
Errata
MSP430FR5992 Microcontroller

ABSTRACT

This document describes the known exceptions to the functional specifications (advisories).

Table of Contents
1 Functional Advisories.. 2
2 Preprogrammed Software Advisories.. 2
3 Debug Only Advisories.. 2
4 Fixed by Compiler Advisories... 2
5 Nomenclature, Package Symbolization, and Revision Identification.. 4

5.1 Device Nomenclature...4
5.2 Package Markings..4
5.3 Memory-Mapped Hardware Revision (TLV Structure)... 5

6 Advisory Descriptions..6
7 Revision History... 17

www.ti.com Table of Contents

SLAZ685L – FEBRUARY 2017 – REVISED AUGUST 2021
Submit Document Feedback

MSP430FR5992 Microcontroller 1

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ685
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ685L&partnum=MSP430FR5992

1 Functional Advisories
Advisories that affect the device's operation, function, or parametrics.

✓ The check mark indicates that the issue is present in the specified revision.

Errata Number R
ev

 C
ADC42 ✓
ADC65 ✓
ADC69 ✓
ADC70 ✓
ADC71 ✓
CPU46 ✓
CPU47 ✓
CS12 ✓
PMM31 ✓
PMM32 ✓
RTC12 ✓
TB25 ✓
USCI42 ✓
USCI45 ✓
USCI47 ✓
USCI50 ✓

2 Preprogrammed Software Advisories
Advisories that affect factory-programmed software.

✓ The check mark indicates that the issue is present in the specified revision.

Errata Number R
ev

 C

ADC67 ✓

3 Debug Only Advisories
Advisories that affect only debug operation.

✓ The check mark indicates that the issue is present in the specified revision.

The device does not have any errata for this category.

4 Fixed by Compiler Advisories
Advisories that are resolved by compiler workaround. Refer to each advisory for the IDE and compiler versions
with a workaround.

✓ The check mark indicates that the issue is present in the specified revision.

Errata Number R
ev

 C

CPU21 ✓
CPU22 ✓
CPU40 ✓

Refer to the following MSP430 compiler documentation for more details about the CPU bugs workarounds.

Functional Advisories www.ti.com

2 MSP430FR5992 Microcontroller SLAZ685L – FEBRUARY 2017 – REVISED AUGUST 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ685
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ685L&partnum=MSP430FR5992

TI MSP430 Compiler Tools (Code Composer Studio IDE)

• MSP430 Optimizing C/C++ Compiler: Check the --silicon_errata option
• MSP430 Assembly Language Tools

MSP430 GNU Compiler (MSP430-GCC)

• MSP430 GCC Options: Check -msilicon-errata= and -msilicon-errata-warn= options
• MSP430 GCC User's Guide

IAR Embedded Workbench

• IAR workarounds for msp430 hardware issues

www.ti.com Fixed by Compiler Advisories

SLAZ685L – FEBRUARY 2017 – REVISED AUGUST 2021
Submit Document Feedback

MSP430FR5992 Microcontroller 3

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/slau132
https://www.ti.com/lit/pdf/slau131
https://gcc.gnu.org/onlinedocs/gcc/MSP430-Options.html
https://www.ti.com/lit/pdf/slau646
https://www.iar.com/support/tech-notes/compiler/workarounds-for-msp430-hardware-issues
https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ685
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ685L&partnum=MSP430FR5992

5 Nomenclature, Package Symbolization, and Revision Identification
The revision of the device can be identified by the revision letter on the Package Markings or by the HW_ID
located inside the TLV structure of the device.

5.1 Device Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP
MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These
prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully
qualified production devices (MSP).

XMS – Experimental device that is not necessarily representative of the final device's electrical specifications

MSP – Fully qualified production device

Support tool naming prefixes:

X: Development-support product that has not yet completed Texas Instruments internal qualification testing.

null: Fully-qualified development-support product.

XMS devices and X development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated
fully. TI's standard warranty applies.

Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices.
TI recommends that these devices not be used in any production system because their expected end-use failure
rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature
range, package type, and distribution format.

