	f _{CPU} = 8 MHz		—	12	—	mA
		Т	current ⁶	f _{CPU} = 16 MHz		—	27	—	
		С		f _{CPU} = 32 MHz		—	40	—	
		Ρ		f _{CPU} = 48 MHz		—	54	95	
		Ρ		f _{CPU} = 64 MHz		—	67	120	
I _{DDHALT}	CC	С	HALT mode current ⁷	Slow internal RC	T _A = 25 °C	—	10	15	mA
		Ρ		oscillator (128 kHz) running	T _A = 125 °C	—	15	28	
I _{DDSTOP} CC	СС	Ρ	STOP mode current ⁸	Slow internal RC	T _A = 25 °C	_	130	500	μA
		D		oscillator (128 kHz) running	T _A = 55 °C	_	180	_	
		D		i anning	T _A = 85 °C	_	1	5	mA
		D			T _A = 105 °C	—	3	9	
		Ρ			T _A = 125 °C	—	5	14	
I _{DDSTDBY2}	СС	Ρ	STANDBY2 mode current ⁹	Slow internal RC	T _A = 25 °C	—	17	80	μΑ
		С		oscillator (128 kHz) running	T _A = 55 °C	—	30	—	
		С		3	T _A = 85 °C	—	110	—	
		С			T _A = 105 °C	—	280	950	
		С			T _A = 125 °C	—	460	1700	
I _{DDSTDBY1}	СС	С	STANDBY1 mode current ¹⁰	Slow internal RC	T _A = 25 °C	—	12	50	μΑ
		С		oscillator (128 kHz) running	T _A = 55 °C	—	24	—	
		С		J J	T _A = 85 °C	—	48	—	
		С			T _A = 105 °C	—	150	500	
		С			T _A = 125 °C	—	260	—	

Table 24. Electrical characteristics in different application modes¹

¹ Except for I_{DDMAX}, all consumptions in this table apply to V_{DD BV} only and do not include V_{DD HV}.

² V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

³ Running consumption is given on voltage regulator supply (V_{DDREG}). I_{DDMAX} is composed of three components: I_{DDMAX} = I_{DD}(V_{DD_BV}) + I_{DD}(V_{DD_HV}) + I_{DD}(V_{DD_HV_ADC}). It does not include a fourth component linked to I/Os toggling which is **highly** dependent on the application. The given value is thought to be a **worst case value** (64 MHz at 125 °C) with all peripherals running, and code fetched from code flash while modify operation on-going on data flash. Note that this value can be significantly reduced by the application: switch off unused peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.

- ⁴ Higher current may be sunk by device during power-up and standby exit. Please refer to inrush current in Table 22.
- ⁵ RUN current measured with typical application with accesses on both Flash and RAM.
- ⁶ Only for the "P" classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master, PLL as system clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic SW/WDG timer reset enabled.
- ⁷ Data Flash Power Down. Code Flash in Low Power. SIRC 128 kHz and FIRC 16 MHz on. 10 MHz XTAL clock. FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clocks gated. LINFlex: instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 to 9 clocks gated. eMIOS: instance: 0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication), instance: 1 to 5 clocks gated. RTC/API ON. PIT ON. STM ON. ADC1 OFF. ADC0 ON but no conversion except two analog watchdogs.
- ⁸ Only for the "P" classification: No clock, FIRC 16 MHz off, SIRC 128 kHz on, PLL off, HPvreg off, ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.
- ⁹ Only for the "P" classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum consumption, all possible modules switched off.
- ¹⁰ ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules switched off.

3.10 Flash memory electrical characteristics

3.10.1 Program/erase characteristics

Table 25 shows the program and erase characteristics.

0k.al						Ņ	Value		
Symbol		С		Conditions	Min	Typ ¹	Initial max ²	Max ³	Unit
T _{dwprogram}	СС	С	Double word (64 bits) program time ⁴	Code Flash	—	18	50	500	μs
				Data Flash]	22			
T _{16Kpperase}			16 KB block preprogram and erase time	Code Flash	—	200	500	5000	ms
				Data Flash	1	300			
T _{32Kpperase}			32 KB block preprogram and erase time	Code Flash	—	300	600	5000	ms
				Data Flash	1	400			
T _{32Kpperase}			32 KB block preprogram and erase time for sector B0F4	Code Flash	-	600	1200	10000	ms
T _{128Kpperase}			128 KB block preprogram and erase time	Code Flash	—	600	1300	7500	ms
				Data Flash	1	800			
T _{128Kpperase}			128 KB block preprogram and erase time for sector B0F5	Code Flash	-	1200	2600	15000	ms
T _{eslat}		D	Erase Suspend Latency	—	-	—	30	30	μs
T _{ESRT}		С	Erase Suspend Request Rate	Code Flash	20		—	_	ms
				Data Flash	10	—	—	_	

Table 25. Program and erase specifications

- ¹ Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization.
- ² Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
- ³ The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.
- ⁴ Actual hardware programming times. This does not include software overhead.

Symbo		с	Parameter	Conditions		Value		Unit
Symbo	1	C	Faiametei	Conditions	Min	Тур	Max	Onic
P/E	CC	С	Number of program/erase cycles per block for 16 KB blocks over the operating temperature range (T _J)	_	100000		_	cycles
P/E	СС	С	Number of program/erase cycles per block for 32 KB blocks over the operating temperature range (T _J)	_	10000	100000	_	cycles
P/E	СС	С	Number of program/erase cycles per block for 128 KB blocks over the operating temperature range (T _J)	_	1000	100000		cycles
Retention	СС	С	°C average ambient	Blocks with 0–1,000 P/E cycles	20	_		years
			temperature ¹	Blocks with 1,001–10,000 P/E cycles	10	_	_	years
				Blocks with 10,001–100,000 P/E cycles	5	_	—	years

Table 26. Flash module life

¹ Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range.

ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units will experience single bit corrections throughout the life of the product with no impact to product reliability.

Table 27. Flash read access timing

Symbol		С	Parameter	Conditions ¹	Max	Unit
f _{READ}	CC	Ρ	Maximum frequency for Flash reading	2 wait states	64	MHz
		С		1 wait state	40	
		С		0 wait states	20	

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

3.10.2 Flash power supply DC characteristics

Table 28 shows the power supply DC characteristics on external supply.