5.2 Package Markings

ZVW87 NFBGA (ZVW), 87 pin

RGZ48 QFN (RGZ), 48 Pin

Nomenclature, Package Symbolization, and Revision Identification www.ti.com

4 MSP430FR5992 Microcontroller SLAZ685L – FEBRUARY 2017 – REVISED AUGUST 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ685
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ685L&partnum=MSP430FR5992

PM64 LQFP (PM), 64 Pin

PN80 LQFP (PN), 80 Pin

5.3 Memory-Mapped Hardware Revision (TLV Structure)
Die Revision TLV Hardware Revision

Rev C 21h

Further guidance on how to locate the TLV structure and read out the HW_ID can be found in the device User's
Guide.

www.ti.com Nomenclature, Package Symbolization, and Revision Identification

SLAZ685L – FEBRUARY 2017 – REVISED AUGUST 2021
Submit Document Feedback

MSP430FR5992 Microcontroller 5

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ685
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ685L&partnum=MSP430FR5992

6 Advisory Descriptions

ADC42 ADC Module

Category Functional

Function ADC stops converting when successive ADC is triggered before the previous conversion
ends

Description Subsequent ADC conversions are halted if a new ADC conversion is triggered while ADC
is busy. ADC conversions are triggered manually or by a timer. The affected ADC modes
are:

- sequence-of-channels

- repeat-single-channel

- repeat-sequence-of-channels (ADC12CTL1.ADC12CONSEQx)

In addition, the timer overflow flag cannot be used to detect an overflow
(ADC12IFGR2.ADC12TOVIFG).

Workaround 1. For manual trigger mode (ADC12CTL0.ADC12SC), ensure each ADC conversion
is completed by first checking ADC12CTL1.ADC12BUSY bit before starting a new
conversion.

2. For timer trigger mode (ADC12CTL1.ADC12SHP), ensure the timer period is greater
than the ADC sample and conversion time.

To recover the conversion halt:

1. Disable ADC module (ADC12CTL0.ADC12ENC = 0 and ADC12CTL0.ADC12ON = 0)

2. Re-enable ADC module (ADC12CTL0.ADC12ON = 1 and ADC12CTL0.ADC12ENC =
1)

3. Re-enable conversion

ADC65 ADC Module

Category Functional

Function ADC12_B clock stays on between conversions in sequence-of-channels or repeated
sequence-of-channels mode

Description When using the ADC in sequence-of-channels or repeat-sequence-of-channels mode
(ADC12CONSEQx = 01 or 11), the ADC12_B always requests the ADC clock even
between conversions. In this scenario, although the device may still enter LPM0, LPM1,
LPM2 or LPM3, the selected ADC12_B clock source will always remain on, resulting in
increased current consumption between ADC conversions.

Workaround To avoid the additional current consumption impact, different options will be needed
depending on use case:

1. Configure ADC to Repeated-Single-Channel mode (ADC12CONSEQx = 10). Use the
DMA or software to change the selected ADC12INCHx between conversions. With this
option, the timing between conversions of different channels remains the same as normal
ADC12 usage.

Advisory Descriptions www.ti.com

6 MSP430FR5992 Microcontroller SLAZ685L – FEBRUARY 2017 – REVISED AUGUST 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ685
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ685L&partnum=MSP430FR5992

ADC65 (continued) ADC Module

OR

2. Configure ADC to Sequence-of-Channels mode (ADC12CONSEQx = 01) with
sequence of channels in Multiple Sample and Convert mode (ADC12CTL0.ADC12MSC
= 1), then toggle the ADC12ENC bit by DMA or software after completing of each
conversion sequence. With this option, the conversions of each channel in the sequence
will happen immediately after the previous channel instead of waiting for the next trigger.
This needs to be considered if timing between the sampling of different channels in the
sequence matters for the application.

ADC67 ADC Module

Category Software in ROM

Function Invalid ADC12 temperature sensor calibration data

Description The ADC12 reference temperature sensor calibration data stored in the TLV data
structure (0x1A1A - 0x1A25) can be incorrect depending on the production lot trace code.
As a result the temperature measurement when using these data can be wrong.

Devices with lot trace code > 87XXXXX are not affected by this issue.

Workaround Record the calibration data by taking ADC measurements of the temperature sensor at
30C and 85C for the required reference voltage. The calibration data in the TLV section
(0x1A1A - 0x1A25) can't be overwritten but the new calibration data can be stored in user
FRAM or info memory for further temperature calculations.

ADC69 ADC Module

Category Functional

Function ADC stops operating if ADC clock source is changed from SMCLK to another source
while SMCLKOFF = 1.

Description When SMCLK is used as the clock source for the ADC (ADC12CTL1.ADC12SSELx =
11) and CSCTL4.SMCLKOFF = 1, the ADC will stop operating if the ADC clock source is
changed by user software (e.g. in the ISR) from SMCLK to a different clock source. This
issue appears only for the ADC12CTL1.ADC12DIVx settings /3/5/7. The hang state can
be recovered by PUC/POR/BOR/Power cycle.

Workaround 1. Set CSCTL4.SMCLKOFF = 0 before switch ADC clock source.

OR

2. Only use ADC12CTL1.ADC12DIVx as /1, /2, /4, /6, /8

ADC70 ADC Module

Category Functional

Function DMA gets stuck when switching between ADC data transfer trigger types

Description If the ADC performs a data transfer by the CPU ,e.g. via interrupt or flag polling,
AND
the ADC is then configured for an edge-triggered DMA transfer

www.ti.com Advisory Descriptions

SLAZ685L – FEBRUARY 2017 – REVISED AUGUST 2021
Submit Document Feedback

MSP430FR5992 Microcontroller 7

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ685
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ685L&partnum=MSP430FR5992

ADC70 (continued) ADC Module

THEN
the DMA cannot be triggered and no data transfer will occur.

Workaround
1. Do not switch between the ADC triggered CPU data transfer and ADC triggered DMA
data transfer to avoid this condition. Or,
2. Apply a POR reset to clear the trigger DMA trigger logic inside the ADC. Or,
3. Perform a dummy DMA transfer via level trigger option (DMAxCTL.DMALEVEL=1)
to clear ADC trigger logic. In this case, it is recommended to throw out current ADC
conversion and ignore the data of the DMA dummy transfer.

ADC71 ADC Module

Category Functional

Function ADC12 stops converting when ENC and SC bits are set simultaneously and ADC12 was
previously set to trigger from a source that was not the SC bit.

Description
When using the ADC12 after being setup and triggered by a trigger source that is not
the ADC12SC bit (ADC Start Conversion), if ADC12ENC (ADC Enable) and ADC12SC
bits are set simultaneously, then ADC12BUSY flag stays high and ADC12SC does not get
cleared. As a result, the ADC conversion never finishes.

Workaround
Set ADC12ENC and ADC12SC bits with separate instructions if the trigger source is
changed from a source that is not ADC12SC.

CPU21 CPU Module

Category Compiler-Fixed

Function Using POPM instruction on Status register may result in device hang up

Description When an active interrupt service request is pending and the POPM instruction is used to
set the Status Register (SR) and initiate entry into a low power mode , the device may
hang up.

Workaround None. It is recommended not to use POPM instruction on the Status Register.

Refer to the table below for compiler-specific fix implementation information.

IDE/Compiler Version Number Notes

IAR Embedded Workbench Not affected

TI MSP430 Compiler Tools (Code
Composer Studio)

v4.0.x or later
User is required to add the compiler
or assembler flag option below. --
silicon_errata=CPU21

MSP430 GNU Compiler (MSP430-
GCC)

MSP430-GCC 4.9 build 167 or later

CPU22 CPU Module

Category Compiler-Fixed

Advisory Descriptions www.ti.com

8 MSP430FR5992 Microcontroller SLAZ685L – FEBRUARY 2017 – REVISED AUGUST 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ685
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ685L&partnum=MSP430FR5992

CPU22 CPU Module

Function Indirect addressing mode with the Program Counter as the source register may produce
unexpected results

Description When using the indirect addressing mode in an instruction with the Program Counter (PC)
as the source operand, the instruction that follows immediately does not get executed.
For example in the code below, the ADD instruction does not get executed.

mov @PC, R7
add #1h, R4

Workaround Refer to the table below for compiler-specific fix implementation information.

IDE/Compiler Version Number Notes

IAR Embedded Workbench Not affected

TI MSP430 Compiler Tools (Code
Composer Studio)

v4.0.x or later
User is required to add the compiler
or assembler flag option below. --
silicon_errata=CPU22

MSP430 GNU Compiler (MSP430-
GCC)

MSP430-GCC 4.9 build 167 or later

CPU40 CPU Module

Category Compiler-Fixed

Function PC is corrupted when executing jump/conditional jump instruction that is followed by
instruction with PC as destination register or a data section

Description If the value at the memory location immediately following a jump/conditional jump
instruction is 0X40h or 0X50h (where X = don't care), which could either be an instruction
opcode (for instructions like RRCM, RRAM, RLAM, RRUM) with PC as destination
register or a data section (const data in flash memory or data variable in
RAM), then the PC value is auto-incremented by 2 after the jump instruction is executed;
therefore, branching to a wrong address location in code and leading to wrong program
execution.