Symbo	2	Parameter	Conditions)	Unit		
- Cymbe			Conditions		Min	Тур	Max	
ICFREAD	СС	Sum of the current consumption on	Flash module read	Code Flash			33	mA
IDFREAD		$V_{\mbox{\scriptsize DDHV}}$ and $V_{\mbox{\scriptsize DDBV}}$ on read access	$f_{CPU} = 64 \text{ MHz}^2$	Data Flash			33	
ICFMOD	СС	Sum of the current consumption on	Program	Code Flash	_	_	52	mA
IDFMOD		V _{DDHV} and V _{DDBV} on matrix modification (program/erase)	/Erase on-going while reading Flash registers f _{CPU} = 64 MHz ²	Data Flash	_	_	33	
I _{CFLPW}	СС	Sum of the current consumption on	—	Code Flash	_	_	1.1	mA
I _{DFLPW}		$V_{\mbox{\scriptsize DDHV}}$ and $V_{\mbox{\scriptsize DDBV}}$ during Flash low power mode		Data Flash			900	μA
I _{CFPWD}	СС	Sum of the current consumption on	—	Code Flash			150	μA
I _{DFPWD}		V_{DDHV} and V_{DDBV} during Flash power down mode		Data Flash	_	_	150	

Table 28. Flash power supply DC electrical characteristics

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

 $^2~f_{CPU}$ 64 MHz can be achieved at up to 125 °C.

3.10.3 Start-up/Switch-off timings

Table 29. Start-up time/Switch-off time

Symbol		с	Parameter	Conditions ¹	Value			Unit
Symbol			r ai ainetei	Conditions	Min	Тур	Max	Unit
T _{FLARSTEXIT}	СС	Т	Delay for Flash module to exit reset mode	—			125	μs
T _{FLALPEXIT}	СС	Т	Delay for Flash module to exit low-power mode	—	—	_	0.5	
T _{FLAPDEXIT}	СС	Т	Delay for Flash module to exit power-down mode	—	—	_	30	
T _{FLALPENTRY}	СС	Т	Delay for Flash module to enter low-power mode	—	—		0.5	
T _{FLAPDENTRY}	СС	Т	Delay for Flash module to enter power-down mode	_	—	_	1.5	

¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

3.11 Electromagnetic compatibility (EMC) characteristics

Susceptibility tests are performed on a sample basis during product characterization.

3.11.1 Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for the application.

- Software recommendations The software flowchart must include the management of runaway conditions such as:
 - Corrupted program counter
 - Unexpected reset
 - Critical data corruption (control registers...)
- Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring.

3.11.2 Electromagnetic interference (EMI)

The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC61967-1 standard, which specifies the general conditions for EMI measurements.

Symbol		с	Parameter	Cond	Conditions		Value			
Cymb	01	Ŭ	i di dificici			Min	Тур	Max	Unit	
_	SR	—	Scan range	-	_	0.150		1000	MHz	
f _{CPU}	SR	—	Operating frequency	—		—	64	—	MHz	
V _{DD_LV}	SR	—	LV operating voltages	-		_	1.28	—	V	
S _{EMI}	CC	Т	Peak level	1	No PLL frequency modulation	—	_	18	dBµV	
				Test conforming to IEC 61967-2, f _{OSC} = 8 MHz/f _{CPU} = 64 MHz	± 2% PLL frequency modulation		_	14	dBµV	

Table 30. EMI radiated emission measurement^{1,2}

¹ EMI testing and I/O port waveforms per IEC 61967-1, -2, -4

² For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative.

3.11.3 Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity.

3.11.3.1 Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts×(n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

Symbol	Ratings	Ratings Conditions		Max value ³	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human Body Model)	$T_A = 25 \degree C$ conforming to AEC-Q100-002	H1C	2000	V
V _{ESD(MM)}	Electrostatic discharge voltage (Machine Model)	T _A = 25 °C conforming to AEC-Q100-003	M2	200	
V _{ESD(CDM)}	Electrostatic discharge voltage	$T_A = 25 \text{ °C}$	C3A	500	
	(Charged Device Model)	conforming to AEC-Q100-011		750 (corners)	

Table 31. ESD absolute maximum ratings^{1,2}

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

³ Data based on characterization results, not tested in production

3.11.3.2 Static latch-up (LU)

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with the EIA/JESD 78 IC latch-up standard.

Table 32. Latch-up results

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = 125 \ ^{\circ}C$ conforming to JESD 78	II level A

3.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics

The device provides an oscillator/resonator driver. Figure 12 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator.

Table 33 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.

Figure 12. Crystal oscillator and resonator connection scheme

NOTE

XTAL/EXTAL must not be directly used to drive external circuits.

Table 33. Crystal description

Nominal frequency (MHz)	NDK crystal reference	Crystal equivalent series resistance ESR Ω	Crystal motional capacitance (C _m) fF	Crystal motional inductance (L _m) mH	Load on xtalin/xtalout C1 = C2 (pF) ¹	Shunt capacitance between xtalout and xtalin C0 ² (pF)
4	NX8045GB	300	2.68	591.0	21	2.93
8	NX5032GA	300	2.46	160.7	17	3.01
10		150	2.93	86.6	15	2.91
12		120	3.11	56.5	15	2.93
16		120	3.90	25.3	10	3.00

¹ The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.

² The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.).

Symbol		с	Parameter	Conditions ¹		Value	Value	
Symbol			Faiameter	Conditions	Min	Тур	Max 16.0 8.2 7.4 9.7 9.2 — — —	Unit
f _{FXOSC}	SR		Fast external crystal oscillator frequency	_	4.0	—	16.0	MHz
9 _{mFXOSC}	СС	С	Fast external crystal oscillator transconductance	$V_{DD} = 3.3 V \pm 10\%,$ PAD3V5V = 1 OSCILLATOR_MARGIN = 0	2.2	_	8.2	mA/V
	СС	Ρ		$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0 OSCILLATOR_MARGIN = 0	2.0	_	7.4	
	СС	С		$V_{DD} = 3.3 V \pm 10\%,$ PAD3V5V = 1 OSCILLATOR_MARGIN = 1	2.7	_	9.7	
	СС	С		$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0 OSCILLATOR_MARGIN = 1	2.5	_	9.2	
V _{FXOSC}	СС	Т	Oscillation amplitude at EXTAL	f _{OSC} = 4 MHz, OSCILLATOR_MARGIN = 0	1.3	—		V
				f _{OSC} = 16 MHz, OSCILLATOR_MARGIN = 1	1.3	_	_	
V _{FXOSCOP}	СС	Ρ	Oscillation operating point	—		0.95		V
I _{FXOSC} ²	СС	Т	Fast external crystal oscillator consumption	—	—	2	3	mA

Table 34. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics

Symbol		с	Parameter	Conditions ¹			Unit	
Symbol		C	raiameter	conditions	Min	Тур	Max	Unit
T _{FXOSCSU}	СС	Т	Fast external crystal oscillator start-up time	f _{OSC} = 4 MHz, OSCILLATOR_MARGIN = 0	—	_	6	ms
				f _{OSC} = 16 MHz, OSCILLATOR_MARGIN = 1	—	_	1.8	
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	Oscillator bypass mode	0.65V _{DD}	_	V _{DD} + 0.4	V
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	Oscillator bypass mode	-0.4		0.35V _{DD}	V

Table 34. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

² Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals).

3.13 Slow external crystal oscillator (32 kHz) electrical characteristics

The device provides a low power oscillator/resonator driver.

Figure 14. Crystal oscillator and resonator connection scheme

NOTE

OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits.

Figure 15. Equivalent circuit of a quartz crystal

Symbol	Parameter	Conditions		Unit		
Symbol	Farameter	Conditions	Min	Тур		Unit
L _m	Motional inductance	—	_	11.796		KH
Cm	Motional capacitance	—		2		fF
C1/C2	Load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground ²	_	18	_	28	pF
R _m ³	Motional resistance	AC coupled at C0 = 2.85 pF^4		—	65	kΩ
		AC coupled at $C0 = 4.9 \text{ pF}^4$		—	50	
		AC coupled at $C0 = 7.0 \text{ pF}^4$		—	35	
		AC coupled at C0 = 9.0 pF^4	_	—	30	

Table 35. Crystal motional characteristics¹

¹ The crystal used is Epson Toyocom MC306.

² This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground. It includes all the parasitics due to board traces, crystal and package.

 $^3\,$ Maximum ESR (R_m) of the crystal is 50 k $\!\Omega$

⁴ C0 Includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins.

Figure 16. Slow external crystal oscillator (32 kHz) electrical characteristics

Symphol		<u>ر</u>	Parameter	Conditions ¹	Value			Unit
Symbol		С	Parameter	Conditions	Min	Тур	Max	Unit
f _{sxosc}	SR	_	Slow external crystal oscillator frequency		32	32.768	40	kHz
V _{SXOSC}	СС	Т	Oscillation amplitude	—	—	2.1	—	V
I _{SXOSCBIAS}	СС	Т	Oscillation bias current	—		2.5		μΑ
I _{SXOSC}	СС	Т	Slow external crystal oscillator consumption	_	—	—	8	μA
T _{SXOSCSU}	СС	Т	Slow external crystal oscillator start-up time	_	—	-	2 ²	S

V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified
 Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.

3.14 **FMPLL** electrical characteristics

The device provides a frequency modulated phase locked loop (FMPLL) module to generate a fast system clock from the FXOSC or FIRC sources.

Symbo	ol C		Parameter	Conditions ¹		Unit		
Symbol		Ŭ	i urumeter	Conditions	Min	Тур	Мах	
f _{PLLIN}	SR	_	FMPLL reference clock ²	_	4		64	MHz
Δ_{PLLIN}	SR		FMPLL reference clock duty cycle ²	_	40	_	60	%

Sumb	a.	~	Devementer	Conditions ¹		Unit		
Symbo		С	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLLOUT}	CC	Ρ	FMPLL output clock frequency	—	16	_	64	MHz
f _{VCO} ³	СС	Ρ	VCO frequency without frequency modulation	_	256	_	512	MHz
		Ρ	VCO frequency with frequency modulation	_	245.76	_	532.48	
f _{CPU}	SR	_	System clock frequency	—	—	—	64 ⁴	MHz
f _{FREE}	СС	Ρ	Free-running frequency	—	20	—	150	MHz
t _{LOCK}	СС	Ρ	FMPLL lock time	Stable oscillator (f _{PLLIN} = 16 MHz)		40	100	μs
Δt_{STJIT}	СС	—	FMPLL short term jitter ⁵	f _{sys} maximum	-4	_	4	%
Δt_{LTJIT}	СС	_	FMPLL long term jitter	f _{PLLCLK} at 64 MHz, 4000 cycles	—	_	10	ns
I _{PLL}	СС	С	FMPLL consumption	ion $T_A = 25 \text{ °C}$		_	4	mA

Table 37. FMPLL electrical characteristics ((continued)

¹ V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

² PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify f_{PLLIN} and Δ_{PLLIN} .

³ Frequency modulation is considered $\pm 4\%$.

 $^4~$ f_{CPU} 64 MHz can be achieved only at up to 105 °C.

⁵ Short term jitter is measured on the clock rising edge at cycle n and n + 4.

3.15 Fast internal RC oscillator (16 MHz) electrical characteristics

The device provides a 16 MHz main internal RC oscillator. This is used as the default clock at the power-up of the device.

Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics

Symbol		C	C Parameter Conditions ¹				Value			
Cymbol		Ŭ	r urumeter		Min	Тур	Мах	Unit		
f _{FIRC}	СС	Ρ	Fast internal RC oscillator high	T _A = 25 °C,	trimmed	—	16		MHz	
	SR	_	frequency		_	12		20		
I _{FIRCRUN} ^{2,}	СС	Т	Fast internal RC oscillator high frequency current in running mode	T _A = 25 °C, trimmed		—	_	200	μA	
I _{FIRCPWD}	СС	D	Fast internal RC oscillator high frequency current in power down mode	T _A = 25 °C		—	—	10	μA	
I _{FIRCSTOP}	СС	Т	Fast internal RC oscillator high	T _A = 25 °C	sysclk = off	—	500		μA	
			frequency and system clock current in stop mode		sysclk = 2 MHz	—	600			
					sysclk = 4 MHz		700			
					sysclk = 8 MHz	—	900	_	1	
					sysclk = 16 MHz	—	1250	_		

Symbol		с	Parameter	Conditions ¹		Unit		
Cymbol		Ŭ		Conditions	Min	Тур	Max	
T _{FIRCSU}	СС	С	Fast internal RC oscillator start-up time	V _{DD} = 5.0 V ± 10%	_	1.1	2.0	μs
[∆] fircpre	СС	С	Fast internal RC oscillator precision after software trimming of f _{FIRC}	T _A = 25 °C	-1		1	%
	СС	С	Fast internal RC oscillator trimming step	T _A = 25 °C	—	1.6		%
	СС	С	Fast internal RC oscillator variation over temperature and supply with respect to f_{FIRC} at $T_A = 25$ °C in high-frequency configuration	_	-5		5	%

 Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics (continued)

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

² This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

3.16 Slow internal RC oscillator (128 kHz) electrical characteristics

The device provides a 128 kHz low power internal RC oscillator. This can be used as the reference clock for the RTC module.