For example, a conditional jump instruction followed by data section (0140h).

@0x8012 Loop DEC.W R6
@0x8014 DEC.W R7
@0x8016 JNZ Loop
@0x8018 Value1 DW 0140h

Workaround In assembly, insert a NOP between the jump/conditional jump instruction and program
code with instruction that contains PC as destination register or the data section.

Refer to the table below for compiler-specific fix implementation information.

www.ti.com Advisory Descriptions

SLAZ685L – FEBRUARY 2017 – REVISED AUGUST 2021
Submit Document Feedback

MSP430FR5992 Microcontroller 9

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ685
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ685L&partnum=MSP430FR5992

CPU40 (continued) CPU Module

IDE/Compiler Version Number Notes

IAR Embedded Workbench IAR EW430 v5.51 or later

For the command line version add
the following information Compiler:
--hw_workaround=CPU40
Assembler:-v1

TI MSP430 Compiler Tools (Code
Composer Studio)

v4.0.x or later
User is required to add the compiler
or assembler flag option below. --
silicon_errata=CPU40

MSP430 GNU Compiler (MSP430-
GCC)

Not affected

CPU46 CPU Module

Category Functional

Function POPM peforms unexpected memory access and can cause VMAIFG to be set

Description When the POPM assembly instruction is executed, the last Stack Pointer increment is
followed by an unintended read access to the memory. If this read access is performed
on vacant memory, the VMAIFG will be set and can trigger the corresponding interrupt
(SFRIE1.VMAIE) if it is enabled. This issue occurs if the POPM assembly instruction is
performed up to the top of the STACK.

Workaround If the user is utilizing C, they will not be impacted by this issue. All TI/IAR/GCC pre-built
libraries are not impacted by this bug. To ensure that POPM is never executed up to the
memory border of the STACK when using assembly it is recommended to either

1. Initialize the SP to
a. TOP of STACK - 4 bytes if POPM.A is used
b. TOP of STACK - 2 bytes if POPM.W is used

OR

2. Use the POPM instruction for all but the last restore operation. For the the last restore
operation use the POP assembly instruction instead.

For instance, instead of using:

POPM.W #5,R13

Use:

POPM.W #4,R12
POP.W R13

Refer to the table below for compiler-specific fix implementation information.

Advisory Descriptions www.ti.com

10 MSP430FR5992 Microcontroller SLAZ685L – FEBRUARY 2017 – REVISED AUGUST 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ685
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ685L&partnum=MSP430FR5992

CPU46 (continued) CPU Module

IDE/Compiler Version Number Notes

IAR Embedded Workbench Not affected

C code is not impacted by this bug.
User using POPM instruction in
assembler is required to implement
the above workaround manually.

TI MSP430 Compiler Tools (Code
Composer Studio)

Not affected

C code is not impacted by this bug.
User using POPM instruction in
assembler is required to implement
the above workaround manually.

MSP430 GNU Compiler (MSP430-
GCC)

Not affected

C code is not impacted by this bug.
User using POPM instruction in
assembler is required to implement
the above workaround manually.

CPU47 CPU Module

Category Functional

Function An unexpected Vacant Memory Access Flag (VMAIFG) can be triggered

Description An unexpected Vacant Memory Access Flag (VMAIFG) can be triggered, if a PC-
modifying instruction (e.g. - ret, push, call, pop, jmp, br) is fetched from the last addresses
(last 4 or 8 byte) of a memory (e.g.- FLASH, RAM, FRAM) that is not contiguous to a
higher, valid section on the memory map.
In debug mode using breakpoints the last 8 bytes are affected.
In free running mode the last 4 bytes are affected.

Workaround Edit the linker command file to make the last 4 or 8 bytes of affected memory sections
unavailable, to avoid PC-modifying instructions on these locations.
Remaining instructions or data can still be stored on these locations.