Symbol		с	Parameter	Conditions ¹	Value			Unit
Cymbol		Ŭ	r di di litto di	Conditions	Min	Тур	Max	•
f _{SIRC}	СС	Ρ		T _A = 25 °C, trimmed		128	_	kHz
	SR	_	frequency	_	100		150	
I _{SIRC} ^{2,}	СС	С	Slow internal RC oscillator low frequency current	T _A = 25 °C, trimmed	_	—	5	μA
T _{SIRCSU}	CC	Ρ	Slow internal RC oscillator start-up time	$T_A = 25 \text{ °C}, V_{DD} = 5.0 \text{ V} \pm 10\%$	_	8	12	μs
$\Delta_{SIRCPRE}$	CC	С	Slow internal RC oscillator precision after software trimming of f _{SIRC}	T _A = 25 °C	-2	—	2	%
	СС	С	Slow internal RC oscillator trimming step	_		2.7		
	CC	С	Slow internal RC oscillator variation in temperature and supply with respect to f_{SIRC} at $T_A = 55$ °C in high frequency configuration	High frequency configuration	-10		10	%

Table 39. Slow internal RC oscillator (128 kHz) electrical characteristics

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = –40 to 125 °C, unless otherwise specified

² This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

3.17 ADC electrical characteristics

3.17.1 Introduction

The device provides two Successive Approximation Register (SAR) analog-to-digital converters (10-bit and 12-bit).

Figure 17. ADC_0 characteristic and error definitions

3.17.2 Input impedance and ADC accuracy

In the following analysis, the input circuit corresponding to the precise channels is considered.

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as

possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: C_S being substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C_S equal to 3 pF, a resistance of 330 k Ω is obtained ($R_{EQ} = 1 / (fc \times C_S)$, where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C_S) and the sum of $R_S + R_F + R_L + R_{SW} + R_{AD}$, the external circuit must be designed to respect the Equation 4:

$$V_A \bullet \frac{\mathbf{R}_S + \mathbf{R}_F + \mathbf{R}_L + \mathbf{R}_S \mathbf{W} + \mathbf{R}_{AD}}{\mathbf{R}_{EO}} < \frac{1}{2} \text{LSB}$$

EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Channel Sampling Selection Filter **Current Limiter** Source 0 R_{SW1} R_F R 11 ... 11 C 11 11 11 Source Impedance R_S R_F Filter Resistance CF Filter Capacitance R Current Limiter Resistance R_{SW1} Channel Selection Switch Impedance Sampling Switch Impedance Pin Capacitance (two contributions, C_{P1} and C_{P2}) R_{AD} CP Sampling Capacitance

Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (R_{SW} and R_{AD}) can be neglected with respect to external resistances.

Figure 18. Input equivalent circuit (precise channels)

Eqn. 4

Figure 19. Input equivalent circuit (extended channels)

A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C_{F} , C_{P1} and C_{P2} are initially charged at the source voltage V_A (refer to the equivalent circuit reported in Figure 18): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close).

Figure 20. Transient behavior during sampling phase

In particular two different transient periods can be distinguished:

1. A first and quick charge transfer from the internal capacitance C_{P1} and C_{P2} to the sampling capacitance C_S occurs (C_S is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which C_{P2} is reported in parallel to C_{P1} (call $C_P = C_{P1} + C_{P2}$), the two capacitances C_P and C_S are in series, and the time constant is

Eqn. 5

Ean 6

Ean 7

$$\boldsymbol{\tau}_1 = (\boldsymbol{R}_{SW} + \boldsymbol{R}_{AD}) \bullet \frac{\boldsymbol{C}_{P} \bullet \boldsymbol{C}_{S}}{\boldsymbol{C}_{P} + \boldsymbol{C}_{S}}$$

Equation 5 can again be simplified considering only C_S as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time T_S is always much longer than the internal time constant:

$$r_1 < (R_{SW} + R_{AD}) \bullet C_S \ll T_S$$

The charge of C_{P1} and C_{P2} is redistributed also on C_S , determining a new value of the voltage V_{A1} on the capacitance according to Equation 7:

$$V_{A1} \bullet (C_S + C_{P1} + C_{P2}) = V_A \bullet (C_{P1} + C_{P2})$$

2. A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance R_L : again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

$$\tau_2 < R_L \bullet (C_S + C_{P1} + C_{P2})$$
 Eqn. 8

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time T_s , a constraints on R_L sizing is obtained:

$$10 \bullet \tau_2 = 10 \bullet R_L \bullet (C_S + C_{P1} + C_{P2}) < T_S$$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1} , C_{P2} and C_S , then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1} . Equation 10 must be respected (charge balance assuming now C_S already charged at V_{A1}):

Eqn. 10

Eqn. 9

$$V_{A2} \bullet (C_S + C_{P1} + C_{P2} + C_F) = V_A \bullet C_F + V_{A1} \bullet (C_{P1} + C_{P2} + C_S)$$

The two transients above are not influenced by the voltage source that, due to the presence of the R_FC_F filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant R_FC_F of the filter is very high with respect to the sampling time (T_S). The filter is typically designed to act as antialiasing.

Figure 21. Spectral representation of input signal

Calling f_0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the antialiasing filter, f_F), according to the Nyquist theorem the conversion rate f_C must be at least $2f_0$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (T_C). Again the conversion period T_C is longer than the sampling time T_S , which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter R_FC_F is definitively much higher than the sampling time T_S , so the charge level on C_S cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on C_S :

$$\frac{V_{A2}}{V_A} = \frac{C_{P1} + C_{P2} + C_F}{C_{P1} + C_{P2} + C_F + C_S}$$

From this formula, in the worst case (when V_A is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_F value:

Α

ADC_0 (10-bit)	Eqn. 12
$C_F > 2048 \bullet C_S$	

DC_1 (12-bit) Eqn. 13
$$C_F > 8192 \bullet C_S$$

Egn. 11

3.17.3 ADC electrical characteristics

Symbol (с	с					ı c	С	C	С	Parameter		Conditions		Value		Unit
Joyin		0	i arameter		Conditions	Min	Min Typ Max											
I _{LKG}	СС	С	Input leakage current	$T_A = -40 \ ^\circ C$	No current injection on adjacent pin		1		nA									
		С		T _A = 25 °C			1											
		D		T _A = 85°C			3	100										
		С		T _A = 105 °C			8	200										
		Ρ		T _A = 125 °C		—	45	400										

Table 40. ADC input leakage current

Table 41. ADC_0 conversion characteristics (10-bit ADC_0)

Symbo		с	Deveneter	Conditions ¹	,	Value		Unit
Symbo	1	C	Parameter	Conditions	Min Typ		Max	
V _{SS_ADC0}	SR		Voltage on VSS_HV_ADC0 (ADC_0 reference) pin with respect to ground (V _{SS}) ²	_	-0.1	—	0.1	V
V _{DD_ADC0}	(ADC reference) with respect to ground (V _{SS})		_	V _{DD} – 0.1	—	V _{DD} + 0.1	V	
V _{AINx}	SR	_	Analog input voltage ³	_	V _{SS_ADC0} - 0.1	—	V _{DD_ADC0} + 0.1	V
I _{ADC0pwd}	SR		ADC_0 consumption in power down mode	_	_	_	50	μA
I _{ADC0run}	SR		ADC_0 consumption in running mode			—	5	mA
f _{ADC0}	SR		ADC_0 analog frequency	—	6	—	32 + 4%	MHz
Δ_{ADC0_SYS}	SR		ADC_0 digital clock duty cycle (ipg_clk)	ADCLKSEL = 1 ⁴	45	—	55	%
t _{ADC0_PU}	SR	_	ADC_0 power up delay	_		—	1.5	μs
t _{ADC0_S}	сс	Т	Sample time ⁵	f _{ADC} = 32 MHz, ADC0_conf_sample_input = 17	0.5	—		μs
				f _{ADC} = 6 MHz, INPSAMP = 255	_	—	42	
t _{ADC0_C}	сс	Ρ	Conversion time ⁶	f _{ADC} = 32 MHz, ADC_conf_comp = 2	0.625	—	—	μs
C _S	СС	D	ADC_0 input sampling capacitance	_	_	—	3	pF
C _{P1}	СС	D	ADC_0 input pin capacitance 1	—	—	—	3	pF
C _{P2}	СС	D	ADC_0 input pin capacitance 2	—	—	—	1	pF
C _{P3}	СС	D	ADC_0 input pin capacitance 3	—		—	1	pF

MPC5606BK Microcontroller Data Sheet, Rev. 4

Cum ha		с	Devementer	Conditi	:1		Value	Value	
Symbo			Parameter	umeter Conditions ¹		Min	Тур	Max	_Uni
R _{SW1}	СС	D	Internal resistance of analog source	—		—	-	3	kΩ
R_{SW2}	СС	D	Internal resistance of analog source	_		—	-	2	kΩ
R _{AD}	СС	D	Internal resistance of analog source	_		—	-	2	kΩ
I _{INJ}	SR	_	Input current Injection	Current injection $V_{DD} =$ on one ADC_0 3.3 V ± 10%		-5	—	5	mA
			input, different from the converted one	V _{DD} = 5.0 V ± 10%	-5	—	5		
INL	СС		Absolute value for integral nonlinearity	No overload		—	0.5	1.5	LSE
DNL	СС		Absolute differential nonlinearity	No overload			0.5	1.0	LSE
OFS	СС	Т	Absolute offset error				0.5		LSE
GNE	СС	Т	Absolute gain error		-	_	0.6		LSE
TUEP	СС		Total unadjusted error ⁷ for	Without current in	njection	-2	0.6	2	LSE
			precise channels, input only pins	With current inject	ction	-3		3	
TUEX	СС	Т	Total unadjusted error ⁷ for	Without current in	njection	-3	1	3	LSE
		Т	extended channel	With current injection		-4		4	

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

 $^2\,$ Analog and digital V_{SS} **must** be common (to be tied together externally).

³ V_{AINx} may exceed V_{SS_ADC0} and V_{DD_ADC0} limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF.

- ⁴ Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2.
- ⁵ During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_{ADC0_S} . After the end of the sample time t_{ADC0_S} , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_{ADC0_S} depend on programming.

⁶ This parameter does not include the sample time t_{ADC0_S}, but only the time for determining the digital result and the time to load the result's register with the conversion result.

⁷ Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

Figure 22. ADC_1 characteristic and error definitions

Table 42. ADC	1 convers	sion characte	eristics (12-b	it ADC 1)

Symbol		с	Parameter	Conditions ¹		Valu	e	Unit
Symbol		C	raidilietei	Conditions	Min	Тур	Max	Onit
V _{SS_ADC1}	SR		Voltage on VSS_HV_ADC1 (ADC_1 reference) pin with respect to ground (V _{SS}) ²	_	-0.1		0.1	V
V _{DD_ADC1}	SR		Voltage on VDD_HV_ADC1 pin (ADC_1 reference) with respect to ground (V _{SS})	_	V _{DD} – 0.1		V _{DD} + 0.1	V

Symbol		с	Deremeter	Conditions ¹		Value	9	Unit
Symbol		C	Parameter	Conditions	Min	Тур	Max	Unit
V _{AINx}	SR		Analog input voltage ³	_	V _{SS_ADC1} - 0.1	—	V _{DD_ADC1} + 0.1	V
I _{ADC1pwd}	SR		ADC_1 consumption in power down mode	_	—	—	50	μA
I _{ADC1run}	SR	—	ADC_1 consumption in running mode	_	—	—	6	mA
f _{ADC1}	SR	_	ADC_1 analog frequency	V _{DD} = 3.3 V	3.33	—	20 + 4%	MHz
				$V_{DD} = 5 V$	3.33	—	32 + 4%	
t _{ADC1_PU}	SR	_	ADC_1 power up delay	_	—	—	1.5	μs
t _{ADC1_S}	сс	Т	Sample time ⁴ VDD = 3.3 V	f _{ADC1} = 20 MHz, ADC1_conf_sample_input = 12	600	-	_	ns
			Sample time ⁴ VDD = 5.0 V	f _{ADC1} = 32 MHz, ADC1_conf_sample_input = 17	500	—		
			Sample time ⁴ VDD = 3.3 V	f _{ADC1} = 3.33 MHz, ADC1_conf_sample_input = 255	—	—	76.2	μs
			Sample time ⁴ VDD = 5.0 V	f _{ADC1} = 3.33 MHz, ADC1_conf_sample_input = 255	—	—	76.2	
t _{ADC1_C}	СС	Ρ	Conversion time ⁵ VDD = 3.3 V	f _{ADC1} = 20MHz, ADC1_conf_comp = 0	2.4	—	_	μs
			Conversion time ⁵ VDD = 5.0 V	f _{ADC 1} = 32 MHz, ADC1_conf_comp = 0	1.5	—	—	μs
			Conversion time ⁵ VDD = 3.3 V	f _{ADC 1} = 13.33 MHz, ADC1_conf_comp = 0	—	—	3.6	μs
			Conversion time ⁵ VDD = 5.0 V	f _{ADC1} = 13.33 MHz, ADC1_conf_comp = 0	—	—	3.6	μs
Δ_{ADC1_SYS}	SR	_	ADC_1 digital clock duty cycle	ADCLKSEL = 1 ⁶	45	—	55	%
C_S	СС	D	ADC_1 input sampling capacitance	_	_	_	5	pF
C _{P1}	СС	D	ADC_1 input pin capacitance 1	_	—	—	3	pF
C _{P2}	СС	D	ADC_1 input pin capacitance 2	_	—	—	1	pF
C _{P3}	СС	D	ADC_1 input pin capacitance 3	—	—	—	1.5	pF
R _{SW1}	•		Internal resistance of analog source	_	—	—	1	kΩ
R_{SW2}	СС	D	Internal resistance of analog source	_	—	—	2	kΩ
R _{AD}	СС	D	Internal resistance of analog source	_	—	—	0.3	kΩ