CS12 CS Module

Category Functional

Function DCO overshoot at frequency change

Description When changing frequencies (CSCTL1.DCOFSEL), the DCO frequency may overshoot
and exceed the datasheet specification. After a time period of 10us has elapsed, the
frequency overshoot settles down to the expected range as specified in the datasheet.
The overshoot occur when switching to and from any DCOFSEL setting and impacts all
peripherals using the DCO as a clock source. A potential impact can also be seen on
FRAM accesses, since the overshoot may cause a temporary violation of FRAM access
and cycle time requirements.

Workaround When changing the DCO settings, use the following procedure:

1) Store the existing CSCTL3 divider into a temporary unsigned 16-bit variable

2) Set CSCTL3 to divide all corresponding clock sources by 4 or higher

3) Change DCO frequency

4) Wait ~10us

www.ti.com Advisory Descriptions

SLAZ685L – FEBRUARY 2017 – REVISED AUGUST 2021
Submit Document Feedback

MSP430FR5992 Microcontroller 11

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ685
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ685L&partnum=MSP430FR5992

CS12 (continued) CS Module

5) Restore the divider in CSCTL3 to the setting stored in the temporary variable.

The following code example shows how to increase DCO to 16MHz.

uint16_t tempCSCTL3 = 0;
CSCTL0_H = CSKEY_H; // Unlock CS registers
/* Assuming SMCLK and MCLK are sourced from DCO */
/* Store CSCTL3 settings to recover later */
tempCSCTL3 = CSCTL3;
/* Keep overshoot transient within specification by setting clk sources to
divide by 4*/
/* Clear the DIVS & DIVM masks (~0x77)and set both fields to 4 divider */
CSCTL3 = CSCTL3 & (~(0x77)) | DIVS__4 | DIVM__4;
CSCTL1 = DCOFSEL_4 | DCORSEL; // Set DCO to 16MHz
/* Delay by ~10us to let DCO settle. 60 cycles = 20 cycles buffer + (10us /
(1/4MHz)) */
__delay_cycles(60);
CSCTL3 = tempCSCTL3; // Set all dividers
CSCTL0_H = 0; // Lock CS registers

PMM31 PMM Module

Category Functional

Function Device may enter lockup state during transition from AM to LPM2/3/4

Description The device might enter lockup state if the MODOSC is requested (e.g. triggered by ADC)
or removed (e.g. end of ADC conversion) during a power mode transition from AM to
LPM2/3/4 (e.g. during ISR exits or Status Register modifications).
The same behavior can appear when SMCLK is requested during a power mode
transition from AM to LPM3/4.
The device will remain in a lockup state unable to respond to interrupts or continue
application execution until a power cycle or external reset brings it back to reset state.

Modules which can trigger MODCLK clock requests/removals are ADC and eUSCI in I2C
mode using the clock low timeout feature (e.g. SMBus, PMBus).
Modules which can trigger SMCLK clock requests are ADC, eUSCI in I2C Master mode,
eUSCI in SPI Master mode and eUSCI in UART mode.

If clock requests are started by the CPU/DMA (e.g. eUSCI during SPI master
transmission), they can't occur at the same time as the power mode transition and thus
should not be affected. The device should only be affected when the clock request is
asynchronous to the power mode transition.

Workaround 1. Avoid using the aforementioned combinations of clock requests and power mode
transitions:

Use LPM0/1 instead of LPM2/3/4 when expecting asynchronous MODCLK requests and
removals.

OR

Use LPM0/1/2 instead of LPM3/4 when expecting asynchronous SMCLK requests.

OR

Advisory Descriptions www.ti.com

12 MSP430FR5992 Microcontroller SLAZ685L – FEBRUARY 2017 – REVISED AUGUST 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ685
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ685L&partnum=MSP430FR5992

PMM31 (continued) PMM Module

Use LPMx.5 instead of LPM2/3/4.

OR

Use a clock different than MODCLK/SMCLK when applicable (e.g. ACLK).

2. Prevent the power mode transition from happening when an asynchronous clock
request/removal is expected:

Wake-up device before a UART byte is received.

AND

Wake-up device before an asynchronous ADC trigger and stay in Active Mode until
conversion is completed.

AND

Keep device in AM/LPM0/LPM1 during ADC measurement.