Table 42. ADC_1 conversion characteristics (12-bit ADC_1) (continued)

Symbol		с	Parameter	Cor	nditions ¹		Value)	Unit
Symbol		C	Falameter	0		Min	Тур	Max	Unit
I _{INJ}	SR	_	Input current Injection	Current	$V_{DD} = 3.3 \text{ V} \pm 10\%$	-5	—	5	mA
				injection on one ADC_1 input, different from the converted one	V _{DD} = 5.0 V ± 10%	-5	—	5	
INLP	СС	Т	Absolute Integral non-linearity-Precise channels	No overload		_	1	3	LSB
INLX	СС	Т	Absolute Integral non-linearity-Extended channels	No overload		_	1.5	5	LSB
DNL	СС	Т	Absolute Differential non-linearity	No overload		_	0.5	1	LSB
OFS	СС	Т	Absolute Offset error		—	_	2	_	LSB
GNE	СС	Т	Absolute Gain error		—	_	2	_	LSB
TUEP ⁷	СС	Ρ	Total Unadjusted Error for	Without curren	t injection	-6	—	6	LSB
		Т	precise channels, input only pins	With current in	jection	-8		8	
TUEX ⁷	СС	Т	Total Unadjusted Error for	Without curren	t injection	-10	—	10	LSB
		Т	extended channel	With current in	jection	-12	—	12	

Table 42. ADC_1 conversion characteristics	(12-bit ADC	1)	(continued)
	() =		(0011111000)

¹ V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

² Analog and digital V_{SS} must be common (to be tied together externally).

- ³ V_{AINx} may exceed V_{SS_ADC1} and V_{DD_ADC1} limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0xFFF.
- ⁴ During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_{ADC1_S}. After the end of the sample time t_{ADC1_S}, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_{ADC1_S} depend on programming.
- ⁵ This parameter does not include the sample time t_{ADC1_S}, but only the time for determining the digital result and the time to load the result's register with the conversion result.
- ⁶ Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2.
- ⁷ Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

3.18 On-chip peripherals

3.18.1 Current consumption

Symbol		с	Parameter		Conditions	Value	Unit
Symbol		C	Farameter		Conditions	Тур	01111
I _{DD_BV(CAN)}	CC	Т	CAN (FlexCAN)	Bit rate = 500 KB/s	Total (static + dynamic) consumption:	8 * f _{periph} + 85	μA
			supply current on V _{DD_BV}	Bit rate = 125 KB/s	 FlexCAN in loop-back mode XTAL at 8 MHz used as CAN engine clock source Message sending period is 580 µs 	8 * f _{periph} + 27	
I _{DD_BV} (eMIOS)	СС	Т	eMIOS supply current on V _{DD_BV}	Static consu • eMIOS cl • Global pr	•	29 * f _{periph}	
					nsumption: ot change varying the / (0.003 mA)	3	
I _{DD_BV(SCI)}	CC	Т	SCI (LINFlex) supply current on V _{DD_BV}	Total (static • LIN mode • Baud rate		5 * f _{periph} + 31	
I _{DD_BV(SPI)}	СС	Т	SPI (DSPI) supply current	Ballast stati clocked)	c consumption (only	1	
			on V _{DD_BV}	(continuous • Baud rate	sion every 8 µs	16 * f _{periph}	
I _{DD_BV} (ADC_0/ADC_1)	СС	Т	ADC_0/ADC_1 supply current	V _{DD} = 5.5 V	Ballast static consumption (no conversion)	41 * f _{periph}	μA
			on V _{DD_BV}	V _{DD} = 5.5 V Ballast dynamic consumption (continuous conversion)		46 * f _{periph}	
IDD_HV_ADC0	СС	Т	ADC_0 supply current on	V _{DD} = 5.5 V	Analog static consumption (no conversion)	200	
			V _{DD_HV_ADC0}	V _{DD} = 5.5 V	Analog dynamic consumption (continuous conversion)	3	mA

Table 43. On-chip peripherals current consumption¹

Symbol		с	Parameter		Conditions	Value	Unit	
Cymbol		Ŭ	i di dificici	Contailons		Тур		
IDD_HV_ADC1	CC	Т	ADC_1 supply current on		Analog static consumption (no conversion)	300 * f _{periph}	μA	
			V _{DD_HV_ADC1}	V _{DD} = 5.5 V	Analog dynamic consumption (continuous conversion)	4	mA	
I _{DD_HV} (FLASH)	СС	Т	CFlash + DFlash supply current on V _{DD_HV}	V _{DD} = 5.5 V	_	12	mA	
I _{DD_BV(PLL)}	СС	Т	PLL supply current on V _{DD_BV}	V _{DD} = 5.5 V	_	2.5	mA	

¹ Operating conditions: $T_A = 25$ °C, $f_{periph} = 8$ MHz to 64 MHz

78

3.18.2 DSPI characteristics

Table 44. DSPI characteristics¹

No.	Symbo	~1	с	Parameter		DSPI0/D	SPI1/DS	PI5/DSPI6	D	SPI2/DS	SPI4	Unit
NO.	Symbo	וכ	C	Farameter		Min	Тур	Мах	Min	Тур	Max	
1	t _{SCK}	SR	D	SCK cycle time	Master mode (MTFE = 0)	125		_	333 ²	—	_	ns
			D		Slave mode (MTFE = 0)	125		_	333	_	_	
			D		Master mode (MTFE = 1)	83		_	125		_	
			D		Slave mode (MTFE = 1)	83	_	_	125	_	—	
_	f _{DSPI}	SR	D	DSPI digital controller fre	quency	—	_	f _{CPU}	_		f _{CPU}	MHz
2	t _{CSCext} ³	SR	D	CS to SCK delay	Slave mode	32		—	32	—	—	ns
3	t _{ASCext} ⁴	SR	D	After SCK delay	Slave mode	1/f _{DSPI} + 5	_	—	1/f _{DSPI} + 5		—	ns
4	t _{SDC}	СС	D	SCK duty cycle	Master mode	—	t _{SCK} /2	—	_	t _{SCK} /2	—	ns
		SR	D		Slave mode	t _{SCK} /2	_	—	t _{SCK} /2	—	—	
5	t _A	SR	D	Slave access time	Slave mode	—	_	1/f _{DSPI} + 70	_	—	1/f _{DSPI} + 130	ns
6	t _{DI}	SR	D	Slave SOUT disable time	Slave mode	7		_	7	_	—	ns
7	t _{PCSC}	СС	D	PCSx to PCSS time	—	13 ⁵	_	—	13 ⁵	—	—	
8	t _{PASC}	СС	D	PCSS to PCSx time	_	13 ⁵		—	13 ⁵	—	—	
9	t _{SUI}	SR	D	Data setup time for	Master mode	43		—	145	—	_	ns
				inputs	Slave mode	5	_	—	5	—	—	
10	t _{HI}	SR	D	Data hold time for inputs	Master mode	0		—	0	—	—	ns
					Slave mode	2 ⁶	_	_	2 ⁶	—	—	
11	t _{SUO} 7	СС	D	Data valid after SCK	Master mode		—	32		—	50	ns
				edge	Slave mode	—	—	52		—	160	1

No	No. Symbol		C	Paramete	r	DSPI0/DSPI1/DSPI5/DSPI6 DSPI2/DSPI4					SPI4	Unit
110.	Cynis	01	Ŭ			Min	Тур	Max	Min	Тур	Max	
12	t _{HO} 7	CC	D	Data hold time for	Master mode	0		_	0		_	ns
				outputs	Slave mode	8		—	13	_	_	

Table 44. DSPI characteristics¹ (continued)

¹ Operating conditions: $C_{out} = 10$ to 50 pF, $Slew_{IN} = 3.5$ to 15 ns.

² For DSPI4, if SOUT is mapped to a SLOW pad while SCK is mapped to a MEDIUM pad (or vice versa), the minimum cycle time for SCK should be calculated based on the rise and fall times of the SLOW pad. For MTFE=1, SOUT must not be mapped to a SLOW pad while SCK is mapped to a MEDIUM pad.

³ The t_{CSC} delay value is configurable through a register. When configuring t_{CSC} (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than ∆t_{CSC} to ensure positive t_{CSCext}.

⁴ The t_{ASC} delay value is configurable through a register. When configuring t_{ASC} (using PASC and ASC fields in DSPI_CTAR *x* registers), delay between internal CS and internal SCK must be higher than ∆t_{ASC} to ensure positive t_{ASCext}.

⁵ For DSPI*x*_CTAR*n*[PCSSCK] = 11.

⁶ This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of DSPI_MCR register.

⁷ SCK and SOUT are configured as MEDIUM pad.

Note: Numbers shown reference Table 44.

Note: Numbers shown reference Table 44.

Note: Numbers shown reference Table 44.

Note: Numbers shown reference Table 44.

Figure 31. DSPI PCS strobe (PCSS) timing

3.18.3 JTAG characteristics

No.	Symb		с	Parameter		Value		Unit
NO.	Synto			Min Typ Max		Max	Unit	
1	t _{JCYC}	CC	D	TCK cycle time	64	_	_	ns
2	t _{TDIS}	СС	D	TDI setup time	15	—	_	ns
3	t _{TDIH}	CC	D	TDI hold time	5	—	_	ns
4	t _{TMSS}	CC	D	TMS setup time	15	—	_	ns
5	t _{TMSH}	СС	D	TMS hold time	5	—	_	ns
6	t _{TDOV}	CC	D	TCK low to TDO valid	—	—	33	ns
7	t _{TDOI}	CC	D	TCK low to TDO invalid	6	—	_	ns

Table 45. JTAG characteristics

Figure 32. Timing diagram — JTAG boundary scan

4 Package characteristics

4.1 Package mechanical data

4.1.1 176 LQFP

Figure 33. 176 LQFP package mechanical drawing (Part 1 of 3)

Figure 34. 176 LQFP package mechanical drawing (Part 2 of 3)

	NOTES:											
	PROTRU	JSION IS	5 0.25MM	PER S	DT INCLUDE SIDE. DIMEN TERMINED /	ISIONS	D1 AND E1	I DO INC	LUDE			
	2. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM & DIMENSION BY MORE THEN 0.08MM. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM BETWEEN PROTRUSION AND AN ADJACENT LEAD IS 0.07MM FOR 0.4MM AND 0.5MM PITCH PACKAGES.											
DIM	MIN	NOM	МАХ	DIM	MIN	NOM	МАХ	DIM	MIN	NOM	МАХ	
A			1.6	L1		1 REF						
A1	0.05		0.15	R1	0.08							
A2	1.35	1.4	1.45	R2	0.08		0.2					
b	0.17	0.22	0.27	S	(D.2 REF						
b1	0.17	0.2	0.23	0	0.	3.5°	7 °					
с	0.09		0.2	Θ1	0.							
c1	0.09		0.16	02	11°	12°	13°					
D		26 BSC		θ3	11°	12°	13 °					
D1		24 BSC										
e	(0.5 BSC	>									
E		26 BSC	:									
E1		24 BSC	:				IMENSION /	AND				
L	0.45	0.6	0.75		UNIT		TOLERANCI	ES			DOCUMENT	
					MM		ASME Y14.	5M	64-	06-28	0–1392	

Figure 35. 176 LQFP package mechanical drawing (Part 3 of 3)

4.1.2 144 LQFP

Figure 36. 144 LQFP package mechanical drawing (Part 1 of 2)

Figure 37. 144 LQFP package mechanical drawing (Part 2 of 2)

4.1.3 100 LQFP

Figure 38. 100 LQFP package mechanical drawing (Part 1 of 3)

Figure 39. 100 LQFP package mechanical drawing (Part 2 of 3)

A han a sector	MECHANICAL OUTLINES		DOCUMENT NO: 98ASH70126A			
# freescale	DICTR	DICTIONARY		842F		
UNDERSTANDING AND ALTER FC. ALL MANY MARKAN LICENSIS SCIENCES ARE ANALYMING CHEFT BAY MARKAN MARKAN FOR THE ALL MARKAN AND ALL MARKAN AN PROFILED CHEFT BAS STAFFO "CONTAINS COT" & BO.	OD NOT SCALE	THIS DRAWING	REV:	В		
1. DIMENSIONS AND TOLERANCI	NG PER ASME Y14.	5M—1994.				
2. CONTROLLING DIMENSION: N	ILLIME TER					
3. DATUM PLANE H IS LOCATED WHERE THE LEAD EXITS THE						
A DATUMS A, B, AND D TO BE	A DATUMS A, B, AND D TO BE DETERMINED AT DATUM PLANE H.					
A DIMENSIONS TO BE DETERIMI	NED AT SEATING P	LANE, DATUN C.				
	e mold protrusk De molo mismatch	XN. ALLOWABLE PR AND ARE DETERI	ROTRUSION MINED AT	IS 0.25 PER DATUM PLANE	: н.	
A DIMENSION DOES NOT INCLUI CAUSE THE LEAD WIDTH TO RADIUS OR THE FOOT, MINIM D.07.	EXCEED 0.35. DA	MBAR CAN NOT B	E LOCATED	D ON THE LON	VER IS	
8. MINIMUM SOLDER PLATE THIC	CKNESS SHALL BE	0.0076.				
A EXACT SHAPE OF EACH COR	INER MAY VARY FE	IOM DEPICTION.				
חתב:	AD	CASE NUMBER:		25 RED		
LQFP 100 LE 0.5 PITCH 14 X 1	A V 1 A	STANDARD; JEDE				

Figure 40. 100 LQFP package mechanical drawing (Part 3 of 3)

NP

5 Ordering information

Note: Not all options are available on all devices.