PMM32 PMM Module

Category Functional

Function Device may enter lockup state or execute unintentional code during transition from AM to
LPM2/3/4

Description The device might enter lockup state or start executing unintentional code resulting in
unpredictable behavior depending on the contents of the address location- if any of the
two conditions below occurs:

Condition1:

The following three events happen at the same time:

1) The device transitions from AM to LPM2/3/4 (e.g. during ISR exits or Status Register
modifications),

AND

2) An interrupt is requested (e.g. GPIO interrupt),

AND

3) MODCLK is requested (e.g. triggered by ADC) or removed (e.g. end of ADC
conversion).

Modules which can trigger MODCLK clock requests/removals are ADC and eUSCI.

If clock events are started by the CPU (e.g. eUSCI during SPI master transmission), they
can not occur at the same time as the power mode transition and thus should not be
affected. The device should only be affected when the clock event is asynchronous to the
power mode transition.

The device can recover from this lockup condition by a PUC/BOR/Power cycle (e.g.

www.ti.com Advisory Descriptions

SLAZ685L – FEBRUARY 2017 – REVISED AUGUST 2021
Submit Document Feedback

MSP430FR5992 Microcontroller 13

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ685
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ685L&partnum=MSP430FR5992

PMM32 (continued) PMM Module

enable Watchdog to trigger PUC).

Condition2:

The following events happen at the same time:

1) The device transitions from AM to LPM2/3/4 (e.g. during ISR exits or Status Register
modifications),

AND

2) An interrupt is requested (e.g. GPIO interrupt),

AND

3) Neither MODCLK nor SMCLK are running (e.g. requested by a peripheral),

AND

4) SMCLK is configured with a different frequency than MCLK.

The device can recover from this lockup condition by a BOR/Power cycle.

Workaround 1. Use LPM0/1/x.5 instead of LPM2/3/4.

OR

2. Place the FRAM in INACTIVE mode before any entry to LPM2/3/4 by clearing the
FRPWR bit and FRLPMPWR bit (if exist) in the GCCTL0 register. This must be performed
from RAM as shown below:

// define a function in RAM
#pragma CODE_SECTION(enterLpModeFromRAM,".TI.ramfunc")
void enterLpModeFromRAM(unsigned short lowPowerMode);

//call this function before any entry to LPM2/3/4
void enterLpModeFromRAM(unsigned short lowPowerMode)
{
FRCTL0 = FRCTLPW;
GCCTL0 &= ~(FRPWR+FRLPMPWR); //clear FRPWR and FRLPMPWR
FRCTL0_H = 0; //re-lock FRCTL
__bis_SR_register(lowPowerMode);
}

RTC12 RTC Module

Category Functional

Function Real-time clock temperature compensation RTCTCOK bit not retained after LPM3.5 wake
up

Description The RTC real-time clock temperature compensation write OK bit (RTCTCMP.RTCTCOK)
is reset on wake up from LPM3.5 mode and does not get retained.

Workaround Store the RTCTCMP register content into FRAM for retention after wake up from LPM3.5

Advisory Descriptions www.ti.com

14 MSP430FR5992 Microcontroller SLAZ685L – FEBRUARY 2017 – REVISED AUGUST 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ685
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ685L&partnum=MSP430FR5992

TB25 TB Module

Category Functional

Function In up mode, TBxCCRn value is immediately transferred to TBxCLn when
TBxCCTLn.CLLD bits are set or 0x01 or 0x10

Description IF Timer B is configured for Up mode,
AND
the compare latch load event (TBxCCTLn.CLLD bits) setting is configured to update
TBxCCRn when TBxR reaches 0,
THEN
TBxCCRn will update immediately instead of the described condition.

This is contrary to the user guide description of TBxCCTLn.CLLD = 0x01 or 0x10 modes.

Workaround If user needs to update TBxCCRn value when TBxR counts to 0 in Timer B up mode:

1. Set TBxCCTLn. CLLD = 0x00
2. Enable the Timer B interrupt (TBIE) in TBxCTL
3. Update TBxCCRn value within interrupt routine.

Timer B Interrupt would need to be serviced in a timely manner to mitigate disruption or
unintended timer output if an output mode is used.

USCI42 USCI Module

Category Functional

Function UART asserts UCTXCPTIFG after each byte in multi-byte transmission

Description UCTXCPTIFG flag is triggered at the last stop bit of every UART byte transmission,
independently of an empty buffer, when transmitting multiple byte sequences via UART.
The erroneous UART behavior occurs with and without DMA transfer.