Figure 41. Commercial product code structure

6 Revision history

Table 46. Revision history

Revision	Date	Description of changes
1	22 Apr 2011	Initial release.
2	15 May 2013	 Changed device number to MPC5606BK. In Table 2 (Functional port pins), updated PA[11] AF2, PD[13] AF2, and PH[11] AF3 I/O direction to "I/O". In Table 3 (Pad types), corrected "Fast" in the "S" row to "Slow." In Table 5 (PAD3V5V field description), updated footnote 2. In Table 6 (OSCILLATOR_MARGIN field description), updated footnote 2. In Table 8 (Absolute maximum ratings), Table 9 (Recommended operating conditions (3.3 V)), and Table 10 (Recommended operating conditions (5.0 V)), corrected the parameter description for V_{DD_ADC} to "Voltage on VDD_HV_ADC0, VDD_HV_ADC1 (ADC reference) with respect to ground (V_{SS})" In Table 12 (I/O input DC electrical characteristics), added specifications for 85 °C. In Table 13 (I/O pull-up/pull-down DC electrical characteristics), Table 14 (SLOW configuration output buffer electrical characteristics), able 15 (MEDIUM configuration output buffer electrical characteristics), table 16 (FAST configuration output buffer electrical characteristics), changed sentence in footnote 2 to "All pads but RESET are configured in input or in high impedance state." In Table 15 (MEDIUM configuration output buffer electrical characteristics), for V_{OL}, changed I_{OH} to I_{OL}. Updated Table 20 (I/O weight). In Table 21 (Reset electrical characteristics) changed sentence in footnote 4 to "All pads but RESET are configured in input or in high impedance state." In Table 21 (Nest electrical characteristics), corrected the maximum value for I_{DD_BV} in Table 22 (Voltage regulator electrical characteristics), conged V_{PORUP} classification tag from "P" (Production testing guaranteed) to "D" (Design simulation). Changed V_{LVDHV3BH} classification tag from "P" (Production testing guaranteed) to "T" (Design characterization). In Table 23 (Low voltage monitor electrical characteristics), changed V_{LVDHV3BL} minimum from 2.7 V to 2.6 V.

Revision	Date	Description of changes
2 (cont.)	15 May 2013	In Table 24 (Electrical characteristics in different application modes), — Changed I _{DDMAX} Typ to 81 mA and I _{DDMAX} Typ to 130 mA. — Changed I _{DDRUN} Typ for fCPU = 32 MHz to 40 mA. — Changed I _{DDRUN} Typ for fCPU = 48 MHz to 54 mA. Added I _{DDRUN} Max of 96 mA. — Changed I _{DDHALT} at T _A = 25 °C Typ to 10 mA and I _{DDHALT} Max to 15 mA. — Changed I _{DDHALT} at T _A = 25 °C Typ to 15 mA and I _{DDHALT} Max to 28 mA. — Changed I _{DDTOP} T _A temperature from -40 °C to 25 °C. — Changed I _{DDSTOP} at T _A = 55 °C Typ to 130 µA and I _{DDSTOP} Max to 500 µA. — Changed I _{DDSTOP} at T _A = 55 °C Typ to 180 µA. — Changed I _{DDSTOP} at T _A = 55 °C Typ to 180 µA. — Changed I _{DDSTOP} at T _A = 55 °C Typ to 180 µA. — Changed I _{DDSTOP} at T _A = 55 °C Typ to 17 µA and I _{DDSTOP} Max to 5 mA. — Changed I _{DDSTOP} at T _A = 55 °C Typ to 17 µA and Max to 80 µA. — Changed I _{DDSTDP2} at T _A = 55 °C Typ to 17 µA and Max to 80 µA. — Changed I _{DDSTDP2} at T _A = 55 °C Typ to 17 µA and Max to 80 µA. — Changed I _{DDSTDP2} at T _A = 105 °C Typ to 30 µA. — Changed I _{DDSTDP2} at T _A = 105 °C Typ to 30 µA. — Changed I _{DDSTDP2} at T _A = 25 °C Typ to 280 µA and Max to 950 µA. — Changed I _{DDSTDP2} at T _A = 25 °C Typ to 280 µA and Max to 500 µA. — Changed I _{DDSTDBY2} at T _A = 25 °C Typ to 170 µA. — Changed I _{DDSTDBY2} at T _A = 25 °C Typ to 150 µA and Max to 500 µA. — Changed I _{DDSTDBY1} at T _A = 55 °C Typ to 24 µA. — Changed I _{DDSTDBY1} at T _A = 55 °C Typ to 24 µA. — Changed I _{DDSTDBY1} at T _A = 55 °C Typ to 24 µA. — Changed I _{DDSTDBY1} at T _A = 25 °C Typ to 260 µA. — Changed I _{DDSTDBY1} at T _A = 125 °C Typ to 280 µA and Max to 500 µA. — Changed I _{DDSTDBY1} at T _A = 125 °C Typ to 280 µA. — Changed I _{DDSTDBY1} at T _A = 125 °C Typ to 280 µA. — Changed I _{DDSTDBY1} at T _A = 125 °C Typ to 280 µA. — Changed I _{DDSTDBY1} at T _A = 125 °C Typ to 280 µA. — Changed I _{DDSTDBY1} at T _A = 125 °C Typ to 280 µA. — Changed I _{DDSTDBY1} at T _A = 125 °C Typ to 280 µA. — Changed I _{DDSTDBY1} at T _A = 125 °C Typ to 280 µA.
3	11 Sep 2013	Updated the temperature in table note 2 in Table 1 (MPC5606BK family comparison) from 105 °C to 125 °C.
4	25 Nov 2015	Updated the Max value current for I _{ADC0run} from 40 mA to 5 mA in Table 41 (ADC_0 conversion characteristics (10-bit ADC_0))

Table 46. Revision history (continued)

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address:freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, inc. Reg. U.S. Pat. & Tm. Off. the power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2015-2016. All rights reserved.

Document Number: MPC5606B Rev. 4 02/2016