Workaround None.

USCI45 USCI Module

Category Functional

Function Unexpected SPI clock stretching possible when UCxCLK is asynchronous to MCLK

Description In rare cases, during SPI communication, the clock high phase of the first data bit may be
stretched significantly. The SPI operation completes as expected with no data loss. This
issue only occurs when the USCI SPI module clock (UCxCLK) is asynchronous to the
system clock (MCLK).

Workaround Ensure that the USCI SPI module clock (UCxCLK) and the CPU clock (MCLK) are
synchronous to each other.

USCI47 USCI Module

Category Functional

Function eUSCI SPI slave with clock phase UCCKPH = 1

Description The eUSCI SPI operates incorrectly under the following conditions:

www.ti.com Advisory Descriptions

SLAZ685L – FEBRUARY 2017 – REVISED AUGUST 2021
Submit Document Feedback

MSP430FR5992 Microcontroller 15

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ685
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ685L&partnum=MSP430FR5992

USCI47 (continued) USCI Module

1. The eUSCI_A or eUSCI_B module is configured as a SPI slave with clock phase mode
UCCKPH = 1

AND

2. The SPI clock pin is not at the appropriate idle level (low for UCCKPL = 0, high for
UCCKPL = 1) when the UCSWRST bit in the UCxxCTLW0 register is cleared.

If both of the above conditions are satisfied, then the following will occur:
eUSCI_A: the SPI will not be able to receive a byte (UCAxRXBUF will not be filled and
UCRXIFG will not be set) and SPI slave output data will be wrong (first bit will be missed
and data will be shifted).
eUSCI_B: the SPI receives data correctly but the SPI slave output data will be wrong (first
byte will be duplicated or replaced by second byte).

Workaround Use clock phase mode UCCKPH = 0 for MSP SPI slave if allowed by the application.

OR

The SPI master must set the clock pin at the appropriate idle level (low for UCCKPL = 0,
high for UCCKPL = 1) before SPI slave is reset (UCSWRST bit is cleared).

OR

For eUSCI_A: to detect communication failure condition where UCRXIFG is not set, check
both UCRXIFG and UCTXIFG. If UCTXIFG is set twice but UCRXIFG is not set, reset the
MSP SPI slave by setting and then clearing the UCSWRST bit, and inform the SPI master
to resend the data.

USCI50 USCI Module

Category Functional

Function Data may not be transmitted correctly from the eUSCI when operating in SPI 4-pin master
mode with UCSTEM = 0

Description When the eUSCI is used in SPI 4-pin master mode with UCSTEM = 0 (STE pin used as
an input to prevent conflicts with other SPI masters), data that is moved into UCxTXBUF
while the UCxSTE input is in the inactive state may not be transmitted correctly. If the
eUSCI is used with UCSTEM = 1 (STE pin used to output an enable signal), data is
transmitted correctly.

Workaround When using the STE pin in conflict prevention mode (UCSTEM = 0), only move data
into UCxTXBUF when UCxSTE is in the active state. If an active transfer is aborted
by UCxSTE transitioning to the master-inactive state, the data must be rewritten into
UCxTXBUF to be transferred when UCxSTE transitions back to the master-active state.

Advisory Descriptions www.ti.com

16 MSP430FR5992 Microcontroller SLAZ685L – FEBRUARY 2017 – REVISED AUGUST 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ685
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ685L&partnum=MSP430FR5992

7 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from August 5, 2021 to August 25, 2021 Page
• ADC70 was added to the errata documentation...6
• ADC71 was added to the errata documentation...6
• TB25 was added to the errata documentation..6

www.ti.com Revision History

SLAZ685L – FEBRUARY 2017 – REVISED AUGUST 2021
Submit Document Feedback

MSP430FR5992 Microcontroller 17

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ685
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ685L&partnum=MSP430FR5992

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	1 Functional Advisories
	2 Preprogrammed Software Advisories
	3 Debug Only Advisories
	4 Fixed by Compiler Advisories
	5 Nomenclature, Package Symbolization, and Revision Identification
	5.1 Device Nomenclature
	5.2 Package Markings
	5.3 Memory-Mapped Hardware Revision (TLV Structure)

	6 Advisory Descriptions
	7 Revision History

